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THE BIGGER PICTURE The latest high-throughput mass spectrometry-based technologies can record
virtually all molecules from complex biological samples, providing a holistic picture of proteomes in cells
and tissues and enabling an evaluation of the overall status of a person’s health. However, current best
practices are still only scratching the surface of the wealth of available information obtained from the
massive proteome datasets, and efficient novel data-driven strategies are needed.
Powered by advances in GPU hardware and open-source machine-learning frameworks, we developed a
data-driven approach, CANDIA, which disassembles highly complex proteomics data into the elementary
molecular signatures of the proteins in biological samples. Our work provides a performant and adaptable
solution that complements existing mass spectrometry techniques. As the central mathematical methods
are generic, other scientific fields that are dealing with highly convolved datasets will benefit from this work.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
High-throughput data-independent acquisition (DIA) is the method of choice for quantitative proteomics,
combining the best practices of targeted and shotgun approaches. The resultant DIA spectra are, however,
highly convolved and with no direct precursor-fragment correspondence, complicating biological sample
analysis. Here, we present CANDIA (canonical decomposition of data-independent-acquired spectra), a
GPU-powered unsupervised multiway factor analysis framework that deconvolves multispectral scans to in-
dividual analyte spectra, chromatographic profiles, and sample abundances, using parallel factor analysis.
The deconvolved spectra can be annotated with traditional database search engines or used as high-quality
input for de novo sequencing methods. We demonstrate that spectral libraries generated with CANDIA sub-
stantially reduce the false discovery rate underlying the validation of spectral quantification. CANDIA covers
up to 33 times more total ion current than library-based approaches, which typically use less than 5% of total
recorded ions, thus allowing quantification and identification of signals from unexplored DIA spectra.
INTRODUCTION

The ideal proteomic method should precisely quantify large sets

of proteins across multiple samples. To this end, data-indepen-

dent acquisition1 (DIA) is an effective compromise between tar-

geted proteomics using selected reaction monitoring (SRM)

and label-free shotgun proteomics with data-dependent acquisi-

tion (DDA), combining the respective benefits of high accuracy
This is an open access article under the CC BY-N
and consistency2,3 with high throughput.4 Multiple issues are ad-

dressed, such as the inconsistent quantification due to stochas-

ticity between runs, noticeable especially in DDA experiments

with large sample series.5,6 Despite this, an inherent issue is

related to the exhaustive fragmentation of the specific mass

range using defined isolation windows or ‘‘swaths.’’7 Due to

the width of these windows, fragment signals are highly overlap-

ped or ‘‘convolved,’’ with multiple precursors falling in the same
Patterns 1, 100137, December 11, 2020 ª 2020 The Authors. 1
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window, producing a set of highly overlapping ion mass

spectra.8–10 A computational solution to deconvolve such data

would expand the coverage and efficacy of the DIA approach.

Thus, development of novel data-analysis approaches is

currently among major priorities in high-throughput proteomics.

The current standard approach for DIA analysis is targeted

quantification of the acquired fragment data using spectral li-

braries containing fragmentation information for a particular

peptide.9–12 Library generation, however, is time consuming and

specific to the instrument, chromatography, and experimental

conditions, ideally requiring physical sample fractionation com-

plemented with shotgun spectra acquisition.13 Another limitation

is that only a small portion of analytes are recovered, especially

when library generation is based on data-dependent acquisition

of relatively few selected high-intensity precursors.14,15 Thus,

the targeted search for DDA precursor fragments does not take

full advantage of resulting digital records of all ions in scans

generated in a data-independent manner.7 Recent approaches

based on large synthetic peptide libraries enable accurate predic-

tion of peptide spectra directly from sequence data.16,17 Compu-

tational approaches that utilize MS1-MS2 co-elution information

to generate pseudo-spectra do not require the creation of exper-

imental libraries.18–20 These, however, suffer from the same over-

lapping fragment signal problem inherent to DIA, which is

addressed using heuristics such as interference correction.10,21,22

Multiway tensor decomposition and other so-called matrix

methods,23,24 such as parallel factor analysis (PARAFAC), also

called ‘‘canonical decomposition,’’25–28 use the entire acquired

data to extract individual analyte signals and have been used

for over four decades in mass spectrometry (MS) and other

analytical technologies.23,28–31 PARAFAC enables decomposi-

tion of multiway data arrays and facilitates the identification

and quantification of independent underlying signals, termed

‘‘components,’’ from convolved spectral data. Conveniently,

DIA data can be naturally represented as a three-dimensional

array or tensor, resulting from the linear combination of individual

peptide mass spectra, their elution profiles, and their relative

sample contribution, making it amenable to PARAFAC decom-

position. However, given the sheer size of DIA proteomics data-

sets, where an experiment of 100 samples can easily generate

more than half a terabyte of numerical data, computational

decomposition of DIA proteomics data using conventional

CPU-based multiway analysis frameworks become infeasible.

Furthermore, existing PARAFAC applications usually involve

smaller datasets consisting of at most a few hundred known an-

alytes, so far limiting PARAFAC applications to relatively simple

computational problems. On the other hand, with DIA prote-

omics data, one deals with an unknown set of tens of thousands

of analytes, thus requiring a way to search a much larger model

space than is currently achievable.

