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Abstract

Game theory has been widely applied to many research areas including economics, biology

and social sciences. However, it is still challenging to quantify the global stability and global

dynamics of the game theory. We developed a landscape and flux framework to quantify the

global stability and global dynamics of the game theory. As an example, we investigated a

model of three-strategy game: a special replicator mutator game termed as the repeated

Prison Dilemma model. In this model, one stable state, two stable states and limit cycle can

emerge under different parameters. The repeated Prisoner’s Dilemma system has Hopf

bifurcation from one stable state to limit cycle state, and then to another one stable state or

two stable states, and vice versa. We quantified the global stability of the repeated Prison-

er’s Dilemma system and identified optimal kinetic paths between the basins of attractor.

The optimal paths are irreversible due to the non-zero flux. We also quantified the interplay

between Peace and War.

Introduction

Game theory is the study of conflict and cooperative strategic decision making between intelli-

gent rational decision-makers. Game theory has widely been recognized to be important and

useful in many fields such as economics, political science, psychology, computer science, biol-

ogy etc. The game dynamics can usually converge to stable point attractors [1, 2]. However, a

more complex dynamics can emerge as stable oscillations. The cyclical oscillations have been

explored in the game-theoretical models of price dispersion [3]. The cyclical oscillation has

also been found in the side-blotched lizard with three color morphs in male signalling. They

played three different alternative reproductive strategies(Uta stansburiana) [4]. Even though

numerous studies have been explored over the past decades with great advances in this field,

there are still several unsolved problems. But understanding the underlying the global dynam-

ics and global stability of the game theory is still one of the greatest challenges at present.

The evolutionary stability was first introduced and formulated by Maynard Smith and Price

in 1973 [5, 6]. They first applied the game theoretical ideas to evolutionary biology and popula-

tion dynamics. This is the birth of evolutionary game theory which studies the behaviors of the
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large populations [2]. Evolutionary population game is a general framework for exploring the

strategic interactions among large populations of agents. The agents play pure strategies with

random matching. The significant applications of the game theory are on modeling and ana-

lyzing varieties of human and animal behaviors around us. The game theory systems involve

different interactions among the agents. The strategic interactions can lead to complex dynam-

ics. The dynamics of biological structure and population behaviors often have high stability

and robustness. Thus, one of the central problems is how to explore the global stability and

robustness of the evolutionary game theory in a population.

There have been many studies on the stability of game theory [2, 6, 7]. However, most of

the investigations are focused on the local stability. The purpose of local stability analogs is to

uncover whether a system can restore to equilibrium under a small disturbance. An evolution-

ary stable strategy (ESS) is a strategy which is resistent to the invasions by a few mutants play-

ing a different strategy in a population [6]. The system can move far from its ESS equilibrium

since it is under continuous small perturbations from the mutations and the events by chance

[7]. Thus, the ESS can not guarantee the global stability of the system. A Nash equilibrium

(NE) is a result of a non-cooperative game [6]. Each player is assumed to know the other play-

ers’ equilibrium strategy and the players gain nothing by altering only their own strategy. The

NE can be stable or unstable. It is very similar to an ESS [6]. The evolutionary stable strategy

(ESS) and Nash equilibrium (NE) are insufficient conditions of dynamic stability since they

are only local criterions under small fuctuations [7]. It is often not clear whether the system

will reach equilibrium from an arbitrary initial state or whether the system can be switched

from one locally stable state to another. These dynamical issues depend on the global structure

of the system. Furthermore, the link between the global characterization and the dynamics of

the game theory systems is often lacking understanding the global stability of the game theory

is thus still challenging at present.

Deterministic population dynamics can only describe the average dynamics of the system.

Both external and intrinsic fluctuations are unavoidable [8]. The environmental fluctuations

can influence the behaviors of population. The intrinsic fluctuations originated from muta-

tions or random errors in implementations, can not be neglected in finite population. They

may play an essential role in the dynamics of the system. The stochastic evolutionary game

dynamics was first studied by Foster and Young in 1990 [7]. They defined the stochastic stabil-

ity and the stochastically stable set which is a set of stochastically stable equilibrium states. It is

assumed that the fluctuations approach to zero slowly in the long run(so called long-run equi-

libria) [7, 9]. The stable state sets can be obtained by the potential theory [7]. However, the

general approach for exploring the global stability of the game theory systems are still absent.

The researchers have also explored the game theory system with the method of Lyapunov

function which can be used to study the global stability [7, 9]. Certain analytical Lyapunov

functions were found for some highly simplified game theory models [2]. However, it is still

challenging to find the Lyapunov function for the general game theory with complex dynam-

ics. In this study, we will provide a general approach to investigate the Lyapunov function. We

will also develop a general framework for exploring the robustness and the global stability of

the game theory systems.

In addition to the dynamics with simple convergent stable states, exploring the mechanism

of the non-convergent behavior is even more important for understanding the nature of the

dynamics for evolutionary game theory. This is because certain more complicated behaviors

such as oscillations and chaos often emerge in real biological interactions [10]. The most well

known model of evolutionary dynamics is the replicator model. The simplest replicator

dynamics of three-strategy games can give arise to certain behaviors: sinks, sources and saddles

or heteroclinic cycles for Rock-Paper-Scissors(RPS) game [10, 11]. However, the replicator
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dynamics can not provide a stable limit cycle behavior [10, 12]. On the other hand, Lyapunov

stable equilibria of the replicator dynamics are Nash equilibria and ESS which are asymptoti-

cally stable [13, 14]. Mutation effects can be included in order to promote the chances that

players change from one strategy to another spontaneously. The selection and mutation model

has been explored in population genetics for decades [6]. The replicator-mutator dynamics

plays a key role in evolutionary theory [6, 13–16].

In this study, we will develop a non-equilibrium landscape and flux framework to quantify

the global stability and robustness of evolutionary game theory. Conventional stability analysis

of game theory (Nash equilibrium and ESS) only provieds a static view and local description.

We will give a dynamical view and global quantification of the stability. We found the flux is

an additional force as a signature and quantitative measure of the degree of detailed balance

breaking or nonequilibriumness, which is not present in determining the global dynamics of

the conventional game theory. Both landscape and flux determines the game dynamics. The

landscape topography and kinetic transitions as well as optimal kinetic paths from one basin

to another (local stable strategy) can provide the global quantification of the strategy switching

process and functional stability. This is also not present in the current game theory. The global

stability can also be systematically studied with the landscape and flux approach via Lyapunov

functions. It is worth noticing that the Lyapunov functions are only found for special cases

(one dimensional case) in the current game theory [7]. In present evolutional game theory, the

driving forces have never been decomposed. The landscape and flux theory provides a frame-

work to quantify each component of the driving forces and describe the global evolutionary

game dynamics. We also explored non-equilibrium thermodynamics which is not covered in

current game or evolutionary game theory.

The prisoner’s dilemma is a famous example in game theory [2, 6]. Two players might not

cooperate, even though more profit can be earned if they cooperate. For example, the two gang

members are arrested into a prison. They are not allowed to communicate with each other.

The prosecutors lack sufficient evidence to convict them of a crime. Both Gang member A and

gang member B will be in prison have 2 years if each betrays the other. Gang member A will be

free and gang member B will be in prison for 3 years (and vice versa) if gang member A betrays

member B but gang member B remains silent. Gang member A and gang member B will only

be in prison for 1 year if both keep silent. This shows that betraying gains a greater reward

than cooperation. Therefore, the two gang members tend to betray each other to gain more

profits from their own consideration [2, 6]. In reality, human beings often choose a coopera-

tive strategy as keeping silent to avoid losing more profits. This can lead to a win-win situation.

