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Abstract

Magnetic resonance imaging (MRI) allows non-invasive evaluation of inflammatory bowel

disease (IBD) by assessing pathologically altered gut. Besides morphological changes,

relaxation times and diffusion capacity of involved bowel segments can be obtained by MRI.

The aim of this study was to assess the use of multiparametric MRI in the diagnosis of

experimentally induced colitis in mice, and evaluate the diagnostic benefit of parameter

combinations using machine learning. This study relied on colitis induction by Dextran

Sodium Sulfate (DSS) and investigated the colon of mice in vivo as well as ex vivo. Receiver

Operating Characteristics were used to calculate sensitivity, specificity, positive- and nega-

tive-predictive values (PPV and NPV) of these single values in detecting DSS-treatment as

a reference condition. A Model Averaged Neural Network (avNNet) was trained on the multi-

parametric combination of the measured values, and its predictive capacity was compared to

those of the single parameters using exact binomial tests. Within the in vivo subgroup (n = 19),

the avNNet featured a sensitivity of 91.3% (95% CI: 86.6–96.0%), specificity of 92.3% (95% CI:

85.1–99.6%), PPV of 96.9% (94.0–99.9%) and NPV of 80.0% (95% CI: 69.9–90.1%), signifi-

cantly outperforming all single parameters in at least 2 accuracy measures (p < 0.003) and per-

forming significantly worse compared to none of the single values. Within the ex vivo subgroup

(n = 30), the avNNet featured a sensitivity of 87.4% (95% CI: 82.6–92.2%), specificity of 82.9%

(95% CI: 76.1–89.7%), PPV of 88.9% (84.3–93.5%) and NPV of 80.8% (95% CI: 73.8–87.9%),

significantly outperforming all single parameters in at least 2 accuracy measures (p < 0.015),

exceeded by none of the single parameters. In experimental mouse colitis, multiparametric

MRI and the combination of several single measured values to an avNNet can significantly

increase diagnostic accuracy compared to the single parameters alone. This pilot study will

provide new avenues for the development of an MR-derived colitis score for optimized diagno-

sis and surveillance of inflammatory bowel disease.
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Introduction

Inflammatory bowel diseases (IBD)–mainly consisting of Crohn’s disease (CD) and ulcerative

colitis (UC)–are persistent or recurrent intestinal inflammations affecting the entire gastroin-

testinal system or the colonic mucosa, respectively [1]. As a common pathomechanism, geneti-

cally susceptible hosts feature deregulated mucosal T cell responses to enteric bacteria [2]. The

details of these genetic-environmental-immunological interactions are still not resolved. How-

ever, there is consent that CD is characterized by a rather Th1 immune response and submu-

cosal T-cell-infiltration, whereas UC evokes a Th2-dominated immune response with mucosal

infiltration [3,4]. However, typical Th1 cytokines like tumor necrosis factor alpha (TNF-α)

and interferon gamma (IFN-γ) also arise in UC [5,6].

Experimental animal models are commonly used to investigate the pathogenesis of IBD.

Specifically dextran sulphate sodium (DSS)-induced colitis is a commonly used model of

murine colitis and many drugs used in IBD patients have been developed with the help of this

model [7–10]. DSS-induced colitis in mice closely resembles the morphological and symptom-

atic features of human UC [11], with a predominant affection of the mucosa and the distal left

colon, but often extending throughout the entire colon. As yet, the diagnosis of the disease—in

humans and animals—is based on clinical characteristics as well as endoscopic and histologic

mucosal features. Colonoscopy allows direct visualization of the colonic mucosa, but is inva-

sive and can cause complications [12].

In recent years, imaging techniques are increasingly considered as a tool to improve diag-

nosis and surveillance of IBD patients. Whilst computed tomography (CT) is a widely available

and fast method, it lacks sensitivity in terms of detection of early mucosal changes, and is asso-

ciated with the risks of repeated radiation exposure. Due to the technical progress of the last

years, magnetic resonance imaging (MRI) has become the imaging modality of choice in

detection, surveillance, therapy monitoring and evaluation of the extent of IBDs in humans

[13,14]. However, bowel imaging in animal models remains challenging.

Several studies reported on the perspectives of MRI in murine colitis imaging [15–21]. Of

note, these studies mainly investigated single variables like wall thickness or relaxation times,

but did not investigate the additional benefit of multiple variables, parameter combinations

and assets of machine learning algorithms.

This study describes in and ex vivo MRI protocols for imaging of DSS-induced colitis in

mice, and presents a multiparametric approach for colitis detection based on a machine learn-

ing algorithm. By this approach, increased diagnostic accuracy as compared to single parame-

ter analyses was obtained.