Hence, here we present a graphic processing unit (GPU)-

accelerated multiway tensor decomposition approach called

CANonical decomposition of Data-Independent Acquired

spectra (CANDIA), consisting of a data decomposition pipeline

that enables spectra retrieval and quantification of analytes

directly from DIA data. By using a data-partitioning scheme

and relying on the massive parallelism of modern GPU architec-

tures, we achieve a technical leap, enabling untargeted decom-

position of very large, high-throughput proteomics data. More-
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over, the central method to the pipeline, PARAFAC, does not

require a priori spectral information about the analytes in order

to perform the decomposition. The individual deconvolved

spectra produced by our pipeline may be analyzed with conven-

tional peptide search engines32–34 to produce peptide-spectrum

matches (PSMs) for building high-accuracy spectral libraries.We

show that, by using CANDIA, we can extract up to 33 timesmore

analyte signal from DIA scans compared with library-based ap-

proaches, and, moreover, cover the entire m/z space of scans,

enabling the usage of the majority of noise-accounted signal

ions obtained from a sample. We also demonstrate that spectra

recovered by CANDIA circumvent the problem of false quantifi-

cations, a major challenge present in targeted DIA proteomics.

RESULTS

CANDIA: A GPU-Accelerated Software Pipeline for
Deconvolving DIA Data
Wedeveloped the CANDIA pipeline, capable of recovering spec-

tral features in unsupervised fashion and computationally

feasible time (Figure 1A), by leveraging the power of the modern

tensor algebra frameworks PyTorch35 and Tensorflow,36 which

take advantage of the parallelism and throughput of floating

point operations in GPUs, as well as the distributed ‘‘big data’’

computing framework Apache Spark.37 In brief, CANDIA parti-

tions all provided DIA scans into a collection of small, indepen-

dent tensors (including both MS1 and MS2 data), corresponding

to precursor isolation windows and time intervals (Experimental

Procedures P1). It then performs multiple decompositions of

each of these tensors in parallel, accounting for a range of

possible numbers of components in each tensor (Figure 1A

and Experimental Procedures P2). As the observed intensities

in DIA liquid chromatography-tandem MS scans result from

linear combinations of individual fragmented peptide spectra,

their elution profiles, and their relative abundance across all sam-

ples, each PARAFAC component ideally represents an analyte

as a triplet of itsm/z spectrum, retention time (RT) peak, and rela-

tive sample contribution (Figure 1B). The decomposition results

are then refined by selecting the best models based on the qual-

ity of reconstructed signals, i.e., the unimodality of the elution

profile (Experimental Procedures P3 and Note S1). A critical

step in constructing a PARAFAC model is deciding a priori the

number of components F, complicated by the fact that PAR-

AFAC models do not ‘‘nest,’’ i.e., a model for F + 1 is not simply

a model for F with an extra component.30 Deciding the value

automatically is generally an open problem,38 and the various di-

agnostics and procedures used to this end39 often require hu-

man verification, which is not feasible for data-rich proteomics

workflows, with hundreds of thousands of models that need to

be examined. Our approach therefore exhaustively constructs

all possible models within the configured range, then uses the

shape of the resulting elution profiles and accounts for noise to

automatically select valid models, resulting in optimal precursor

identifications. The recovered m/z spectra (Figure 1C) can be

directly searched using standard tool sets such as Crux,40

TPP,33 and MS-GF+34 to (1) produce PSMs (Figure 1D), (2) build

spectral libraries (Experimental Procedures P4), (3) be used for

de novo sequencing, or (4) be used directly as linearly indepen-

dent features for machine-learning applications.
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Figure 1. The CANDIA Pipeline, Illustration of

PARAFAC Decomposition, and Example Re-

sults

(A) High-level structure of the CANDIA framework.

Under the hood, CANDIA uses tools typically

applied for processing of big data (on the order of

hundreds of GB of numerical data) to perform

PARAFAC decomposition of similarly large DIA

data. It operates in a parallelized way, employing

tensor computation frameworks that leverage the

speed of GPU cards. CANDIA takes in all provided

DIA scan files together, partitions them into a

collection of independent tensors according to

swath and retention time windows, then performs

multiple decompositions of each of these tensors,

accounting for a range of possible number of com-

ponents, to account for an unknown number of

peptides in each partition. The best models are

selected such that most components have unim-

odal elution profiles (Experimental Procedures P3

and Figure 3). CANDIA output consists of a file in

mzXML format containing the deconvolved spectra.

This file is orders of magnitude smaller than the

input scan files, which speeds up downstream

analytical methods.

(B) Conceptual illustration of the PARAFAC

decomposition method for two components. Ac-

quired DIA MS1 and MS2 signals can be expressed

as a linear combination of individual peptide mass

spectra, their elution profiles, and their relative

sample contribution. PARAFAC considers all sam-

ple scans at once and decomposes the three-

dimensional (m/z, retention time [RT], sample)

tensor structure into deconvolved components.

(C) Example of PARAFACoutput spectrummatched

to a peptide by Comet. Theoretical spectrum (pre-

dicted with Prosit)16 of the peptide (black) is plotted

against fragments matched (66%) to the decon-

volved spectrum output by the pipeline (red).

(D) Peptide identification using Crux and MS-GF+

on CANDIA output (top) largely matches the distri-

bution of input DIA scan MS1 intensities (bottom,

single yeast lysate scan). Peptide count and in-

tensities are shown per retention time (RT) and

precursor isolation windows, according to the

pipeline’s data partitioning scheme. RT windows

are highlighted by light-gray vertical lines. The hor-

izontal streaks that show up in the ranges 11–17min

and 527–559m/z (lower left) are likely contaminants

(e.g., nothing was identified by Spectronaut [FDR

<5%] in this range) and are not reflected in any

CANDIA identifications.
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Precise Protein Identification and Quantification with
CANDIA
We first evaluated whether CANDIA-deconvolved spectra were

identifiable by conventional peptide search engines. First, we

tested our approach on aSaccharomyces cerevisiae lysate data-

set,2 referred to here as yeast replicates, which consisted of nine

consecutive injections acquired in SWATH mode on a conven-

tional Sciex 5600 QqTOF instrument with microflow setup. To

identify the precursors, CANDIA solved a total of 176,175 PAR-

AFAC models (29 swaths 3 75 1-min windows 3 81 models)
on a GPU-equipped workstation. As a benchmark for compari-

son, we used DIA-Umpire,18 a widely used tool for building spec-

tral libraries directly from DIA data, and considered results from

Crux (Comet coupled with Percolator) and MS-GF+ search

engines separately, to assess their performance. While Crux

identified a total of 2,014 proteins using the DIA-Umpire

pseudo-spectra produced for each yeast replicate, in contrast

only 684 proteins (1,553 peptides) were identified on the output

from CANDIA. However, when considering only the proteins that

appear in at least eight of the technical replicates, 583 proteins
Patterns 1, 100137, December 11, 2020 3
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Figure 2. Precise Protein Identification and