However, since both game players make decisions for the goals of gaining more profits, the

win-win scenario for the best profit may not be realized in real life. In fact, this is common in

public resource development and utilization, the market competition, and the environmental

issues [2, 6]. Therefore, when everyone is trying to maximize his or her own benefits, the prof-

its gained from both sides are impaired. This is also a common situation in microeconomics

when everyone maximizes his or her own benefit. This phenomenon challenges the conven-

tional thinking. It raises some interesting questions such as how to avoid the prisoner’s

dilemma, cooperate, abide by the agreement and so on. Thus, personal best interest maximiza-

tion is not necessarily the best strategy in an interactive world [2, 6]!

We use a representative Prisoner’s Dilemma model-the repeated Prisoner’s Dilemma

model [13, 17–19] as an example to illustrate our general theory. There are three interactional

strategies in this model: always cooperate simplified by ALLC; always defect simplified by

ALLD; and tit-for-tat simplified by TFT. Fig 1 shows the schematics of repeated Prisoner’s

Dilemma model. ALLD players are the first winners with random initial strategies in the popu-

lation. Then small numbers of ALLC players will invade and replace strategy ALLD. The
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consideration of mutation effect can lead the repeated Prisoner’s Dilemma to a stable limit

cycle state rather than a ALLD dominant state, even though ALLD is the only strict Nash equi-

librium [6]. There existed sustained oscillations among ALLD, ALLC and TFT strategies in the

repeated Prisoner’s Dilemma model. We developed a landscape and flux landscape theory

[20–26] to explore the global behavior and the dynamics of the repeated Prisoner’s Dilemma

game system. We quantified the population landscape related to the steady state probability

distribution. It can determine the global behavior of the system. The landscape has the

attractor basins for multi-stability games and Mexican hat for limit cycle oscillations games.

We also found the intrinsic landscape with a Lyapunov function feature of the repeated Prison-

er’s Dilemma game model. It can be used to quantify the global stability of the system. The

non-equilibrium evolutionary game theory dynamics for repeated Prisoner’s Dilemma model

is found to be determined by both the landscape and the curl flux. The curl steady state proba-

bility flux can result in the break down of the detailed balance and drive the stable periodical

oscillation flow along the limit cycle ring [20]. We also explored the stability and robustness of

the repeated Prisoner’s Dilemma game against the mutation rate and the pay-off matrix. The

optimal kinetic pathways between basins are quantified by the path integral method and irre-

versible due to the non-zero flux.

Materials and methods

The landscape and flux quantification for game theory

The landscape and flux theory as well as the non-equilibrium thermodynamics for the general

dynamical systems have been explored in several different fields [20–27]. They can be used to

address the issues of global stability, function, robustness for dynamical systems. Here, we will

apply the landscape and flux theory to quantify the global stability and robustness of the game

theory.

We consider a large finite population of players who play a finite set of pure strategies with

random matching. Each player chooses a pure strategy from the strategy set S = 1, 2, 3, . . ., n

Fig 1. The schematic of repeated prisoner’s dilemma. ALLC is short for always cooperate. ALLD is short for always

defect. TFT is short for tit-for-tat.

https://doi.org/10.1371/journal.pone.0201130.g001
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[1, 2]. The aggregated behaviors of these players are described by a population state x, with xi

representing the proportion of players choosing pure strategy Si. And xi represents the fre-

quency of strategy Si. Due to the intrinsic and the extrinsic fluctuations [8], the deterministic

dynamics described by a set of ordinary differential equations are supplemented with the addi-

tional fluctuation force. Then the stochastic dynamics emerges [28, 29]: dx = F(x)dt + g � d W,

where x is the state vector representing the strategy density in game dynamics), F(x) is the

driving force, W as a vector coupled through the matrix g represents an independent Wiener

process. The evolution of the stochastic dynamics is thus more appropriately described by the

probability evolution. The probability distribution P(x, t) in time can be obtained by solving

the corresponding Fokker-Planck diffusion evolution equation [28, 29]:

@P=@t ¼ � r � J ¼ � r � ½FP � ð1=2Þr � ððg � gTÞPÞ�: ð1Þ

We set DD = (1/2)(g � gT), where D is a constant describing the scale of the fluctuations and D

represents the anisotropy diffusion matrix of the fluctuations. The Fokker-Plank diffusion

equation describes the game dynamics as a conservation law of probability. The change in

local probability is equal to the net flux in or out.

The game process can be treated as a binomial sampling process: N players play the games

with different strategies from a large population of players, just like n alleles in a diploid popu-

lation of constant size N [24]. So we can set Dij = xi(δij − xj) coming from the sampling nature

of the game which is widely used in evolutionary population dynamics [24].

The matrix Dij has some special features [24]. The first is

ðr �DÞi ¼ 1 � nxi; ð2Þ

so that
Pn

i¼1
ðr �DÞi ¼ 0. The second is its inverse matrix is known to have the feature [24]:

ðD� 1 � FÞi ¼ Fi=xi � Fn=xn; ð3Þ

where Fn ¼ �
Pn� 1

i¼1
Fi.

The steady state probability distribution Pss can be derived from the long time limit of the

Fokker-Planck equation @P/@t = 0. The steady state probability flux is defined as Jss = FPss −
Dr � (DPss). The steady state flux is divergent free from Eq 1 and therefore a rotational curl.

The population landscape is defined as U = − lnPss. Then, the deterministic driving force F can

be decomposed as: F = −DD � rU + Jss/Pss + Dr �D. The flux Jss = 0 denotes the equilibrium

with detailed balance since net flux is zero while the net flux Jss 6¼ 0 measures the degrees of

detailed balance breaking and therefore the degree of one-equilibriumness. Therefore, the

dynamics of the equilibrium game system is determined only by the population landscape gra-

dient. The dynamics of the non-equilibrium system is determined by both the potential land-

scape and non-zero flux. [20]

The intrinsic landscape at the zero fluctuation limit has the the feature of the Lyapunov

function [24, 30–32] and can be used to quantify the global stability and function of the game

theory systems. The intrinsic landscape ϕ0 follows the Hamilton—Jacobi equation as below

[23, 24, 33]:

F � r�0 þr�0 �D � r�0 ¼ 0: ð4Þ

and

d�
dt
¼ F � r�0 ¼ � r�0 �D � r�0 � 0 ð5Þ

As seen, the intrinsic landscape ϕ0 is a Lyapunov function monotonically decreasing along a
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deterministic path for the game dynamics [24, 33]. The intrinsic landscape ϕ0 quantifies the

global stability for general dynamical systems including game dynamics either with or without

detailed balance and can be solved by the level set method [34].

The steady state probability distribution Pss and the population landscape U have the rela-

tionship of Pss(N) = exp(−U)/Z. Z is the partition function Z =
R

exp(−U)dN. The entropy of

the non-equilibrium game system is given as [24, 35–38]: S = −
R

P(N, t)lnP(N, t)dN. The

energy can be defined as: E = D
R

UP(N, t)dN = −D
R

ln[ZPss]P(N, t)dN. Thus, the nonequilib-

rium free energy F is:

F ¼ E � DS ¼ Dð
Z

P lnðP=PssÞ dN � lnZÞ: ð6Þ

The nonequilibrium free energy as the combination of energy and entropy reflects the first law

of non-equilibrium thermodynamics. The free energy decreases in time monotonically while

reaching its minimum value, F ¼ � DlnZ [24, 35–38]. This reflects the second law of non-

equilibrium thermodynamics. The free energy as a Lypunov functional can be used to explore

the global stability of the stochastic non-equilibrium systems with finite fluctuations.