Materials and methods

Animals

C57BL/6 mice were obtained from Charles River, Germany, and housed at the central animal

facility of the University of Erlangen-Nuremberg. The animals were kept in standard labora-

tory cages in groups of three or four per cage. To avoid potential interfering infections, mice

were kept isolated and were fed with pathogen-free food. Clinical symptoms including body

weight, rectal bleeding, behavior, appearance and general health condition were monitored

daily. All care and experimental procedures were performed in accordance with national and

regional legislation on animal protection, and all animal procedures were approved by the

State Government of Middle Franconia, Germany (reference numbers 54–2532.1-12/12 and

55.2–2532.1-37/14). For tissue histology and ex vivo imaging, mice were sacrificed by cervical

dislocation under isoflurane anesthesia (2%, 2 L/min). In total, 43 mice were used.
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Colitis induction

Acute colitis was induced in sex-matched co-housed littermates with a minimal body weight

of 20 g by administration of 2.5% DSS (36–50 kDa; MP Biomedicals) in the drinking water for

a 7-day cycle, followed by 3 days of normal drinking water. Control animals received tap water

only. Animals were randomly assigned to DSS- or sham-treatment. DSS-induced colitis was

evaluated on day 9 by endoscopy while MRI was performed on day 10.

In addition, colon of control as well as DSS-treated animals were prepared from caecum to

rectum and used for ex vivo MRI analysis and immunohistochemistry.

Colitis evaluation using endoscopy and clinical examination

In vivo endoscopy was used to evaluate the DSS-induced colitis grade. Mice were anaesthetized

with isoflurane (2%, 2 L/min) and a high-resolution mini endoscope including a xenon light

source and an air pump (Karl-Storz, Germany) was used to visualize the intestinal mucosa at

the level of the rectosigmoid junction by blinded investigators (VL and CH). Disease activity

was evaluated according to Becker et al. [22] with a disease specific scoring system using trans-

lucency of the colon wall, granularity of the mucosal surface, fibrin deposition, vascularization

and stool consistency as parameters. Each parameter was given a score from 0 to 3, summing

up to a maximum score of 15 indicative of strong colitis.

Histology

Colon specimen of 21 mice were fixed overnight in 4% paraformaldehyde, embedded in paraf-

fin and cut into 4 μm sections. Hematoxylin/Eosin staining was performed to visualize tissue

morphology and inflammation. Slides were assessed for lymphocytic cell infiltration (0–3

points) and tissue damage (0–3 points) at the level of the rectosigmoid junction by a blinded

investigator (MW). The resulting points were summed up to receive a histology score ranging

from 0–6.

In vivo MRI

19 mice (13 mice with DSS-induced colitis, 6 controls) received Isoflurane anesthesia (2%, 2 L/

min) and an intraperitoneal injection of butylscopolamine (Buscopan, Boehringer Ingelheim,

Germany, 5 mg/kg body weight) prior to MRI examination. In addition, the distal colon was

gently flushed with saline solution and subsequently filled with a carob gum/saline solution

mixture (1%). Imaging was performed on a 7 Tesla Bruker ClinScan MRI with the sequences

listed in Table 1 with a maximum gradient strength of 660 mT/m and a maximum slew rate

4570 T/m/s. The automatic shimming procedure of the Bruker ClinScan MRI was used to

achieve sufficient shimming, offering room temperature resistive 1st and 2nd order shims [23].

Ex vivo MRI

The colons of 30 sacrificed mice (18 mice with DSS-induced colitis, 12 controls) were prepared

and embedded in agarose dissolved in saline solution (2%). Ex vivo imaging was performed on

the same system as in vivo imaging with the sequences listed in Table 2.

Image analysis

Images were analyzed with Horos [24]. For in vivo as well as ex vivo imaging, region of interest

(ROI) measurements were performed in the wall of the distal colon (n = 10 per animal). For

this purpose, ROIs were placed within the bowel walls in the T2w sequences by a blinded

investigator (SE), carefully avoiding the lumen of the colon or surrounding fat tissue (or
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agarose in case of ex vivo analyses). All measurements were acquired around the rectosigmoid

junction (approx. ±3 mm) where the colon was orientated perpendicular to slice orientation.

The ROIs were copied to the other sequences (T1, T2, T2� and ADC Maps), and slightly

adjusted if necessary (e.g. due to bowel movements altering the distinct location of the bowel

segment to measure). Measurement of the colon wall thickness was performed in the T2w

sequences with the distance tool.

Statistical analysis and machine learning

Statistical analyses were performed using RStudio [25]. Normal distribution of data was

assessed using Kolmogorov-Smirnov-tests. For the comparison of means between groups t-

tests were applied for normally distributed data, and Mann-Whitney U tests to compare the

medians of data that significantly differed from normal distribution. Linear correlations were

calculated with the Pearson correlation method.