Quantification with CANDIA

(A) Proteins identified with Crux run on DIA-Umpire

pseudo-spectra for each replicate, counted ac-

cording to their prevalence across the replicates,

compared with Crux results on CANDIA output.

CANDIA produces deconvolved spectra from all

input replicates, thus the number of IDs reflects the

entire dataset. Inset: overlap of proteins identified

by Crux with DIA-Umpire in at least eight replicates,

and proteins identified with CANDIA.

(B) Precursor quantity coefficient of variation (me-

dian CV = 9.3%, plotted as dashed vertical line)

across the yeast replicates dataset, obtained from

DIA-NN using a CANDIA library. Inset: an example

of highly correlated quantities between two repli-

cates.

(C) Overlap between proteins identified with CAN-

DIA coupled with Crux and MS-GF+ on the

LFQbench HYE110 dataset, and published results

from other tools. CANDIA results have 10-fold more

unique identifications.

(D) LFQbench HYE110 results for CANDIA coupled

with DIA-NN, showing quantification of human

(green), S. cerevisiae (orange), and E. coli (purple)

peptides. The DIA data are acquired from two hybrid

proteome mixtures A and B with known organism concentrations. Plotted are log-transformed ratios (log2(A/B)) of peptide concentrations over the log-trans-

formed intensity of sample B, against the expected values for each organism (horizontal dashed lines). Regression curves are shown as black dashed lines.
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were found at 1% false discovery rate (FDR) using DIA-Umpire in

conjunction with Crux (Figure 2A). The same pattern emerged for

MS-GF+, only with far fewer identifications prevalent across the

majority of replicates (see Table S1). PARAFAC decomposition,

in contrast, captures the same analytes across all input samples,

thus the commonality of high-confidence protein IDs across

technical replicates is inherent to the method. Overall 53% over-

lap, consisting of 439 common proteins, was detected between

CANDIA and DIA-Umpire coupled with Crux (considering only

proteins identified in at least eight samples), with 245 proteins

unique to CANDIA (Figure 2A). The peptide quantifications (Fig-

ure 2B) based on the reconstructed spectral library are precise

(median coefficient of variation [CV] = 9.3% for the yeast repli-

cates dataset) and reproducible (mean Pearson’s r = 0.99 and

p < 1 3 10�16 between the replicates).

The inconsistencies in peptide quantifications are often attrib-

uted to DDA approaches,6 due to their stochastic nature of pep-

tide selection, which is dependent on instrument performance.

Although DIA methods typically produce far more complete

data matrices,5 the consistency of identification may be highly

dependent on the inference correction procedures and the way

FDR is estimated from DIA data. To exemplify this further, we

built a library based on in silico digestion of a yeast proteome,

whereby we randomly shuffled 30% of amino acids in each pep-

tide sequence. Despite the fact that only peptides that did not

exist in the original organism were considered, we quantified

2,691 and 642 proteins using the conventional library-based

search tools Skyline41 and DIA-NN,10 respectively, at 1% FDR

(Experimental Procedures P5). With the same search, Spectro-

naut11 did not yield any identification. This is on average 185

times above the expected number of false discoveries (Fig-

ure S1). All of these identifications were attributed solely to the

unique fragments arising from the mutated precursors, which
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would otherwise not be present in the original yeast spectral li-

brary and were extracted within predicted RT of the correspond-

ing tool. Indeed, the score distributions of these sets of peptides

suggest that the current decoy generation strategies do not pro-

vide a realisticmodel of the null hypothesis, which states that real

peptide features are not different from the shuffled ones (Fig-

ure S2). In contrast, quantification with these tools using a library

constructed fromCANDIA output spectra only yielded identifica-

tions with one tool, and only 22 times higher than the expected

number of false positives at 1% FDR. This indicates the validity

of identifications when using PARAFAC-recovered spectra. To

account for any confusion introduced to the inference algorithms

of these software packages by providing them with completely

spurious data, we also performed a sample-entrapment anal-

ysis42 using a collection of Archaea proteomes as the entrap-

ment partition. While generally robust to the false positives

from the entrapment partition, the three software packages still

yielded results from the Archaea proteomes, with the CANDIA li-

brary overall reducing false positives (Figure S3).