Game theory systems are often non-equilibrium open systems. They often exchange

energy and information from the environments. This leads to dissipation. The evolution of

the entropy in time can be separated into two terms [20, 24, 39, 40]: _S ¼ _St �
_Se, where

_St ¼
R
dxðJ � ðDDÞ� 1

� JÞ=P2 is entropy production rate which is positive or zero, and

_Se ¼
R
dxðJ � ðDDÞ� 1

� F0Þ=P is heat dissipation rate which represents the entropy flow rate to

the non-equilibrium system from the environments. It can be either positive or negative. The

effective force is shown as F0 = F − Dr �D. _S can be interpreted as the entropy change of the

non-equilibrium system, and the _St can be interpreted as the total entropy change of the sys-

tem and environments. _St is always non-negative according with the thermodynamic second

law. The entropy production rate and heat dissipation rate are equal in steady state [20, 24, 39,

40]. Thus, the entropy production rate is another global physical characterization of a non-

equilibrium system.

The repeated Prisoner’s Dilemma game theory model with mutations

We set A as the payoff matrix [6, 13–16]. The scalar Ai(x) represents the payoff to strategy Si

when the population state is represented by x. Since the sum of all frequencies is equal to 1: ∑i

xi = 1, the system becomes n − 1 dimensional. The average fitness (pay-off) �f is obtained as

�f ¼ xAx by the players of the population [1, 2, 6]. The fitness denotes the individual’s evolu-

tionary success [9]. In the game theory, the payoff of the game is the fitness. The fitness to

strategy i becomes fi = (Ax)i [1, 2]. In this study, we use simple three-strategy game which can

be reduced to two dimensional dynamics.

The players in standard Prisoner’s Dilemma model play either cooperate strategy or defect

strategy simultaneously [41]. The players earn their payoff depending on their choices of the

strategies. The mutually aided cooperators will acquire the reward R when the cooperators are

encountered. The defectors will obtain a punishment Pu when the defectors are encountered.

A cooperator acquires a sucker payoff S and a defector acquires a temptation payoff T when

they encountered [18, 42]. The payoff matrix of the Prisoner’s Dilemma model should satisfy

the relationship T> R> Pu> S. Mutual cooperative strategy is better than mutual defective

strategy, so the reward R should be greater than the punishment Pu. Defectors gain more

temptation T than the reward R that cooperators gain if the partner cooperates. The defectors

will lose less punishment Pu than the lost sucker S of cooperators if the partner defects.
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We explored a repeated Prisoner’s Dilemma game model with mutation using the replicator

dynamics. Replicator dynamics was introduced by Taylor and Jonker (1978) [43], which is the

best-known dynamics in the models of biological evolution. The mean dynamic evolutionary

equation is the replicator dynamics shown as below [1, 2]

dxi

dt
¼ xiðfi � �f Þ ¼ xiððAxÞi � xAxÞ ð7Þ

In the presence of mutations, ALLD and ALLC players may mutate to strategy TFT. There-

fore, more players choose TFT strategy, and help ALLC players to win the game. Then the

ALLD players will emerge again to obtain more profit [6]. This dynamics can be used to quan-

tify the peace and war oscillation [6].

We define the probability that agents with strategy Si mutating to strategy Sj as qij, which

satisfies ∑j qij = 1. Thus, mutation matrix is Q = [qij] [6, 13, 17, 19]. The elements of the muta-

tion matrix Q are defined in terms of a mutation parameter μ satisfying 0� μ� 1. The muta-

tion μ denotes the error probability in the process of replication. μ = 0 denotes no mutation

with perfect replication while μ = 1 denotes the mutation completely. The replicator-mutator

dynamics describes the dynamics of the population distribution x as a result of replication

driven by fitness f and mutation driven by Q [6, 15, 16]:

dxi

dt
¼
XN

j¼1

xifiðxÞqji � xi
�f ð8Þ

This equation is the quasi-species equation proposed by Manfred Eigen and Peter Schuster

[6, 15, 16]. We set a uniform probability of mutation from one strategy to another strategy

with qii = 1 − 2μ which shows the players with the same strategy can get profits 1 − 2μ for each

player, and qij = μ which shows the player chooses strategy i will get profits μ when he encoun-

ters the player with strategy j. Then the matrix Q can be shown as follows [6, 15, 16]:

Q ¼

1 � 2m m m

m 1 � 2m m

m m 1 � 2m

0

B
@

1

C
A ð9Þ

Let x1, x2, x3 represent the fractions of the population choosing the strategies ALLD, TFT,

ALLC, respectively. We substitute Q into Eq 8, then the replicator-mutator dynamics are

shown as the following simplified equations [18, 42]:

dx1=dt ¼ x1ðf1 � �f Þ þ mð� 2x1f1 þ x2f2 þ x3f3Þ

dx2=dt ¼ x2ðf2 � �f Þ þ mð� 2x2f2 þ x1f1 þ x3f3Þ

dx3=dt ¼ x3ðf3 � �f Þ þ mð� 2x3f3 þ x1f1 þ x2f2Þ

ð10Þ

We considered the players playing with infinite number of rounds. So in these limits, the

average payoff matrix with the cost for the strategies ALLD, TFT, ALLC are shown as [17, 18]:

A ¼

Pu Pu T

Pu � c R � c R � c

S R R

0

B
@

1

C
A ð11Þ

The mutually aided cooperators will acquire the reward R when the cooperators are

encountered. The defectors will obtain a punishment Pu when the defectors are encountered.

A cooperator acquires a sucker payoff S and a defector acquires a temptation payoff T when
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they encountered [18, 42]. And we set there is a small complexity cost c to playing strategy TFT
[18, 42].

TFT strategy is conditional while ALLD and ALLC strategies are unconditional. Thus, the

payoff value of strategy TFT may have a small complexity cost [17, 44].

The parameters are set as: T = 5,R = 3,Pu = 1, S = 0 [6, 18, 45]. μ is the average mutation rate

between each two of the three strategies. c is a complexity cost for playing TFT. Larger c repre-

sents less players who play the strategy TFT.

Results

Phase diagram, Hopf bifurcations and the global stability of evolutionary

game dynamics upon TFT cost changes

Fig 2(A) shows the phase diagram which shows a S shape for the repeated Prisoner’s Dilemma

with the constant parameter μ = 0.006 and changing parameter c. There are five regions in this

phase diagram. When the cost for TFT c is smaller, the game theory system has only one stable

state, which denotes the Peace state in the peace and war game shown in the left Region I. As c
increases, the stable state becomes a limit cycle in Region II. Then, as c increases further,

another new stable state (can be viewed as War state) and an unstable saddle state emerge

beside the limit cycle. This is a saddle-node bifurcation shown in Region III. As cost c increases

furthermore, the limit cycle diminishes and becomes an unstable state, along with a stable state

(War state) in Region IV. As cost c increases even further, there is only one stable state (War
state) in the right Region I.