Table 1. In vivo MRI sequences.

T1 T2 T1 Map T2 Map T2� Map ADC Map

Sequence SE SE FLASH SE GRE EPI

Orientation axial axial axial axial axial axial

TR (ms) 530 3890 50 3410 2000 5000

TE (ms) 9 56 2.5 10.2 4 31

Averages 2 1 1 1 1 4

FA (˚) 90 140 8 / 42 180 40 90

FOV (mm) 24 × 35 24 × 35 25 × 35 25 × 35 25 × 35 23 × 34

Slices 40 35 36 35 40 35

Slice thickness (mm) 0.7 1.0 1.0 1.0 1.0 1.0

Matrix 512 × 360 320 × 224 320 × 230 192 × 136 384 × 276 100 × 68

Duration 05:34 01:18 08:22 07:42 09:12 04:25

Acquired sequences included T1w and T2 sequences, T1-, T2-, T2�- and ADC maps.

Abbreviations: Spin echo (SE), fast low angle shots (FLASH), gradient echo (GE), echoplanar imaging (EPI) for determination of the apparent diffusion coefficient

(ADC). Repetition time (TR), time to echo (TE), flip angle (FA), field of view (FOV). Acquisition duration is given in min:sec.

https://doi.org/10.1371/journal.pone.0206576.t001

Table 2. Ex vivo MRI sequences.

T1 T2 T1 Map T2 Map T2� Map ADC Map

Sequence SE SE FLASH SE GRE EPI

Orientation axial axial axial axial axial axial

TR (ms) 941 13300 50 7082 2500 8000

TE (ms) 14 43 2.5 10.2 4 60

Averages 15 4 2 1 2 1

FA (˚) 180 180 8 / 42 180 40 90

FOV (mm) 28 × 28 28 × 28 28 × 28 28 × 28 28 × 28 28 × 28

Slices 60 80 40 40 38 40

Slice thickness (mm) 1.0 0.5 1.0 1.0 1.0 1.0

Matrix 512 × 512 512 × 512 512 × 512 512 × 512 512 × 512 100 × 100

Duration 174:15 131:27 41:18 45:27 42:40 16:16

Acquired sequences included T1w and T2 sequences, T1-, T2-, T2�- and ADC maps.

Abbreviations: Spin echo (SE), fast low angle shots (FLASH), gradient echo (GE), echoplanar imaging (EPI) for determination of the apparent diffusion coefficient

(ADC). Repetition time (TR), time to echo (TE), flip angle (FA), field of view (FOV). Acquisition duration is given in min:sec.

https://doi.org/10.1371/journal.pone.0206576.t002
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Machine learning model development and implementation was performed using the caret

package for R [26]. DSS-treatment was used as reference condition with the aim to predict the

dichotomous outcome (DSS-treated vs. sham-treated) from the set of predictors wall thick-

ness, T1-, T2-, T2�-relaxation times, apparent diffusion coefficient (ADC) and the type of

examination (in vivo vs. ex vivo).

To assess the model’s ability to predict unknown data, a modified Leave-one-out-cross-vali-

dation was applied: All measurements obtained from one animal were eliminated from the

dataset and treated as a test-set, the model was trained with the remaining data (train-set)

which was then used to predict the outcome of the formerly eliminated data. This was per-

formed consecutively for all animals in a walk-through-fashion, so that in the end the complete

dataset underwent prediction of the outcome by models trained with data not part of the test-

set. Within this process, the partially correlated predictor parameters were subjected to a prin-

cipal component analysis (PCA) to convert the set of observations into a set of values of line-

arly uncorrelated variables (S1 Fig). The resulting principal components were then fed into

several machine learning algorithms to assess their diagnostic accuracy in discriminating

between DSS-treated and sham-treated animals. Model Averaged Neural Networks (avNNet)

were further evaluated due to their high accuracy in this screening procedure.

Neural networks are combinations of neurons organized in layers with the predictors as the

bottom layer, and the output as the top layer. The applied avNNet features one additional

intermediate layer containing hidden neurons as nodes, receiving input from the predictors

and forming the output. The inputs to each node are combined using a weighted linear combi-

nation. The result is then modified by a nonlinear function before being returned as output.

The values of the weights have to be restricted to prevent them from becoming too large, and

the parameter restricting the weights is referred to as decay. The initial weights are chosen ran-

domly and updated during the training process using the observed data. Consequently, there

is a certain amount of randomness in all predictions [26]. To account for this, the network was

trained 5 times using different random starting points, and the resulting data were averaged.

To assess the predictive abilities of every single parameter alone, Receiver-Operating Char-

acteristic (ROC) analyses were performed for the single predictors, and optimal sensitivity and

specificity values were calculated from the ROC curves by the Youden method.