We next evaluated whether CANDIA could resolve spectra in a

complex background such as the LFQbench HYE110 dataset,43

containing two mixtures with different ratios of human, Escheri-

chia coli, and S. cerevisiae, the latter two of which are present

in quantities close to the limit of detection (5%) alternatively in

the two mixtures. As, typically, the number of detected and

quantified proteins is highly dependent on the particular tool

and FDR estimation method, one would expect to find differ-

ences between available tools43 and CANDIA, given that the

latter works by searching against deconvolved spectra rather

than by matching against scans using a library. Nevertheless,

running Crux andMS-GF+with an FDR threshold of 1%on CAN-

DIA output spectra yielded a total of 3,024 proteins, comparable

with the average 3,857 obtained by the other methods in the
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benchmark study,43 albeit at an overall lower rate of peptide

identification (5,908 peptides with a median ratio of peptides to

protein of 4) (Figure S4). Out of these proteins, 1,508were unique

to CANDIA (Figure 2C), which is 16 times higher than the median

number of unique proteins of the other methods.We noticed that

601 proteins not identified with CANDIA were instead found us-

ing all methods that, in essence, use the same target-decoy frag-

ment mass search algorithm for FDR estimation.44 Analogously

to the yeast example above, we built an in silico library of ran-

domized peptide sequences, which resulted in a library with no

peptides present in the non-randomized protein sequences of

any of the three target organisms, as well as a sample-entrap-

ment database using Archaea proteomes as the entrapment

partition. For the randomized database, results were different

between the tools, with up to 1,499 false protein identities

found (Figure S5), 65 times higher than the expected number

of false positives (23). In the sample-entrapment analysis,

using the CANDIA library consistently reduced the number of

entrapment proteins identified up to 100% (Figure S6). Given

this underestimation of the false-positive rate made by the con-

ventional tools, a considerable amount of the identifications at

1% FDR with tools other than CANDIA were thus put into the

question. The quantification based on the CANDIA library, built

using conventional methods10,43 with an FDR threshold of 1%,

resulted in precise ratios between the two mixtures A and B in

the dataset (Figure 2D), showing precise quantification using a

spectral library constructed directly from the decomposed

spectra.

DIA Spectra Are a Molecular ‘‘Dark Matter’’
Among the advantages of DIA is that acquired data represent a

digital snapshot of all ions obtained from a sample.7 While the

idea is appealing, current library-based methods retrieve only a

minor fraction of analytes present in a sample, leaving themajority

of acquired DIA spectra unused. To demonstrate this, we calcu-

lated the overlap between m/z values of a DIA scan from the

HYE110dataset43 and the correspondingpublished library. Allow-

ing for a 5-min RT and a 50-ppmm/z tolerance, the spectral library

matched 80.77% of all spectra in this scan. However, summing

over the corresponding signal intensities, the library covered

only2.2%of total ion current (TIC) recorded in the scan (Figure3A),

showing that the majority of matched m/z points comprise base-

line signals. Indeed, by filtering out all scan intensities below 1, the

covered percentage of DIA spectra dropped to 3.46%. Thus, the

remaining analyte signals, i.e., unlabeled features, are missed by

current conventional tools that rely on targeted quantifications.

On the contrary, the PARAFAC decomposition method considers

virtually allm/z space (Experimental Procedures P2) in a DIA scan

and discards unsystematic noise by leveraging the variability be-

tween scans to produce deconvolved spectra.30 Thus, a recon-

structed scan obtained by recombining PARAFAC output modes

(Experimental Procedures P6) covered 72% of the same HYE110

scanTIC (Figure 3A), which is 33 times higher thanwhat is covered

by the spectral library and corresponds tomore than twice (4.2%)

the annotated spectral signal. Analogous results were obtained

from S. cerevisiae lysate and its corresponding spectral library

built using fractionation,2 whereby the reconstructed PARAFAC

pseudo-scan accounted for 12-fold more TIC than the corre-

sponding library (Figure S7).
Extracting the realistic number of analytes, however, is depen-

dent on the choice of the correct number of components.30 The

challenge is to identify the number of components that would

best match the number of precursors in the samples. Finding

the optimal number of components, however, is an NP-complete

problem.45 Thus, to minimize the risk of overfitting due to an

overestimated number of components, we developed an effec-

tive empirical approach that functions under the assumption

that every analyte has to elute as a single chromatographic

peak, our so-called unimodality criterion (Experimental Proced-

ures P3). Indeed, choosing the number of PARAFAC compo-

nents with most unimodal elution profiles resulted in the optimal

number of significant (FDR < 1%) precursor identifications and,

importantly, this approach better captured the densest region

of the scans (in terms of TIC), giving more confidence in the re-

sults (Figure 3B). We included all models with maximum unimo-

dality (i.e., the entire feasible set) to account for the uncertainty in

peptide-spectrum matching,46 as it was observed that in denser

scan regions (in terms of TIC) there are more models with

maximum unimodality and, moreover, these recapitulate several

of the same components (see Note S1). This is corroborated by

theory, asmodels around the correct number of components will

often not differ much in terms of loadings.30 A large increase in

number of components (with decreasing unimodality fraction)

did not result in more peptide identifications; rather, it resulted

in about half of the amount yielded by the optimal set. This is

not surprising, as beyond the correct value, more components

will start modeling noise or a single analyte may be captured

by more non-physical components.30 As an intuitive example,

Figure 3C compares a pair of good and bad models for the yeast

replicates dataset by showing the timemodes (elution profiles) of

each component in a single slice (single swath and timewindow),

as output by PARAFAC. Examples of components from both

these models are shown in Figure S8. As demonstrated, the

good model captures proper elution curves, whereas non-

optimal models comprise a significant number of fragmented

or very narrow single-point curves, representing noise or split

components that do not reflect any analytes. For the yeast lysate

dataset, as the median of the unimodality fraction across the

best models was 87% (Figure 3D), we attributed the remaining

13% of components to captured noise and elution curves clip-

ped at the edge of the data slices, which were not counted by

the peak detection routine (see Table S2).