It is interesting to note that the two-phase dynamics of p53 in the DNA damage response

was intensively explored by Zhang et al [46]. They revealed that a sequential predominance of

distinct feedback loops can lead the system to multiple-phase dynamical behaviors [46]. This

shows another similar behavior as our game theory model where the variation of the parame-

ters can also lead the system to multiple-phase dynamical behaviors. It is clear that the envi-

ronmental changes and internal variations can lead the system to phase transitions.

Fig 2C shows the entropy production rate (EPR) versus cost c. We can see EPR has a bell

shape in Region II and Region III under the limit cycle behavior of the system. It indicates that

the limit cycle costs more energy to maintain its coherent oscillation.

By solving the Fokker-Planck diffusion equation, we obtain the steady distribution of the

probability. Thus, the population landscape of the game system can be obtained as: U =

−lnPSS. We solved the Hamilton-Jacobi equation to obtain the intrinsic landscape ϕ0 by the

level set method [34]. Fig 3 shows the 3 dimensional non-equilibrium population landscape

U at the top row and intrinsic potential landscape ϕ0 at the bottom row for the repeated Pris-

oner’s Dilemma game dynamics as the parameter c increases, when the other parameters are

set as μ = 0.006, T = 5, R = 3, Pu = 1, S = 0, D = 5 × 10−4. We can see the underlying population

landscape and the intrinsic landscape have similar shapes. The population landscape and the

intrinsic landscape both have a basin shown in Fig 3(A) and 3(E) with small cost c = 0.1. Fig

3(B) shows the population landscape U with a closed inhomogeneous Mexican hat ring valley

which is not uniformly distributed, while Fig 3(F) shows that the intrinsic landscape ϕ0 with

Lyapunov feature has a closed homogeneous Mexican hat ring valley with cost c = 0.2. The

value of ϕ0 along this ring valley is almost a constant. As cost c = 0.24, a new basin emerges at

the right corner of the state space shown in Fig 3(C) and 3(G). It denotes the War state with

larger probability of all defecting strategy ALLD. Then at the cost c = 0.35, the closed ring val-

ley disappears, only the stable War state basin is left shown in Fig 3(D) and 3(H). We notice

that the oscillations between Peace and War can be explained as: when Peace state sustains

for a long time, the population increases and the resources relatively reduce. In order to
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survive, the populations fight for the resources, to get better livings. After a war, the popula-

tions do not engage in the production, livelihood, and fall into a long-term state of tension.

Then the Peace state emerges again, the population regrows. The oscillations will thus

circulate.

Fig 2. Phase diagram, entropy production rate, and free energy versus different parameter c, μ. A: the phase diagram for repeated Prisoner’s

Dilemma model with the constant parameter μ = 0.006 and changing cost parameter c. C: the entropy production rate versus parameter c. E: the

free energy versus parameter c. B: the phase diagram for the repeated Prisoner’s Dilemma model with the constant parameter c = 0.22 and

changing parameter μ. D: the entropy production rate versus parameter μ. F: the free energy versus parameter μ. The other parameters are T = 5,

R = 3, Pu = 1, S = 0.

https://doi.org/10.1371/journal.pone.0201130.g002
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−rU is the negative gradient of the population landscape and −rϕ0 is the negative gradient

of the intrinsic landscape. −rU at the top row and −rϕ0 at the bottom row are represented by

black arrows. Jss/Pss is the steady state flux divided by steady state probability and V = Jss/

Pss)|D!0 is the intrinsic flux velocity. The flux velocity satisfies V � rϕ0 = 0 [24]. This shows

that the intrinsic flux velocity is perpendicular to the gradient of the non-equilibrium intrinsic

potential ϕ0 in the zero-fluctuation limit [24]. Jss/Pss at the top row and V at the bottom row

are represented by purple arrows in Fig 3. We can see that the flux with purple arrows are

nearly but not exactly perpendicular to the negative gradient of U with the black arrows

around the basins or the closed ring valley shown on the top row. The region with higher pop-

ulation potential has some disordered oriented arrows due to the lower probability and limit

of the computational accuracy. The flux velocities with purple arrows are exactly perpendicular

to the negative gradient of ϕ0 with black arrows at the bottom row. It is due to V � rϕ0 = 0.

The landscape’s gradient forcerU or therϕ0 attracts the system down to the basin or the

closed ring valley, while the flux drives the periodical oscillation flow or spiral descent to the

basin. It is necessary to characterize this non-equilibrium repeated Prisoner’s Dilemma with

both landscape and flux.

We show the 2 dimensional population landscape U for increasing parameter cost c with

constant μ = 0.006 in Fig 4. Fig 4(A) shows that the population landscape U has a stable basin

near the middle of TFT axis with the cost parameter c = 0.1. It means that most players choose

strategies of ALLC and TFT when the cost parameter for TFT is small. The fluxes represented

by the purple arrows rotate anticlockwise around this stable state. This state can be viewed as

“Peace” state in peace and war game. As the cost parameter for TFT increases to c = 0.2, a limit

cycle emerges and replaces the stable state in Fig 4(B). The population landscape has a blue

ring valley along the deterministic trajectory. More players choose TFT and ALLC in the Peace
state. As more players mutate to ALLC, a small number of ALLD players emerge. This leads to

a state with more ALLD players. As the ALLD players become more, the profit obtained from

Fig 3. The 3 dimensional population landscapes and The 3 dimensional intrinsic energy landscapes. The 3 dimensional population

landscapes U with increasing parameter c are shown in A, B, C, D. Purple arrows represent the flux velocity(Jss/Pss) while the black arrows

represent the negative gradient of population potential(−rU). The 3 dimensional intrinsic energy landscapes ϕ0 with increasing parameter c are

shown in E, F, G, H. Purple arrows represent the intrinsic flux velocity (V = (Jss/Pss)D!0) while the black arrows represent the negative gradient

of intrinsic potential(−rϕ0).

https://doi.org/10.1371/journal.pone.0201130.g003
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the game becomes less. Some ALLD players convert their strategy to TFT. This makes a circle

in the state space of strategy probability. Notice that the ring valley is not homogeneous in

landscape depth. There is a deeper area on the left side of the limit cycle, which is still close to

TFT axis. This indicates that the Peace state with deeper depth is more stable than other states.

The system will stay in Peace state much longer than any other state. Fig 4(C) shows the ring

valley of the oscillation expands its amplitude in the strategy-frequency space. A stable state

War emerges at the right corner of the triangle, which is close to ALLD! 1. The stable War
state is the one where most of players choose the ALLD strategy. We can see that the limit cycle

and the stable state coexist in the strategy-frequency space. It indicates that the system is some-

times in the limit cycle and sometimes in the stable state. The game system can switch between

the Peace and War attractor basins under the fluctuations and the mutations. When the cost

for TFT increases to c = 0.24 and c = 0.25 shown in Fig 4(D) and 4(E), the ring valley becomes

shallower and shallower while the basin of the stable War state becomes deeper and deeper. As

c increases further, the profits obtained from the TFT strategy decreases in the whole game,

more players give up TFT strategy and choose ALLD strategy to earn more, which leads to

more stable and deeper War state basin. When the cost for TFT increases to c = 0.35 shown in

Fig 4(F), the oscillation ring valley disappears while the War state survives and becomes deeper

and more stable. Fig 4 also shows the changes in both direction and the scale of each flux at the

area with higher probability (purple arrows) when the cost c increases. We can see that the

fluxes have a anticlockwise rotational nature along the limit cycle. The flux is the driving force

for the stable oscillation in game theory.