The avNNet and the predictive abilities of all single parameters alone were compared to

each other by exact binomial tests using the R package DTComPair version 1.0.3 [27].

In all statistical tests, p-values < .05 were considered statistically significant.

Finally, a model was trained on the complete dataset with a decay value of 0.015 and 7 hid-

den neurons. The training process was validated with a 10 times repeated 10-fold cross-valida-

tion. The resulting model was implemented into a publically accessible internet application

using Shiny [28].

Results

Mice with DSS-induced colitis and control animals were comparatively investigated using clin-

ical evaluation methods, histology and MRI.

DSS-induced colonic inflammation

In DSS-treated animals as compared to control animals colonic wall translucency, granularity,

fibrin deposition and vascularization were changed (Fig 1A). This was accompanied by diar-

rhea and significantly higher disease specific scores in DSS-treated animals (median 7 vs. 0,

p< 0.001, Fig 2A) and higher histology scores (median 5 vs. 1, p< 0.001, Fig 2B). In
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accordance to endoscopic results, histological evaluation of the colon of DSS-treated mice

showed crypt distortion and cell damage, an increased immune cell infiltration, and edema

(Fig 1B).

Disease specific scores correlated with histology scores moderately but significantly (Fig 3,

r = 0.455, p = 0.038). Of notice, sham-treated animals featured histology scores of up to 2

points, animals with disease specific scores�4 exhibited histology scores ranging from 0–6,

and one animal featured a disease specific score of 13.5 but a histology score of only 1.

Fig 1. Comparison of colonoscopy and histology between DSS- and sham-treated animals. (A) Representative colonoscopy of a DSS-treated animal and a control

animal. In contrast to controls, DSS-treated animals featured lower colonic wall translucency and vascularization, higher granularity, diarrhea (arrowhead) and fibrin

deposition (arrow). (B) Representative colon histology images (H/E staining) of animals treated with DSS and control animals (scale bar 250 μm). Treatment with DSS

induced a strong inflammation in the colon (asterisks).

https://doi.org/10.1371/journal.pone.0206576.g001

Fig 2. Boxplot comparison of disease specific scores and histology scores between DSS- and sham-treated animals.

DSS-treated animals featured (A) significantly higher disease specific scores than control animals (median 7 vs. 0,

p< 0.001; n = 43) and (B) higher histology scores (median 5 vs. 1, p< 0.01; n = 21). Boxplots follow the Tukey

definition.

https://doi.org/10.1371/journal.pone.0206576.g002
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Subjective MRI analysis

In an initial analysis of the image material, distal colonic segments were identified that were

adequately filled with carbon gum solution and free from motion artifacts in all sequences (Fig

4). Those segments were used for relaxation time and ADC measurements within the acquired

maps and determination of the colon wall thickness.

Multiparametric imaging

To assess correlations between the obtained parameters, correlation plots were built (Fig 5A

and 5B), separated into in vivo (A) and ex vivo (B) measurements.

Highest positive correlation in the in vivo measurements was observed between T1- and

T2-relaxation times (r = 0.446, p< 0.001). This correlation however vanished when only DSS-

treated animals were analyzed (r = 0.114, p = 0.198). No significant negative correlations were

observable among the in vivo measurements (the only negative correlation between T1-relaxa-

tion time and ADC in the DSS subgroup was weak and non-significant (r = -0.118, p = 0.181)).

In analogy to the in vivo measurements, ex vivo parameters showed significant positive cor-

relation between T1- and T2-relaxation times (r = 0.345, p< 0.001), which also turned insig-

nificant when excluding control animals (r = 0.104, p = 0.165). In addition, a highly significant

negative correlation between wall thickness and ADC was observable in the ex vivo measure-

ments (r = -0.615, p< 0.001).

Fig 3. Pearson correlation plot of disease specific scores and histology scores. DSS-treated animals are depicted

with triangles, sham-treated animals are depicted with crosses. A moderate but significant correlation was observed

(r = 0.455, p = 0.038).

https://doi.org/10.1371/journal.pone.0206576.g003
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Significant differences between DSS-treated and control animals were observed regarding

wall thickness, T1- and T2-relaxation times and ADC (in vivo) and wall thickness, T2-relaxa-

tion time and ADC (ex vivo, compare Table 3A).

Moreover, differences between in vivo and ex vivo measurements were significant regarding

wall thickness, T2- and T2�-relaxation times and ADC (DSS subgroup) and T1- and T2�-relax-

ation times and ADC (control subgroup, Table 3B).