As empirical evidence of the quality of CANDIA results, the to-

tal number of identified proteins for the yeast lysate dataset is

comparable with library-based methods (Figures 2A and 2C),

and the median number of recovered precursors per protein is

eight, which is similar to what is typically expected from these

approaches43 (Figure S9). Accounting for imperfect deconvolu-

tions, the majority (median across datasets = 85%) of recovered

spectra (i.e., components) were not mapped to peptide space,

and this remaining set of PARAFAC components is overall un-

correlated with the set of identified components (mean Pear-

son’s r = �7 3 10–4) (Figure 3E). This was assessed by decom-

posing the dataset from Vowinckel et al.,2 consisting of 30

yeast lysate samples from a study of the target of rapamycin

(TOR) pathway, and calculating the correlation between identi-

fied and unidentified unimodal sample modes (the sample

mode of a component holds the contribution of that component
Patterns 1, 100137, December 11, 2020 5
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Figure 3. DIA Spectra Are Still Proteomic ‘‘Dark Matter’’

(A) Typical DDA spectral library coverage of the total ion current (TIC) in a centroided DIA scan (HYE110), comparedwith that of recovered PARAFAC components

and the subset of identified components. Retention time (RT) is binned by 30 s. Matching with the library allowed for a 5-min RT and a 50 ppmm/z tolerance, and

at least four library fragments (productm/z points) needed to match for a spectrum to be considered covered. The scan reconstruction procedure is described in

Experimental Procedures P6.

(B) Number of peptides identified by Crux (at 1%FDR) in the yeast replicates dataset (per 1-min timewindow), using themost unimodal models (1,553), compared

with a control model set (1,111). The number of peptide matches is plotted when including all models with number of components chosen to maximize unim-

odality fraction (red), i.e., all feasible models. This is compared with matches against only the most complex feasible models (black). The distribution is similar for

identifications using the least complex feasible models (Figure S11).

(C) Unimodality fractions of all models solved for an example slice of the yeast replicates dataset (MS1 isolation window 479–496m/z, RT timewindow 29–30min)

are shown on top left. A goodmodel (red dot) was chosen as F = 23, as it is completely unimodal. Thismodel is comparedwith a poormodel (F = 88, blue dot), with

the lowest fraction (78%) of unimodal time components. One can see how some of the elution curves in the worst model are fragmented (higher count of detected

peaks) or very narrow (even point-like, resulting in no peak detection). A slice spans 60 s (binned to a 1.3-s scan cycle) and the expected full-width at half

maximum of a peak is 12 s.2

(D) Heatmap of maximum unimodality fraction across models for each slice, resulting from the decomposition of the yeast replicates dataset. Inset: distribution of

best model unimodality fraction, with a median of 0.87.

(E) Heatmap of absolute Pearson correlations between sample modes of identified and unidentified components. Inset: the histogram of Pearson correlations.
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to each sample, i.e., analyte abundance in sample), keeping only

the most complex feasible model per slice. For this dataset, the

average unimodal fraction was 90% and, by considering only

these non-noisy components, we showed that unidentified com-

ponents contain non-redundant information that could be lever-

aged by, for example, machine-learning approaches.47,48

Lastly, to extract information from the set of unidentified

spectra using existing methods, we queried them for post-trans-

lational modifications (PTMs) usingMS-GF+ and, moreover, per-
6 Patterns 1, 100137, December 11, 2020
formed de novo sequencing using the state-of-the-art machine-

learning-based approach DeepNovo,49 as well as the estab-

lished tool Novor50 (Experimental Procedures P7). We identified

in total 186 PTMs in the non-enriched microflow yeast SWATH

runs (Tables S3), which was twice more than using DIA-Umpire.

Moreover, the latter exhibited very low prevalence of identifica-

tions, with only 8.2% appearing in at most two replicates (Fig-

ure S10). De novo sequencing benefits from deconvolved

input.51 Consequently, DeepNovo and Novor respectively
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yielded 4 and 24 times more high-confidence (over 80%

sequence correctness probability, see Experimental Procedures

P7) de novo sequences from CANDIA output, compared with

running on DIA-Umpire output (Note S2).

DISCUSSION

Here we presented CANDIA, a GPU-powered multiway decom-

position framework enabling unsupervised and untargeted

extraction of analyte signals from DIA data (Figure 1B). CANDIA

solves thousands of decompositions in real time, enabling multi-

way analyses of dense data-independent-acquired spectra. Par-

allel factor analysis,25,26 the multiway analysis technique behind

CANDIA, takes advantage of cross-sample analyte variation,

enabling deconvolution of mass spectra belonging to individual

precursors (Figures 1B and 1C). The recovered spectra can

then be searched using conventional peptide search en-

gines34,40 or de novo sequencing tools49,50 to assign analyte

identifications. Specifically, we demonstrated CANDIA quantifi-

cation precision by building a library from recovered spectra

and analyzing consecutive injections from yeast lysates acquired

using amicroflow setup.2We also showedCANDIA performance

in quantifying complex background samples; that is, in an unsu-

pervised fashion our framework identified peptides and their cor-

rect corresponding mixture quantity ratios with high confidence

(peptide-level FDR <1%) in the LFQ benchmark HYE110 data-

set43 (Figure 2D). Apart from being a challenging benchmark

from an acquisition point of view, as the samples contain a

mixture of species in different ratios, correctly identifying pep-

tides and mixture ratios is also not trivial from the data-analysis

perspective: (1) it requires estimating the correct number of com-

ponents, corresponding to the realistic number of analytes pre-

sent in the sample; (2) the identification of high-quality recovered

spectra is analogous to DDA, but directly fromMS2 data without

MS1 precursor mass isolation; (3) the quantification had to be

correct for these recovered spectra in order to yield accurate ra-

tios. Despite these challenges, our unsupervised framework

yielded results similar to those of the established targeted

methods (Figure 2).