We quantify the landscape topography and show barrier heights versus cost c with mutation

parameter μ = 0.006 in Fig 5(A). We first set Uo as the value of population landscape U at the

maximum point at the center island of the limit cycle. Us is the value of population landscape

Fig 4. The 2 dimensional population landscape U with different parameter c and constant parameter μ = 0.006. A:c = 0.1, B:c = 0.2, C:

c = 0.22, D:c = 0.24, E:c = 0.25, F:c = 0.35. The purple arrows represent the probability flux.

https://doi.org/10.1371/journal.pone.0201130.g004
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U at the saddle point between the limit cycle valley and the stable War state basin. Up is the

minimum value of population landscape U along the limit cycle near y axis, which is the Peace
state. Uw is the minimum value of population landscape U at the stable War state. We set the

barrier height for the oscillation ring valley as ΔULimit = Uo −Up, the barrier height between

the saddle point and the oscillation as ΔUsp = Us −Up and the barrier height between the saddle

point and the War stable state as ΔUsw = Us −Uw. We can see as the cost c increases, barrier

height ΔUsw increases, barrier height ΔUsp decreases first then increases, barrier height ΔULimit

increases first then decreases. It indicates that the oscillation itself relative to the maximum

point in the center of limit cycle becomes more stable first then becomes less stable. It has a

turning point during the process of c increasing. The War state becomes more robust, and the

barrier height from oscillation to War state ΔUsp becomes less than that of ΔUsw with larger

cost c value. This implies that the War attractor state becomes more preferred than that of the

oscillation, as the cost increases further.

Phase diagram, state switching, landscapes and fluxes upon mutations

Fig 2(B) shows the phase diagram for the repeated Prisoner’s Dilemma model with changing

mutation parameter μ at the constant cost parameter c = 0.22. There are four regions in this

phase diagram. When the mutation rate μ is small, the system has a stable state (can be viewed

as War state) in Region IV. As μ increases, a stable state War, an unstable saddle state and the

limit cycle coexist in Region III. As the mutation rate μ increases further, the stable state and

saddle point disappear after the saddle-node bifurcation. There is only limit cycle left in Region

II. As the mutation rate μ keeps on increasing, the limit cycle becomes a stable mixed state

(with moderate probability of more than 20% of the players with ALLD strategy) in Region I.

The mixed state is the combination of these three strategies. We can see entropy production

rate characterizing the heat dissipation EPR shown in Fig 2(D) has a bell shape as the mutation

Fig 5. The barrier heights versus parameter c and μ. A: The barrier heights versus parameter c with the parameter μ = 0.006. B: The barrier

heights versus parameter μ with the parameter c = 0.22. Here, ΔULimit = Uo −Up, ΔUsp = Us −Up, ΔUsw = Us −Uw. Uo is the value of population

potential landscape U at the maximum point on the center island of the limit cycle. Us is the value of population potential landscape U at the

saddle point between the limit cycle valley and the stable state basin War. Up is the minimum value of the population potential landscape U
along the limit cycle near the y axis, which is the Peace state. Uw is the minimum value of population potential landscape U at the stable state

War.

https://doi.org/10.1371/journal.pone.0201130.g005
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rate μ increases when the cost c is moderate. This is because that the state of oscillation costs

more energy in the strategy probability state space and one stable state costs less energy.

We can also see this process of transition in Fig 6 which shows that the population land-

scape U and the flux change with the increasing mutation rate μ at constant cost c = 0.22. Fig

5(B) shows that ΔUsp increases and ΔUsw, ΔULimit decrease as mutation rate μ increases. This

shows that when mutation rate is small, the limit cycle ring valley is very stable relative to its

oscillation center, but has less probability relative to the War state since the War state is much

deeper. It indicates that more players choose strategy ALLD, and the players do not like to

mutate to the other two strategies. This leads to more stable War state. As μ increases, the limit

cycle ring valley becomes less stable relative to its oscillation center, but becomes more stable

relative to the War state. Eventually a much more stable state Peace emerges. The state War
becomes shallower and less stable, and finally diminishes as μ increases.

Phase diagram, state switching, landscapes and fluxes upon temptation

payoff

Fig 7 shows the phase diagrams, EPRs, and free energies for the repeated Prisoner’s Dilemma

model versus parameter T, R, Pu in three columns respectively. We put these figures together

for comparison and orderliness. Figs 8, 9 and 10 show the population landscape U and flux for

each parameter T, R, Pu respectively. Firstly, we illustrate Figs 7(A) and 7(D) and 8 for the

same parameter T. Next we illustrate Figs 7(B), 7(E) and 9 for the same parameter R. And then

we illustrate Figs 7(C), 7(F) and 10 for the same parameter Pu. At last, we focus on discussing

the tendencies and the common trends of the free energies with respect to parameters c, μ, T,

R, Pu in Figs 2(E), 2(F) and 7(G), 7(H) and 7(I).

Fig 6. The flux (purple arrows) on the population potential landscape U with different parameter μ and constant parameter c = 0.22. A:μ =

0.002, B:μ = 0.003, C:μ = 0.004, D:μ = 0.006, E:μ = 0.008, F:μ = 0.012.

https://doi.org/10.1371/journal.pone.0201130.g006
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Fig 7(A) shows the phase diagram for the repeated Prisoner’s Dilemma game model with

the constant parameters μ = 0.006, c = 0.22, R = 3.0, Pu = 1.0, S = 0.0 and different parameter

T. T is the temptation payoff earned by the defector while the cooperator gets sucker payoff

S. There are three regions in this phase diagram. When the temptation T is small, the game

theory system has two stable states which are denoted as Peace and War in the peace and

war game shown in Region left V. As the temptation T increases, a limit cycle emerges with

the coexistence of War state in Region III. As the temptation T increases further, the limit

cycle diminishes and a stable mixed state emerges, along with a stable state (War state) at

the right of Region V. We can see EPR shown in Fig 7(D) also has a bell shape as the tempta-

tion T increases. This also implies that limit cycle state cost more energy to maintain its

oscillation.

We show that the population landscapes U and the flux change with the increasing tempta-

tion T of payoff matrix (which denotes a defector acquires a temptation payoff T when they

encounter cooperators) in Fig 8. The game system has two stable states when temptation is

very small as T = 3. Note that the relationship T> R should hold in this model. The game sys-

tem covers a large area of state space with a Peace state and a War state. We can see that the

basin of Peace state is very stable and deeper while the War state is much shallower and less sta-

ble. This illustrates that majority of players choose the cooperation ALLC or TFT strategy. It

Fig 7. The phase diagrams and the entropy production rate versus parameter T, R, Pu. The phase diagrams for the repeated Prisoner’s

Dilemma game model with different parameter T (A) R (B), Pu (C). The entropy production rate versus parameter T (D), R (E), Pu (F). The free

energies versus parameter T (G), R (H), Pu (I). The other parameters are S = 0, μ = 0.006, c = 0.22.

https://doi.org/10.1371/journal.pone.0201130.g007
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leads to a more stable Peace state, rather than War state with defection strategy ALLD, when

the temptation is less. Defection can not earn more profits. As temptation increases, the Peace
state is unstable and becomes a limit cycle state. The limit cycle state adopts the mixed strategy

TFT and ALLD. The limit cycle valley representing the Peace state becomes shallower while the

War state becomes more stable shown in Fig 8(B), 8(C) and 8(D). When the temptation for

this game increases even further, more and more players choose defection strategy ALLD to

earn more profits rather than the strategy ALLC. It reflects that more temptation from the

defection strategy can lead to more stable War state.