Comparison of machine learning algorithms

In an initial screening procedure, avNNet featured high sensitivity and specificity, highest

overall accuracy and the highest Youden-Index (Table 4). The Blackboost algorithm and

Boosted Smoothing Splines however featured slightly higher sensitivities than avNNet, but

considerably lower specificities and lower overall accuracy, so that the avNNet was further

evaluated in the remainder of the study.

Fig 4. Representative magnetic resonance (MR) images. (A) in vivo MR images of the distal colon in a T2-TSE sequence, T1-, T2- and T2�-mapping and an ADC map

for a DSS-treated and a control animal (upper and lower row, respectively). The colon wall is marked with an arrow. The walls of DSS-treated animals featured increased

thickness, higher T1- and T2-relaxation times and higher ADC values (compare Table 3 and Fig 5). (B) ex vivo MR images of the distal colon in a T2-TSE sequence, T1-,

T2- and T2�-mapping and an ADC map for a DSS-treated and a control animal (upper and lower row, respectively). The walls of DSS-treated animals featured

increased thickness, increased T2-relaxation times and reduced ADC values (compare Table 3 and Fig 5).

https://doi.org/10.1371/journal.pone.0206576.g004
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Evaluation of the Model Averaged Neural Network

The resulting avNNet outperformed the predictive capacities of most single parameters (Fig 6,

Table 5) and performed in no case significantly worse compared to any single value.

In the in vivo analysis, T2 time featured the ROC curve closest to the top-left edge (Fig 6),

resulting in a sensitivity of 76.1%, specificity of 90.4%, PPV of 95.5%, and NPV of 58.8% when

using the optimal cutoff of 89.238 ms (Table 5). T2 time as a single predictor was however sig-

nificantly outperformed in terms of sensitivity and NPV by the avNNet with its accuracy mea-

sures of 91.3% sensitivity (p< 0.001), 92.3% specificity (no significance), 96.9% PPV (no

significance) and 80.0% NPV (p< 0.001, also compare Table 5). Regarding the in vivo analysis,

the avNNet was slightly but not significantly outperformed by the ADC value as a single pre-

dictor in terms of sensitivity and NPV (93.4% vs. 91.3% and 80.4% vs. 80.0%, respectively), but

featured significantly higher specificity and PPV values (92.3% vs. 71.1%, p = 0.003 and 96.9%

vs. 89.6%, p = 0.003, respectively).

In the ex vivo analysis, wall thickness as the best performing single parameter (sensitivity

77.6%, specificity 79.5%, PPV 85.5%, NPV 69.4%) was outperformed by the avNNet in terms

of sensitivity and NPV (avNNet sensitivity 87.4%, p = 0.015; specificity 82.9%, no significance;

PPV 88.9%, no significance; NPV 80.8%, p = 0.008. Also compare Table 5). The avNNet was

not outperformed by any single parameter in the ex vivo analysis.

A visual impression of the avNNet’s performance in comparison to all single parameters is

given in Fig 6, the detailed values and results of the statistical tests are listed in Table 5.

Overall diagnostic accuracy (percent classified correctly) for the avNNet was 88.0% (95%

CI: 84.7–90.7%). When defining the presence of colitis not by DSS-treatment but rather by dis-

ease specific scores�1, diagnostic accuracy was comparable (88.1%; 95% CI 84.8–90.9%).

When using a histology score of� 2 as a criterion for colitis definition, diagnostic accuracy

was slightly reduced (85.0%; 95% CI 84.7–90.7%).

Fig 5. Correlation plots for the imaging parameters acquired in in vivo (A) and ex vivo measurements (B). Data from DSS-treated

animals are displayed in black, while data from control animals are displayed in grey. Analyzed variables included wall thickness, T1-,

T2- and T2�-relaxation times and the apparent diffusion coefficient (ADC). In the upper row boxplots following the Tukey definition are

given to depict the distribution of the obtained parameters. Also compare Table 3A presenting p-values for the assessment of significant

differences of the parameters between DSS-treated animals and controls. Frequency distribution plots along the diagonal and histograms

in the left column aid to further visualize the distributions of the analyzed parameters. Dotplots below the diagonal illustrate the

correlations of all possible parameter combinations, the corresponding correlation coefficients are given above the diagonal as 3 distinct

r values (combined correlation Cor, controls only, DSS-treated only).

https://doi.org/10.1371/journal.pone.0206576.g005

Table 3. Statistical comparison between DSS-treated animals and controls.

A) DSS vs. Control In Vivo Ex Vivo B) In Vivo vs. Ex Vivo DSS Control

Wall thickness 0.003 <0.001 Wall thickness <0.001 0.21
T1 0.003 0.17 T1 0.98 0.03
T2 <0.001 0.04 T2 <0.001 0.89
T2� 0.47 0.13 T2� <0.001 <0.001
ADC 0.004 0.007 ADC <0.001 0.007

(A) p-values for the comparison of the parameters wall thickness, T1 time, T2 time, T2� time and apparent diffusion coefficient (ADC) between DSS-treated animals

and controls separated for in vivo and ex vivo imaging.