The quantification and identification of specific analytes re-

quires accurate estimation of FDRs, especially crucial when per-

forming unsupervised and untargeted analyte quantification. For

DIA data, the procedure is semi-targeted,14 i.e., untargeted

acquisition with the targeted analyte quantification either based

on an experimental library or in silico methods.52 Conversely,

CANDIA does not depend on a library but instead builds one us-

ing recovered spectra from the observed data, with analyte iden-

tification performed post hoc using conventional peptide search

engines. Comparison of CANDIA results with those of other

methods showed substantial differences in protein identifica-

tions; for example, in the LFQbench HYE110 dataset 601 pro-

teins were quantified by all other methods except CANDIA,

whereas 1,508 proteins with at least one peptide were uniquely

quantified by CANDIA using a library constructed from recov-

ered DIA spectra. We considered that, despite the differences

in FDR estimation procedures of benchmarked software, in

essence they all use the similar target-decoy FDR estimation

procedure.44 This led to the hypothesis that the observed differ-

ences between CANDIA and other methods were due to the way
FDR estimation is performed in targeted quantifications. Indeed,

by randomly shuffling up to 30% of amino acids in peptide se-

quences and building in silico libraries for targeted approaches

(such that none of the shuffled libraries shared precursor frag-

ments with the experimental library, Experimental Procedures

P5), and using these shuffled sequences as search databases

to identify the recovered spectra from CANDIA, on average

about 100-fold more false identities were reported by other tools

when not using a CANDIA library (Figures S1 and S5). Moreover,

by performing a sample-entrapment assessment using hybrid

target organism-Archaea databases, a considerable amount of

entrapment hits (false identities) were reported across tools

and datasets (Figures S3 and S6). An explanation is that decoy

generation techniques, such as random shuffling, sequence

reversal, or introducing specific systematic mutations,53,54

would generate overdiscriminating (overly sensitive) scores

because of unrealistic fragmentation m/z values in decoys,

compared with those present in natural proteomes (Figure S1).

The resulting decoy score distributions calculated from DIA

data thus allow even 30% mutated peptides to be identified as

hits, as opposed to running search engines on deconvolved

spectra output from CANDIA, which uses spectral properties

instead of DIA data target-decoy features and results in more

sensitive matching. Therefore, CANDIA can be used for building

high-confidence spectral libraries directly from data, and these

can also be usedwith other targeted approaches to prevent false

identification. This singular example should of course be fol-

lowed by further studies.

Furthermore, we found that CANDIA-recovered spectra

contain on average twice as many confidently identified (1%

FDR) post-translationally modified peptides than by using

pseudo-spectra from established methods (Table S3). Although

we consistently identified a total of only 101modified peptides in

our yeast lysate replicates dataset, these were identified directly

from a regular chromatography setup without applying special-

ized PTM enrichment techniques.55 We demonstrated that

recovered spectra can also be de novo sequenced, using combi-

natorial and deep-learning approaches,49,50 resulting in up to 24

times more peptide sequences.

Moving forward, we anticipate that further improvements to

the frameworkwill increase not only the quality and quantity of re-

sults but also running time. For this study, the method performed

well due to the high-quality, robust chromatographic gradients in

our datasets,2,43 i.e., the yeast and HYE110 datasets had less

than 5%average variability in RTs. To account for less-reproduc-

ible gradients, adding an RT alignment step56,57 would certainly

improve spectra recovery and, correspondingly, the number of

peptide identifications, as this is crucial for PARAFAC to perform

well, since the trilinearity assumption is no longer guaranteed to

hold when shifts on the RT axis are present.30 Additionally, a

different decomposition method can potentially improve results,

i.e., the theoretically better model in this case would be

PARAFAC2, which allows for slight non-linearities in one mode

(RT shifts in this case),31,58 thus alleviating the requirement for

robust gradients. However, at the time of this study no efficient

and scalable implementation existed. At present the relative

quantification is performed using a library constructed from de-

convolved spectra, whereas the sample mode of each compo-

nent already gives the relative contribution of that component
Patterns 1, 100137, December 11, 2020 7
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to each sample. In practice, we have seen this to be too impre-

cise to use for high-quality quantification. Thus, improvements

to the decomposition would enable analyte quantification from

sample modes directly. Our framework can be readily adapted

to other types of DIA data, including sliding MS1 window tech-

niques4,59,60 and small-molecule metabolomics data.61 As the

pipeline relies on the high-level Python multiway framework

TensorLy (compatible with major machine-learning backends),62

it can be readily adapted to include additional separation dimen-

sions, such as ion-mobility separation63 using either four-way

PARAFAC or Tucker3 decomposition. To conclude, as a state-

of-the-art computational solution to deconvolve MS scans,

CANDIA shows potential to greatly expand the coverage and ef-

ficacy of the DIA approach, andwe hope it can serve as a general

platform for multiway analysis of MS data.
EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Further information and requests for material and resources should be

directed to and will be fulfilled by the Lead Contact, Aleksej Zelezniak

(aleksej.zelezniak@chalmers.se).

Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

All source data used in this paper are from previously published studies and

available on publically available repositories. We downloaded the following:

(1) two yeast lysate datasets (9 technical replicates and 30 samples)2,47 from

ProteomeXchange: PXD010529; and (2) the HYE110 dataset43 from Proteo-

meXchange: PXD002952.

The CANDIA pipeline is available on GitHub at https://github.com/fburic/

candia (tag ‘‘submission’’).

Resource requirements and expected runtimes are described in P8. Pipeline

Runtime.

P1. Preprocessing

DIA scans were partitioned and combined to form independent tensors for the

decomposition stage. To determine the size of these partitions or ‘‘slices,’’ we

used the MS1 precursor isolation windows or ‘‘swaths’’ to cut the scans along

the m/z axis, and a reasonable time window to cut the RT axis, depending on

the chromatography. Partitioning according to swaths is a natural approach,

as precursor-product spectra within one swath are independent of those in

other swaths. For the yeast replicates and TOR study datasets the time win-

dow was chosen as 1 min, whereas for the HYE110 dataset, 5-min windows

were taken. This choice balanced the number of expected elutants, due to dif-

ferences in gradients (e.g., 20 min versus 40 min) and hence, the range of

possible models, against the resulting number of slices. This RT partitioning

is similar to the approach taken by iPLS,64 although here it primarily serves

to reduce model memory requirements and, secondarily, model complexity.