Phase diagram, state switching, landscapes and fluxes upon cooperation

reward

Fig 7(B) shows the phase diagram for the repeated Prisoner’s Dilemma game model at the con-

stant parameter μ = 0.006, c = 0.22, T = 5.0, Pu = 1.0, S = 0.0 and different parameter R. The

element R of payoff matrix denotes the reward that cooperators will acquire from the mutual

aid when the cooperators encounter. The value of reward R should satisfy R> (T + S)/2. If this

relationship is not satisfied, the agreement of alternate cooperation and defection will earn

more payoff than that of pure cooperation in a repeated Prisoner’s Dilemma game [6]. There

are three regions in this phase diagram. When the reward R is small, a limit cycle and the stable

War state coexist in Region III. As the reward R increases, the War state disappears after the

saddle-node bifurcation and the limit cycle is left in Region II. As the reward R increases fur-

ther, the limit cycle diminishes and a stable Peace state emerges in Region I. Fig 7(E) also

Fig 8. The population landscape U and flux for T. The population landscape U and flux with different parameter T at the constant parameters

μ = 0.006, c = 0.22, R = 3, Pu = 1.0, S = 0.0.

https://doi.org/10.1371/journal.pone.0201130.g008
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shows EPR versus reward R, which implies that the limit cycle state costs more energy than

that of one stable state.

Fig 9 shows the population landscape U with increasing cooperation R. The system has one

deep stable War basin state and a shallower limit cycle ring valley for small parameter R = 2.5,

since the reward for cooperation strategy is small. The majority players choose the defection

strategy leading to the War state shown in Fig 9(A). When the reward increases to R = 3, a

limit cycle valley becomes deeper and stable while the War state becomes shallower and less

stable as shown in Fig 9(B). It shows that more and more players prefer the strategy ALLC
rather than strategy ALLD since more reward can be obtained from the cooperation. As

reward R increases further, the limit cycle valley becomes deeper, and the War state vanishes

shown in Fig 9(C). As reward R increases even further, the limit cycle ring valley shrinks into a

stable Peace state shown in Fig 9(D). The majority players choose cooperation strategy. It is

Fig 9. The population landscape U and flux for R. The population landscape U and flux with different parameter R at the constant parameters

μ = 0.006, c = 0.22, T = 5, Pu = 1.0, S = 0.0.

https://doi.org/10.1371/journal.pone.0201130.g009
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because more reward from the cooperation strategy can lead to more stable Peace state. It

turns out that more reward from cooperation leads to Peace with win-win outcome.

Phase diagram, state switching, landscapes and fluxes upon defector

punishment

Fig 7(C) shows the phase diagram for the repeated Prisoner’s Dilemma model at the constant

parameter μ = 0.006, c = 0.22, T = 5.0, R = 3.0, S = 0.0 and different parameter Pu. The element

Pu of payoff matrix denotes that the defectors obtain a punishment Pu when the defectors

encounters. The value of punishment Pu should satisfy R> Pu> S [6]. There are five regions

in this phase diagram. When the punishment Pu is small, only the stable War state exists in

Region I on the left. As the punishment Pu increases, two unstable states emerge after the

Fig 10. The population landscape U and flux for Pu. The population landscape U and flux with different parameter Pu and the constant

parameters μ = 0.006, c = 0.22, T = 5, R = 3, S = 0.0.

https://doi.org/10.1371/journal.pone.0201130.g010
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saddle-node bifurcation in Region IV. As the punishment Pu increases further, a limit cycle

emerges and coexists with the stable state War in Region III; as the punishment Pu increases

even further, the limit cycle diminishes and a stable Peace state coexists with a stable War state

in Region V. As the punishment Pu approaches to 3, the stable Peace state diminishes after the

saddle-node bifurcation, and the stable War state is left in Region I on the right. Fig 7(F) also

shows EPR versus punishment Pu, which shows that the system with limit cycle dissipates

more energy.

Fig 10 shows the population landscape U with increasing element Pu of payoff matrix.

When the punishment Pu is small representing that the defector can earn less from the game

and almost all players choose strategy ALLD shown in Fig 10(A). ALLD is the only strict Nash

solution and the only evolutionary stable strategy. And when the punishment (Pu = 0.3) is

small, the value of the first element in the left column of the payoff matrix for ALLD is Pu
while the second of that for TFT is Pu − c = 0.08. Thus the fitness for ALLD is much higher

than that of TFT, and that of ALLC (The sucker’s payoff S = 0). As punishment Pu increases,

more and more players give up ALLD since the profits of TFT players are catching up with

that of ALLD players when they both encounter the ALLD players. As the punishment Pu
increases to Pu = 0.5, a shallow limit cycle valley emerges accompanied with the stable War
state shown in Fig 10(B). When the punishment Pu increases further, the limit cycle valley

shrinks its size but becomes deeper and more stable while the War state becomes shallower

and less stable. This is shown in Fig 10(C), 10(D) and 10(E). Then the limit cycle ring valley

shrinks to a stable Peace state where more players choose TFT strategy as shown in Fig 10(F),

10(G) and 10(H). This shows that as the punishment Pu is increased further, the Peace state

becomes more stable first and then loses its stability while the War state becomes more stable.

It demonstrates that the punishment Pu has an optimal value to lead to a more stable Peace
state. At last, when the value of the punishment Pu approaches to the value of reward R, the

stable Peace state diminishes and the stable War state is left in Fig 10(I). This shows that

when the punishment Pu and the reward R are almost the same, ALLD is dominant than TFT
since ALLD is the only strict Nash equilibrium solution and the evolutionary stable state.

These results show that the strategy ALLD can be a dominant strategy and has an advantage

for selection.

We explored the free energy versus the parameters of the repeated Prisoner’s Dilemma

game model in Fig 2(E) (the free energy versus cost c), Fig 2(F) (the free energy versus the

mutation rate μ), Fig 7(G) (the free energy versus temptation T), Fig 7(H) (the free energy ver-

sus reward R), Fig 7(I) (the free energy versus punishment Pu). We can see this five free energy

profiles have some similarity that each has the opposite tendency with that of the correspond-

ing EPR. These free energies link to the different phases and phase transitions. The first deriva-

tive of the free energies are discontinuous at the transition points from a stable state to a limit

cycle oscillation state and vice versa [24]. This implies that non-equilibrium thermodynamic

phase transition has certain similarities as that of the equilibrium thermodynamic phase tran-

sition. Free energy profiles can manifest the phase transitions and can be used to explore the

global stability and robustness of the game system.

Kinetic speed and optimal paths of switching between the two stable states

We also explored the kinetic optimal paths of the repeated Prisoner’s Dilemma game model.