(B) p-values for the comparison of the same parameters between in vivo and ex vivo imaging, separated for the subgroups of DSS-treated animals and controls.

p-values in Italics were calculated using Mann-Whitney U tests due to a significant deviance from normal distribution of at least one subgroup. Remaining p-values

were calculated using Student’s t-tests.

https://doi.org/10.1371/journal.pone.0206576.t003
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Final model development and preparation of an online tool for colitis

assessment in mice

The final model (trained on the complete dataset) was compiled to a web application publically

accessible via https://stoevne.shinyapps.io/MouseColitis/.

Discussion

The sensitive and quantitative analysis of structural changes of mouse colon tissues associated

with experimentally induced IBD is urgently required for an objective evaluation of disease

progression. However, evaluation of IBD in mice remains a challenging task due to the small

structures involved in inflamed bowels. Analysis is moreover complicated by bowel

Table 4. Diagnostic results of a screening procedure among different machine learning algorithms.

Algorithm Sensitivity [%] Specificity [%] Accuracy [%] Youden-Index

Model Averaged Neural Network (avNNet) 92.90 80.00 88.16 0.73

Random Forest 92.26 70.00 84.08 0.62

Support Vector Machine with Radial Kernel 92.26 67.78 83.27 0.60

Multilayer Perceptron 87.10 76.11 83.06 0.63

Blackboost 94.52 58.33 81.22 0.53

Boosted Logistic Regression 82.58 66.11 76.53 0.49

Boosted Smoothing Spline 95.48 43.89 76.53 0.39

Extreme Learning Machine 82.26 57.22 73.06 0.39

https://doi.org/10.1371/journal.pone.0206576.t004

Fig 6. Receiver Operating Characteristic (ROC) curves for the single predictors. ROC curves are depicted for the single predictors wall thickness (black), T1-

(blue), T2- (red), T2�- (green) relaxation times and ADC (orange) for in vivo (left) and ex vivo measurements (right). Optimal cutoff values were calculated via the

Youden-Index and are listed in Table 5. The diagnostic values for the Model Averaged Neural Network (avNNet) are indicated with a black cross.

https://doi.org/10.1371/journal.pone.0206576.g006
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movements during in vivo examinations that can only be partly suppressed by butylscopola-

mine application.

This study presents in vivo and ex vivo protocols to predict the presence of DSS-induced

murine colitis using a machine learning algorithm that combines multiple parameters. Several

studies have been published investigating MR imaging of IBD in mice [15–21]. These studies

focused on single [16,17,20] or only few parameters [15,18,21] without combining them in a holis-

tic approach. Wall thickness as a useful predictive parameter for the presence of colitis was con-

firmed in several studies [15–18,21]. In addition, T2w signal intensity could be shown to be a

parameter related to disease activity [15,21], which is in accordance with our results (see

Table 3A). An extensive MR imaging analysis was performed by Mustafi et al. [18], investigating

T1- and T2-relaxation times in a mapping approach, wall thickness and dynamic contrast

enhancement. Mustafi et al. also described increased T2-relaxation times for colitis, which was

confirmed by our results (Table 3A). In contrast to our study, no significant differences between

T1w values of inflamed and control colon were reported by these investigators [18].

In addition to already published studies, this study provides several aspects not covered by

previous works: We provide a combined approach applicable for in vivo as well as ex vivo
imaging, with an investigation of several parameters and their predictive capacities alone and

in combination. The resulting model was cross validated to ensure generalizability and was

made publicly available to be used by other researchers. However, machine learning algo-

rithms largely function as “black box”, and it remains unclear which features affect the final

result to which specific extent.

Concerning the single parameters within the presented study, a significant increase of wall

thickness in colitis both in and ex vivo, an increase of T1-relaxation time in vivo and changes

Table 5. Comparison between the predictive capacities of the acquired imaging parameters when used alone and when combined to a Model Averaged Neural Net-

work (avNNet).