We saw that results are fairly robust to different window sizes (see Table

S2), although too-narrow windows will increase the number of clipped (partial)

elution peaks while too-large windows increase the complexity of the models,

leading to a slight drop in quality of the final results. Future improvement of the

approach ought to include a less arbitrary choice.

To facilitate processing, we converted the scan files to tabular format and

partitioned them in parallel using the pyteomics package65 and distributed

computing framework Apache Spark. Each such slice thus contained the

same (m/z, RT) partition for all input scan files, which were then ‘‘stacked,’’ re-

sulting in a (m/z, RT, sample) tensor structure, encoded as a NumPy66 array.

Technically, each MS1 survey scan and its respective MS2 spectra were

aligned along the time axis, as they ought to form a single variable, i.e., the

same column in the resulting matrix. The preprocessing step resulted in a

collection of independent tensors that span the entire m/z and RT range of

each sample. For more details, see Note S3.
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P2. PARAFAC Decomposition

Each slice tensor (D) resulting from the preprocessing step was decomposed

using PARAFAC into a sample mode S, a (retention) time mode T, and an m/z

mode M, plus a residual error term E, for a given number of components F

spanning a predetermined range. For an explicit form using the Kruskal oper-

ator,28 see Equation 1:

D = ½½S;T ;MjF�� + E; for F = 10; :::::; 90: (Equation 1)

Each of these three mode matrices consist of F components, which corre-

spond to separable analyte signals. That is, assuming perfect decomposition,

each column in S, each column inM, and each row in T corresponds to them/z

spectrum, elution profile, and sample contribution, respectively of a single

peptide. As this number F is unknown a priori, we performed the decomposi-

tion for an expected number of peptides within a slice. The choice of F value

range was informed by inspecting a scan with Spectronaut. A non-negativity

constraint was imposed on all modes, a natural assumption as they model

non-negative physical quantities (concentrations and particle counts). Addi-

tionally, the search for a solution is more efficient30 and prevents obtaining

negative profiles due to imperfect decomposition (from noise or low vari-

ability).27,67 All slice tensors were decomposed in parallel using the TensorLy

GPU-adapted implementation.,62 with PyTorch as a backend.

P3. Model Selection

To select the best model per slice from the range generated in the previous

step, we counted the peaks of the time mode of each component of each

model using a continuous wavelet transformation approach,68 implemented

in the SciPy package.69 As each analyte should have a single elution peak,

we counted, per model, the fraction of components with a single peak. Among

all models generated for a slice, we chose all models with maximum fraction of

unimodal time modes (see Figure 3C for an illustration). To test the perfor-

mance of this criterion, we constructed spectra files from two other model

sets by choosing only the smallest and largest maximally unimodal F, respec-

tively, for each slice. These spectra files were then analyzed with Crux (Comet

and Percolator) and the number of high-confidence peptide identificationswas

compared. Including all models with highest unimodality performed better

(Figure 3B).

P4. Identification and Quantification

The spectra from the best models are saved to an mzXML file. This resembles

a DDA file, since each scan entry consists of the MS2 part of the deconvolved

spectrum along with its corresponding highest-intensity MS1 peak as precur-

sor (all MS1 points are included, however). This file was then searched using

Comet and MS-GF+ to produce PSMs in conjunction with a proteome FASTA

database, using the samemass tolerance as the initial acquisition (i.e., 40 ppm

for the yeast replicates and TOR study datasets, and 50 ppm for the HYE110

dataset). Comet results were then filtered using Percolator at 1% FDR. The

confidence assessment for both MS-GF+ and Percolator was done using

reversed decoys. To search for PTMs, we preconfigured MS-GF+ to account

for acetylations, succinylations, phosphorylations, and core 1 GalNAc glyco-

sylations as variable modifications anywhere in the peptide, allowing for

maximum 384 variable modifications.

The output CANDIA mzXML file was used to construct a spectral library

following the protocol in Schubert et al.,13 using Comet as a source of

PSMs. DIA-NNwas then run on the initial DIA scan files using this library to pro-

duce peptide quantities, using default parameters. Benchmark results for the

HYE110 dataset were obtained using the lfqbench R package.43

P5. False-Positive Assessment

Proteome FASTA database files were randomized such that 30% of each

trypsin-digested protein sequence was shuffled. DIA-NN was used as the

source of the in silico library constructed from the shuffled databases for all

three software packages. It uses a spectral library built using fractionation2

as training input to predict RT values. Baseline results were obtained using

published spectral libraries.2,43 For the sample-entrapment trial, a set of

Archaea proteomes (see Note S4) were concatenated to the original organism

databases. The size of these Archaea entrapment partitions were of approxi-

mately equal size to the sample (organism) partitions.

mailto:aleksej.zelezniak@chalmers.se
https://github.com/fburic/candia
https://github.com/fburic/candia
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To assess the effect of using CANDIA as a preprocessor, we ran all tools us-

ing a spectral library created from the CANDIA-deconvolved spectra and the

corresponding shuffled database, following the protocol in Schubert et al.13

For all these runs we removed any resulting spectra that were also found in

the published libraries, thus ensuring we generated exclusively false positives.

In terms of parameters, Skyline was run analogously with Navarro et al.,43

Spectronaut, and DIA-NN with default settings, except with a 100% FDR

threshold to allow selecting results at different false discovery levels.