We can obtain the relative probabilities of each path by the quantification of the path weights

with path integrals. Path integral weights can be calculated by the action, which is analogous to

the classical mechanical systems. The dominant optimal paths with the largest weights can be

viewed as the major pathways. The path integral for the probability of (xfinal, t) starting at
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initial condition (xinitial, 0) is given as [21, 24]:

Pðxfinal; t; xinitial; 0Þ ¼

Z

DxExp½�
Z

dtð
1

2
r � FðxÞ

þ
1

4
ðdx=dt � FðxÞÞ �

1

DðxÞ
� ðdx=dt � FðxÞÞÞ�

¼

Z

DxExp½� AðxÞ�

ð12Þ

The above probability describes the chance of starting at the state xinitial at initial time and

ending at the state xfinal at the final time. The probability is the result of the sum of the weights

from all possible paths. A(x) is the action for each path. Each weight is exponentially related to

the action which has two contributions, one from the stochastic equation of motion for the

dynamics and the other is from the variable transformation from the stochastic force to the

system variable. Not all the paths contribute equally to the weight. Due to the exponential

nature, the optimal path is exponentially larger in weight than the suboptimal ones. Therefore,

we can identify the optimal path with the most probable weight.

We studied the repeated Prisoner’s Dilemma game model with the parameters μ = 0.006,

c = 0.22, T = 5, R = 3, Pu = 2.4, S = 0.0, which has two stable state Peace and War. Fig 11 shows

the optimal paths on the population landscape U with different diffusion coefficient D. We can

see there are two stable states: War and Peace on the population landscapes. The purple lines

represent the optimal paths from the War state to Peace state. The black lines represent the

optimal paths from the Peace state to War state. The white arrows represent the steady state

probability fluxes which guide the optimal paths apart from the steepest descent path from the

landscape. Therefore, the optimal path from War state to Peace state and the optimal path

from Peace state to War state are apart from each other. Under more fluctuations (bigger diffu-

sion coefficient D shown in Fig 11(B)), the two optimal paths are further apart from each other

due to larger probability fluxes than those in Fig 11(A). We can see the purple lines and black

Fig 11. The pathways on the population potential landscape U with different diffusion coefficient D at μ = 0.006, c = 0.22, T = 5, R = 3,

Pu = 2.4, S = 0.0. The purple lines represent the optimal paths from the War state to Peace state. The black lines represent the optimal paths

from the Peace state to War state. The white arrows represent the steady state probability fluxes.

https://doi.org/10.1371/journal.pone.0201130.g011
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lines are irreversible in both two sub figures. The optimal paths are deviated from the naively

expected steepest descent paths based on the potential landscape. These lines are apart from

each other due to the non-zero flux. We can clearly see the fluxes have spiral shapes which

show the dynamic feature of non-equilibrium system.

We show the population landscape U and the optimal paths with different parameter temp-

tation T at the constant parameters μ = 0.006, c = 0.22, R = 3, Pu = 2.4, S = 0.0, D = 5 × 10−4 in

Fig 12. The purple lines represent the optimal paths from the War state to Peace state. The

black lines represent the optimal paths from the Peace state to War state. The white arrows rep-

resent the steady state probability fluxes. The optimal paths are deviated from the naively

expected steepest descent optimal paths based on the potential landscape, and they are irre-

versible. The two optimal paths become more closer from each other as T increases. Fig 13(A)

shows the barrier heights versus temptation T. We set ΔUsp = Usaddle −UPeace as the barrier

height between state Peace and the saddle point and ΔUsw = Usaddle −UWar as the barrier height

Fig 12. The pathways on the population landscape U with different parameter T at the constant parameters μ = 0.006, c = 0.22, R = 3,

Pu = 2.4, S = 0.0. The purple lines represent the optimal paths from the War state to Peace state. The black lines represent the optimal paths

from the Peace state to War state. The white arrows represent the steady state probability fluxes.

https://doi.org/10.1371/journal.pone.0201130.g012
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between state War and the saddle point, where Usaddle represents the value of landscape U at

the saddle point between state Peace and War, UPeace represents the minimum value of land-

scape U at state Peace, UWar represents the minimum value of landscape U at state War. We

can see that the barrier height ΔUsw increases while the barrier height ΔUsp decreases. It shows

the Peace state loses its stability as the War state becomes more stable as the temptation T
increases. It denotes that the temptation guides more players to choose strategy ALLD. The

path weight represents the probability of each route. The path probability can be obtained by

action A(x) between Peace and War. We labeled Awp as the action of the dominant optimal

path from War state to Peace state, and Apw as the action of the dominant optimal path from

Peace state to War state. Fig 13(B) showed the logarithm of the probability of the Peace to War
optimal path divided that of War to Peace optimal path increases as the temptation T increases.

This shows that the optimal path from Peace state to War state has more weight or chance

than that of War state to Peace state due to the losing stability of Peace state which lowers the

barrier from Peace state to War state. This originates from the increasing temptation which

guide more players to choose strategy ALLD.

We show the population landscape U and the optimal paths with different parameter

reward R at the constant parameters μ = 0.006, c = 0.22, T = 5, Pu = 2.4, S = 0.0 in Fig 14. The

optimal paths do not follow the steepest descent paths based on the potential landscape. The

two optimal paths depart far away from each other as R increases. Fig 13(E) shows the barrier

height ΔUsw decreases while the barrier height ΔUsp increases as reward R increases. Fig 13(F)

Fig 13. The barrier heights, the logarithm of the ratio of the probability of dominant optimal path, the logarithm of the escape time

MFPT, entropy production rate versus T, R, Pu. A: the barrier heights versus T, B: the logarithm of the ratio of the probability of dominant

optimal path from Peace state to War state and the probability of dominant optimal path from War state to Peace state versus T, C: the logarithm

of the escape time MFPT versus T, D: entropy production rate versus T, E: the barrier heights versus R, F: the logarithm of the ratio of the

probability of dominant optimal path from Peace state to War state and the probability of dominant optimal path from War state to Peace state

versus R, G: the logarithm of the escape time MFPT versus R, H: entropy production rate versus R, I: the barrier heights versus Pu, J: the

logarithm of the ratio of the probability of dominant optimal path from Peace state to War state and the probability of the dominant optimal

path from War state to Peace state versus Pu, K: the logarithm of the escape time MFPT versus Pu, L: entropy production rate versus Pu.

https://doi.org/10.1371/journal.pone.0201130.g013
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showed the logarithm probability of Peace to War optimal path divided that of War to Peace
optimal path decreases as reward R decreases. This shows that as the reward increases, more

and more players choose strategy ALLC which makes the Peace state more stable and the War

state less stable. Thus, the optimal path from state War to state Peace has more probability or

weight (chance) than the opposite path.

We show the population landscape U and the optimal paths with different parameter pun-

ishment Pu at the constant parameters μ = 0.006, c = 0.22, T = 5, R = 3, S = 0.0 in Fig 15. The

two optimal paths do not follow the steepest descent optimal paths based on the potential land-

scape and come closer from each other as Pu increases. Fig 13(I) shows that the barrier height

ΔUsw increases while the barrier height ΔUsp increases first and then decreases as punishment

Pu increases. Fig 13(J) showed that the logarithm of Peace state to War state optimal path

probability divided that of War state to Peace state optimal path decreases first and then

increases as punishment Pu increases. This shows that as the punishment increases, more play-

ers choose strategy ALLC and ALLD which makes the Peace state and War state both become

Fig 14. The pathways on the population landscape U with different parameter R at the constant parameters μ = 0.006, c = 0.22, T = 5,

Pu = 2.4, S = 0.0. The purple lines represent the optimal paths from the War state to Peace state. The black lines represent the optimal paths

from the Peace state to War state. The white arrows represent the steady state probability fluxes.

https://doi.org/10.1371/journal.pone.0201130.g014
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more stable. As the punishment grows bigger, the War state becomes more stable than that of

the Peace state. This shows that the punishment Pu has an optimal value to make the Peace
state stable.