In Vivo

Parameter Cutoff Sensitivity p Specificity p PPV p NPV p

Wall thickness [mm] 0.408 65.2% <0.001 88.5% 0.625 93.8% 0.108 48.9% <0.001

T1 time [ms] 1296 73.9% <0.001 78.8% 0.065 90.3% 0.017 53.2% <0.001

T2 time [ms] 89.238 76.1% <0.001 90.4% 1 95.5% 0.551 58.8% <0.001

T2� time [ms] 15.11 76.8% 0.003 55.8% <0.001 82.2% <0.001 47.5% <0.001

ADC [10−6 mm2/s] 1444 93.4% 0.640 71.1% 0.003 89.6% 0.003 80.4% 0.949

avNNet Model 91.3%

(86.6–96.0%)

92.3%

(85.1–99.6%)

96.9%

(94.0–99.9%)

80.0%

(69.9–90.1%)

Ex Vivo

Parameter Cutoff Sensitivity p Specificity p PPV p NPV p

Wall thickness [mm] 0.629 77.6% 0.015 79.5% 0.424 85.5% 0.096 69.4% 0.008

T1 time [ms] 1184.9 80.8% 0.134 38.5% <0.001 67.3% <0.001 56.3% <0.001

T2 time [ms] 66.62 73.2% <0.001 53.0% <0.001 70.9% <0.001 55.9% <0.001

T2� time [ms] 42.87 54.1% <0.001 67.5% <0.001 72.2% <0.001 48.4% <0.001

ADC [10−6 mm2/s] 750 69.4% <0.001 70.1% 0.004 78.3% <0.001 59.4% <0.001

avNNet Model 87.4%

(82.6–92.2%)

82.9%

(76.1–89.7%)

88.9%

(84.3–93.5%)

80.8%

(73.8–87.9%)

Cutoff values for the single parameters were determined using the Youden-Index from the ROC curves in Fig 5. Sensitivities, specificities, positive predictive values

(PPV) and negative predictive values (NPV) for the distinct cutoff values are given in percent. In addition, sensitivities, specificities, PPV and NPV of the Model

Averaged Neural Network (avNNet) are listed, with the 95% confidence intervals given in brackets. The p-values derive from a comparison of the accuracy measures of

the single parameters at their respective cutoffs with the values of the avNNet using exact binomial tests.

https://doi.org/10.1371/journal.pone.0206576.t005
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of diffusion capacity in vivo and ex vivo were observed. T2-relaxation times were increased in

DSS-treated animals compared to sham-treated animals in both in vivo and ex vivo analyses.

T2�-relaxation times between DSS- and sham-treated animals did not differ significantly, nei-

ther in in vivo nor ex vivo imaging. A striking finding was the increase of colon wall diffusion

capacity in mice suffering from colitis in in vivo imaging. This has formerly been described for

necrotizing enterocolitis in rodents [29] along with increased T2-relaxation times, pointing to

a possible necrotizing component in DSS-induced colitis in mice. In contradiction to these in
vivo findings, inflamed colon walls showed decreased ADC values in ex vivo imaging, which is

in line with clinical studies in human patients describing a significant decrease of ADC values

from normal colorectal tissue to healing lesions to active UC [30]. However, quantitative ADC

measurements have also been described to feature poor discriminatory ability for segmental

disease activity [31].

Overall, wall thickness, T2�-relaxation time and ADC were determined significantly differ-

ent between in and ex vivo analyses, T1-relaxation time differed significantly between in and

ex vivo in the control group and T2-relaxation time in the DSS group (Table 3B).

These results altogether suggest components influencing the accuracy of the measurements,

probably at least in part attributable to bowel movements and partial volume effects especially

in the in vivo subgroup, or altered relaxation times and diffusion coefficients due to prepara-

tion and embedding of the colon, or due to the long-lasting overnight imaging (approx. 7.5 h)

causing tissue alterations over time. The presented model however is able to distinguish

between DSS-treated and control animals with high accuracy (Table 4). In this regard, diag-

nostic accuracy was even higher for in vivo than for ex vivo imaging. A reason to explain this

might be that wall thickness as the most useful predictive parameter in the ex vivo analysis

plays a more important role when bowel movements are absent, and is less reliable when mea-

sured in structures affected by peristaltic waves, which is not avoidable in the in vivo situation.

Most probably, this disadvantage is more than compensated by relaxation times and diffusion

capacity that can be determined more accurately in the in vivo situation under conditions of

intact blood perfusion. This fact has been described in former comparisons between in vivo
and ex vivo data with significant differences between relaxation times of live tissue and fresh

tissue samples [32], as well as dependencies on tissue temperature [33]. In particular, the

observed significant differences of T2� relaxation times between in and ex vivo measurements

are not surprising, as T2� relaxation times depend on a variety of physiologic features includ-

ing the ratio of deoxyhemoglobin to oxyhemoglobin in the blood, blood volume and blood

flow [34,35]–parameters altered by nature when performing ex vivo analyses. Additional tissue

changes due to the embedding in agarose and the accompanying sudden temperature changes

might also influence relaxation times and lead to more reliable measurements in the in vivo
situation.