P6. Scan Reconstruction from a PARAFAC Model

The output PARAFAC sample mode S, RT mode T, andm/zmodeM, consist-

ing of F components resulting from the decomposition of a dataset, were used

to reconstruct a pseudo-scan comprising the deconvolved analytes. A

pseudo-scan Pi is an (m/z, RT) matrix corresponding to the input DIA scan i

in the dataset. It is obtained by summing over the outer products of the m/z

mode m and RT mode t, multiplied by contribution to scan i from the sample

mode s, for all unimodal PARAFAC components r in the model.

Pi =
XF

r = 1
ðmr 5 trÞ,srðiÞfor input sample scan i: (Equation 2)

Lastly, the resulting intensities inPiwere scaled back to the values in the cor-

responding scan i, and multiplied by the model coefficient of determination

R2,as PARAFAC solutions do not preserve the scaling of the input tensor.30

This is, in effect, the reverse operation to PARAFAC for a single input sample,

discarding the residuals (Equation 1 andNote S1; Equation 2). The above oper-

ation was done piecewise for each independent tensor produced by CANDIA

partitioning of the input dataset.

P7. De Novo Sequencing

The outputCANDIAmzXMLwas converted toMGF format and subsequently set

as input toNovor50 andDeepNovo.49Novorwas run using amass toleranceof 50

ppm and DeepNovo a tolerance of 10 ppm. Novor was set to collision-induced

dissociation fragmentation and time-of-flight mass analyzer, using otherwise

default parameters. For DeepNovo, the pretrained yeast.low.coon_2013 model

was used, with a beam size of 5. For the baseline DIA-Umpire results, only the

highest-quality (Q1) extracted featureswere used, since these are far more likely

to lead to good sequencing results, as good fragment coverage is needed.51

Moreover, we considered only sequences that appear in at least six out of nine

replicates based on DIA-Umpire features. Both tools assign a probability of cor-

rectness to the sequences, and 80% would be an acceptable threshold.49,50

P8. Pipeline Runtime

CANDIA itself requires an estimated 7 h (out of which the decomposition step

takes an estimated 6 h) and downstream tools an additional 1 h, assuming avail-

ability of computing resources (see Table S4 for a breakdown of pipeline steps).

The current work was performed on a workstation with 20 CPUs at 3.3 GHz and

64GBRAM;however, the preprocessing anddownstreamstepsperformwell on

as few as 8 CPUs and 16 GB RAM. For the decomposition step, two NVIDIA

V100GPU cards with 32GB of RAMwere usedwith highest performance. Alter-

natively, two workstation GP100 cards with 16 GB of RAM were used during

development, with about half the performance. Given the granularity of the pro-

cessing, as little as 8 GB of GPU RAM would still perform acceptably.

There is much that can be sped up starting from the current prototype, espe-

cially for the decomposition, by reducing the range of models (the primary fac-

tor in computation scaling) and optimizing the decomposition code. The other

methods presented here took less time to compute (1–4 h, depending on the

task), although we reiterate that they only examine a subset of the input data,

whereas PARAFAC processes it in its entirety. Note, however, that in certain

use cases, the simplified CANDIA output enables much faster analyses. For

example, including multiple PTMs in an MS-GF+ search, the total runtime

with CANDIA was about 24 h whereas with DIA-Umpire it was about 72 h

(out of which the MS-GF+ search took 70 h), and more hits were obtained

with CANDIA (Table S3).

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.
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7. Gillet, L.C., Navarro, P., Tate, S., Röst, H., Selevsek, N., Reiter, L., Bonner,

R., and Aebersold, R. (2012). Targeted data extraction of the MS/MS

spectra generated by data-independent acquisition: a new concept for

consistent and accurate proteome analysis. Mol. Cell. Proteomics 11,

https://doi.org/10.1074/mcp.O111.016717.

8. Pappireddi, N., Martin, L., and W€uhr, M. (2019). A review on quantitative

multiplexed proteomics. Chembiochem 20, 1210–1224.

9. Peckner, R., Myers, S.A., Jacome, A.S.V., Egertson, J.D., Abelin, J.G.,

MacCoss, M.J., Carr, S.A., and Jaffe, J.D. (2018). Specter: linear deconvo-

lution for targeted analysis of data-independent acquisition mass spec-

trometry proteomics. Nat. Methods 15, 371–378.
Patterns 1, 100137, December 11, 2020 9

https://doi.org/10.1016/j.patter.2020.100137
https://doi.org/10.1016/j.patter.2020.100137
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref1
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref1
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref1
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref2
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref2
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref2
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref2
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref2
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref3
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref3
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref3
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref3
https://doi.org/10.1101/656793
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref5
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref5
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref5
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref5
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref6
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref6
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref6
https://doi.org/10.1074/mcp.O111.016717
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref8
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref8
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref8
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref9
http://refhub.elsevier.com/S2666-3899(20)30185-9/sref9


ll
OPEN ACCESS Article
10. Demichev, V., Messner, C.B., Vernardis, S.I., Lilley, K.S., and Ralser, M.

(2020). DIA-NN: neural networks and interference correction enable

deep proteome coverage in high throughput. Nat. Methods 17, 41–44.

11. Bruderer, R., Bernhardt, O.M., Gandhi, T., Miladinovi�c, S.M., Cheng, L.-Y.,

Messner, S., Ehrenberger, T., Zanotelli, V., Butscheid, Y., Escher, C., et al.

(2015). Extending the limits of quantitative proteome profiling with data-in-

dependent acquisition and application to acetaminophen-treated three-

dimensional liver microtissues. Mol. Cell Proteomics 14, 1400–1410.
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