We explored the escape time for the evolutionary game system. We used the following

equation to determine the escape time τ: F � rτ + D � r2τ = −1 [28]. The escape time can be

viewed as the average time spent for a system from one state to another [24]. We can set the

mean first passage time (MFPT) τpw representing the MFPT from Peace state to War state and

τwp representing the MFPT from War state to Peace state.

Fig 13(C), 13(G) and 13(K) shows that the logarithm of the MFPT increases as their corre-

sponding barrier heights increase corresponding to Fig 13(A), 13(E) and 13(I). The logarithm

of the MFPT and barrier heights have the positive correlation as: τ exp(ΔBa). The average

kinetic speeds of the state switching along the corresponding optimal paths can be measured

by the 1/τ. As the barrier height becomes higher, the escape time becomes longer and the

kinetic speed becomes slower. Therefore, the state is more stable with higher barrier height. It

is more difficult to switch from one basin of attraction to another with higher barriers between

two stable states. It takes more time for switching and the kinetic speed is slower. The MFPT,

kinetic speed and barrier height can provide the measurements for quantifying the stability of

game theory systems. They can also give more quantitative information about the dynamics of

a game theory system. This can help to uncover the underlying mechanisms of the state transi-

tions in the game theory systems.

Fig 13(D), 13(H) and 13(L) shows the entropy production rate versus parameters T, R, Pu
among the phase range of the two stable states. EPR decreased as temptation T increases, while

Peace state loses its stability and War state becomes more stable shown in Fig 13(D). EPR
increased as reward R increases, while War state loses its stability and Peace state becomes

Fig 15. The population landscape U with different parameter Pu at the constant parameters μ = 0.006, c = 0.22, T = 5, R = 3, S = 0.0. The

purple lines represent the optimal paths from the War state to Peace state. The black lines represent the optimal paths from the Peace state to

War state. The white arrows represent the steady state probability fluxes.

https://doi.org/10.1371/journal.pone.0201130.g015
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more stable shown in Fig 13(H). EPR decreased as punishment Pu increases, while Peace state

loses its stability and War state becomes more stable shown in Fig 13(L). We can clearly see

that the system with dominant Peace state will cost more dissipation quantified by EPR than

that with dominant War state. In order to illustrate this phenomenon, we should explore the

linear stability of the repeated Prisoners’ Dilemma game model. The eigenvalues of Peace state

have negative real parts and two opposite imaginary parts. This indicates that Peace state is a

stable focus which oscillates and spirals to its destiny. Stable focus can switch to an unstable

focus which represents a limit cycle. The eigenvalues of War state have negative real parts and

no imaginary parts. This indicates that War state is a stable node. Since the stable focus costs

more dissipation. This shows that keeping the peace will consume more energy.

Discussion and conclusion

Global stability and the underlying mechanism of the dynamics are crucial for understanding

the nature of the game theory. Foster and Young presented the analysis of stochastic perturba-

tion of evolutionary game dynamics, defining the stability for a stochastic dynamics [7, 9]. It is

viewed as a way of capturing the long-run stability of the stochastic evolutionary game dynam-

ics rather than the evolutionary stable strategy and the Nash equilibrium [7, 9]. They also

introduced the idea of a potential function which can be used to compute the stochastically sta-

ble set. However, their method can only obtain the potential function in one dimension often

in equilibrium. In reality, the game systems are often more complex and in high dimensions.

The evolutionary game dynamics are also in general of non-equilibrium. It is difficult to obtain

the analytical potential functions to capture the stability of the evolutionary game systems in

higher dimensions, since a pure gradient of potential landscape cannot be directly obtained for

general evolutionary game dynamics.

Many researchers tried to explore the stability of the evolutionary game systems [6, 7, 9,

17]. Some chose the simulations of the trajectories under fluctuations [7, 17]. The stability of

the repeated Prisoner’s Dilemma game can be quantified by the Lyapunov function. But the

Lyapunov function cannot be found easily. In this work we developed the landscape and flux

theory for quantifying the population and intrinsic landscape of the game theory dynamics.

The intrinsic landscape ϕ0 has a Lyapunov feature which can be used to explore the global sta-

bility of the game theory systems. We obtained the numerical Lyapunov function ϕ0 by solving

the Hamilton-Jacobi equation and the population potential landscape U from the Fokker-

Plank diffusion equation. Thus we can explore the global stability of the game theory system

by the intrinsic landscape ϕ0 and the population potential landscape U. The repeated Prisoner’s

Dilemma game system is a non-equilibrium system. The underlying non-equilibrium driving

dynamics of the game system is determined by both the force from the gradient of the land-

scape and the force from the steady state probability flux which breaks the detailed balance.

This provides a new view to explore the game theory dynamics. In conventional evolutionary

game dynamics, the flux is not considered. Here we point out that both the landscape and flux

are necessary to study the evolutionary game dynamics.

The barrier height and the entropy production rate can be used to quantify the global stabil-

ity of the non-equilibrium repeated Prisoner’s Dilemma game. The irreversible optimal paths

can be evaluated by the path integral method. The optimal paths are not along the gradient of

the landscape due to the non-zero flux. We also quantified the mean first passage time which

can measure the kinetic speed of the dynamics of switching from one state to another.

We have found that when the cost for TFT which reduces the values of the element of TFT
in payoff matrix is small, and thus the values of payoff elements for TFT are large, the game

system approaches to Peace state easily. As the cost c increases further, the game system will go
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to the War state since the profits from the TFT strategy is much less. We have also found that

when c is small, high mutation rate will lead to the Peace state to be far from War state.

When c is moderate, high mutation rate will lead to a mixed strategy state which has almost

the same probability of these three strategies. This leads the game system far from War state.

However, as the cost c is larger, the system will fall into War state either with low mutation rate

or high mutation rate.

We have also found that moderate intensity of punishment for defection strategy (moderate

value of parameter Pu) decreases the stability of War state. More reward for cooperation strat-

egy (high value of parameter R) prefers the Peace state. More temptation for the defector from

the cooperator will prefer War state to earn more profits using defection strategy. Thus choos-

ing a moderate intensity of punishment for defection strategy and increasing the intensity of

reward for cooperation strategy will avoid the lasting War state, and favor the long lasting

Peace state.

We provided a path integral method to identify and quantify the optimal paths between

each two stable state. The optimal paths between Peace states and War state are irreversible

due to the non-zero flux which is the characteristic for non-equilibrium system. The probabil-

ity of each optimal path can also give us the information about stability. More stable state has

less probability of the corresponding path to escape from its attraction. More time will be

spent to escape from more stable state with higher barrier heights as shown from the behavior

of MFPT. Thus the speeds of swithing between stable states become slower. We have also

shown that the game system with dominant stable Peace state has more EPR. This shows that

keeping peace will cost more energy.

Our method can provide a way to identify and quantify the optimal paths (the process) and

the kinetics (speed) with their corresponding barrier heights (global landscape topography) for

game theory systems. Quantitative study as this will help us to find ways to elongate peace and

prevent war.

Since the stochastic game theory dynamics is more difficult to explore analytically, we

developed a potential-flux framework to explore and quantify the stochastic game theory

dynamics. The investigations of the global stability are essential for understanding the nature

and the underlying mechanisms of the game theory dynamics. We show this in an example of

repeated Prisoner’s Dilemma game system. This can help the further understanding of the

game theory for the real world.
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