We are aware that our study has several limitations: The group of DSS-treated animals has

to be considered heterogeneous with disease specific scores ranging from 1 to 13.5 (Fig 2A)

and histology scores ranging from 1–6 (Fig 2B), possibly at least in part attributable to a

known substantial variability in different lots of this substance [10]. In this pilot study, the het-

erogeneous group of DSS-treated animals was subsumed, and DSS treatment served as a refer-

ence condition chosen for mainly two reasons: 1) the model aimed to predict a dichotomous

outcome, so that choosing the dichotomous variable of DSS-treatment seemed a reasonable

approach, and 2) a definite gold-standard for IBD evaluation in mice remains to be established,

as a plethora of different scoring systems exists [36]. Most scoring systems involve semi-quan-

titative or even subjective criteria, do not correlate perfectly with each other and offer no clear

cutoffs for the presence of significant colitis. To add to these concerns, our study determined

an only moderate correlation coefficient between clinical scoring and histology of 0.455 (Fig
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3). Though Walldorf et al. calculated a slightly higher correlation coefficient of 0.621 [20], dis-

crepancies similar to those of our study have also been described in humans: In human

patients, histology scores were also moderately correlated to endoscopy scores, but especially

mild disease activity in endoscopic scoring was distributed over the entire range of histologic

grades [37]. The same tendency became apparent in this study’s correlation analysis, with the

most imperfect correlations observed in mice with disease specific scores� 4, but histology

scores scattered over the entire spectrum (Fig 3). Given the fact that several animals of our

study featured high scores in histology but low scores in disease specific scoring, we felt that

the most sensible, objective reference condition was DSS-treatment. When however choosing

reasonable cutoffs for disease specific scores and histology scores, the model nonetheless per-

formed accurate as well. We however did not aim to question or redefine different evaluation

standards established by different groups, but to prove that a combination of multiple image

parameters can increase diagnostic accuracy. The choice of a particular reference condition–

though of clinical importance–should thus be regarded secondary in this context.

Correlations of image parameters with measures of disease activity have already been per-

formed. Melgar et al. for example calculated correlations of colon wall thickness and T2w sig-

nal with a clinical scoring system and other parameters of disease activity, and speculated on

the advantages of combining different parameters to a model [21]. We are well aware that the

results of this pilot study with a model predicting a binary outcome represents just a first step

on the long path of comprehensive IBD activity assessment. In future studies needing higher

sample numbers, the model could be further improved to not only predict the dichotomous

outcome of the presence of colonic inflammation, but to directly calculate MRI-derived colitis

scores to quantify disease activity. This would of course require a valid gold standard, but have

direct implications on diagnosis and offer results transferable to clinical questions as a non-

invasive substitution for colonoscopic examinations. Though a quantitative MRI-based colitis

evaluation will probably not be appropriate for high-thoughput screenings due to the need for

animal preparation before starting the imaging protocol, it still offers a less biased technique to

grade disease activity in contrast to endoscopic scoring, which largely depends on the experi-

mentator’s experience in colonoscopy.

The model of this study was validated with a modified Leave-one-out cross-validation,

which is appropriate considering the relatively small sample number. With the animal num-

bers used for this study it was not possible to initially exclude a larger subset of data for testing

while simultaneously being able to calculate reliable accuracy measures. It is common practice

to then use resampling methods such as cross validation to estimate the generalizability of a

model as done in this study [38,39].

We did not use dynamic contrast enhancement (DCE) and total contrast enhancement of

colonic walls which have been described previously as parameters allowing visualization of

inflammatory activity [15,18]. However, as contrast media application can only be performed

during in vivo imaging, we did not include contrast-enhanced sequences in order to maintain

comparison between the in and ex vivo subgroups. In future studies, the inclusion of DCE may

further increase diagnostic accuracy in the in vivo subgroup.

As an outlook, the present work serves as a pilot-study with the future aim to develop an

MR-derived colitis score. Such a score would allow more elaborate non-invasive, unbiased

diagnosis including longitudinal assessments e.g. under novel therapeutic agents. Up to now,

it however remains unclear whether a quantitative model will be able to sufficiently judge on

disease severity or progression. As a proof-of-concept, the presented online tool allows

researchers from external groups to use this once created model for assessment and evaluation

of their own measurements, without having to re-establish a model on their own. The
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presented tool is self-explanatory to use and requires no programming skills. Further exten-

sions of this tool in future studies are planned.

To conclude, the advantages of combining multiparametric imaging with machine learning

algorithms in a holistic approach is expandable to several other clinical and preclinical ques-

tions including inflammation, infection and oncology, and will lead to increased diagnostic

accuracy.

Supporting information

S1 Fig. Results of the principal components analysis. The principle components are depicted

on the axis of abscissas, and their cumulative proportion of variance explained on the axis of

ordinates.
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