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ABSTRACT: This paper outlines typical termin-
ology for modeling and highlights key historical 
and forthcoming aspects of  mathematical mod-
eling. Mathematical models (MM) are mental 
conceptualizations, enclosed in a virtual domain, 
whose purpose is to translate real-life situations 
into mathematical formulations to describe ex-
isting patterns or forecast future behaviors in 
real-life situations. The appropriateness of  the 
virtual representation of  real-life situations 
through MM depends on the modeler’s ability to 
synthesize essential concepts and associate their 
interrelationships with measured data. The devel-
opment of  MM paralleled the evolution of  digital 
computing. The scientific community has only 
slightly accepted and used MM, in part because 
scientists are trained in experimental research 
and not systems thinking. The scientific advance-
ments in ruminant production have been tangible 
but incipient because we are still learning how to 
connect experimental research data and concepts 
through MM, a process that is still obscure to 
many scientists. Our inability to ask the right ques-
tions and to define the boundaries of  our problem 
when developing models might have limited 
the breadth and depth of  MM in agriculture. 
Artificial intelligence (AI) has been developed in  

tandem with the need to analyze big data using 
high-performance computing. However, the 
emergence of  AI, a computational technology 
that is data-intensive and requires less systems 
thinking of  how things are interrelated, may fur-
ther reduce the interest in mechanistic, concep-
tual MM. Artificial intelligence might provide, 
however, a paradigm shift in MM, including 
nutrition modeling, by creating novel opportun-
ities to understand the underlying mechanisms 
when integrating large amounts of  quantifiable 
data. Associating AI with mechanistic models 
may eventually lead to the development of  hy-
brid mechanistic machine-learning modeling. 
Modelers must learn how to integrate powerful 
data-driven tools and knowledge-driven ap-
proaches into functional models that are sustain-
able and resilient. The successful future of  MM 
might rely on the development of  redesigned 
models that can integrate existing technological 
advancements in data analytics to take advantage 
of  accumulated scientific knowledge. However, 
the next evolution may require the creation of 
novel technologies for data gathering and ana-
lyses and the rethinking of  innovative MM con-
cepts rather than spending resources in collecting 
futile data or amending old technologies.
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INTRODUCTION

Mathematical models (MM) are mental con-
ceptualizations, enclosed in a virtual domain, 
whose purpose is to translate real-life situations into 
mathematical formulations (symbolically or nu-
merically) to describe existing patterns or forecast 
future behaviors in the real-life situations (Figure 
1). The development of  MM is a cyclical process 
that occurs iteratively and continuously. More re-
cently, their application in research is referred to 
as in silico experimentation (Tedeschi and Fox, 
2018). Although Ludwig von Bertalanffy intro-
duced the systems theory concept in the 1940s (von 
Bertalanffy, 1969), the acceptance and use of  sys-
tems-oriented research by the scientific community 
have been difficult to attain and of  limited reach. 

Scientists, in general, have been trained in experi-
mental research and not systems thinking, and the 
concept of  virtualization of  reality has been con-
fined to the design of  controlled experimentation. 
The appropriateness of  the virtual representation 
of  real-life situations through mathematical mode-
ling depends on the modeler’s ability to synthesize 
essential concepts and associate their interrelation-
ships with measured data. In this sense, MM often 
serve as decision-support systems (DSS), and even 
when a solution does not present itself  in the virtual 
world, the model can ease the identification of  pos-
sible solutions or expose the boundaries and gaps 
of  the scientific knowledge, as shown in Figure 1.  
The user can obtain a feasible solution for the real-
world problem by using other operational research 
tools such as optimization, or use the outputs of 
the model for meta-modeling purposes, or the cre-
ation of  MM based on the outputs of  other inde-
pendent models. In general, the development of 
DSS has only been possible with the advancement 
of  digital computing and data analysis, which en-
abled the first technological wave in mathematical 
modeling.

For about 50 yr, mathematical modeling has 
been used to develop DSS to assist with many 
aspects of livestock production in diverse envir-
onmental conditions. During the 1940s and 1950s, 
several important livestock-related experiments 
were planned and conducted by different, mostly 
university-associated and governmental organ-
izations around the world. Together, their data 
and results formed the common base of our sci-
entific knowledge. Experimental results were pub-
lished in scientific papers (Leroy, 1954; Blaxter and 
Graham, 1955; Blaxter and Wainman, 1961), re-
ports (National Research Council, 1944a, 1944b, 
1945a, 1945b, 1945c, 1949), and books (Brody, 
1945; Kleiber, 1961; Blaxter, 1962). The publication 
of these experiment results raised more questions, 
which prompted the formation and establishment of 
public, governmental research entities to investigate 
further the recent findings by the scientific commu-
nity and to promote discoveries. The accumulation 

Figure 1. Illustration of the cooperation between the real world and 
virtual world (the world of models) to solve problems encountered in 
the real world. The large blue arrows (development, simulation, and 
application) represent the only possible route for solving the problem. 
The circles represent the variables of interest, the square represents the 
solution, the arrows between variables represent causal relationships, 
and the vertical dashed line represents the boundaries between real and 
virtual worlds. Colors represent different domains.
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of data and knowledge compelled scientists to de-
velop ways to combine and apply the new informa-
tion being generated by these research entities with 
the old information of animal nutrition. For quite 
some time, the release of scientific publications (e.g., 
papers, reports, and extension bulletins) containing 
newly acquired information and recommendations 
in tabular form was enough. However, as the know-
ledge increased, its management and dissemination 
through static tabular forms were neither sufficient 
to contain the vast amount of information being ac-
cumulated nor quick enough to allow stakeholders 
to develop recommendations for production con-
ditions outside those in which the data were gener-
ated. Computer models containing the knowledge 
in mathematical formulations (e.g., equations) were 
needed to solve the problem of the ever-growing 
body of data and knowledge being generated by the 
scientific community. Unfortunately, the develop-
ment of computerized DSS did not become a reality 
until the mid-1960s, when the perception of the mas-
sive capability of such systems started to flourish 
for applications such as communications-driven, 
data-driven, document-driven, knowledge-driven, 
and model-driven DSS (Power, 2008). With the ad-
vancement of computing in the 1960s, mathemat-
ical modeling became feasible, and nutrition models 
have been developed since then (Tedeschi et al., 
2014a).

The objectives of this paper are to illustrate the 
application of DSS in ruminant nutrition by char-
acterizing different paradigms and approaches used 
in developing MM, briefly describe the evolution of 
different lines of thoughts in nutrition modeling, 
and exemplify the progression of an applied DSS 
in large- and small-ruminants nutrition, and to 
provide some initiatives to push forward the math-
ematical modeling field in animal science given 
recent advancements in predictive data analytics, a 
potential second technological wave in the evolu-
tion of mathematical modeling.

MATHEMATICAL MODELING 
APPROACHES AND PARADIGMS

Definitions

In this paper, data-crunching is the process in-
volved in the management and preparation of large 
amounts of data and information (e.g., big data) 
for an analytical purpose; data analytics is the pro-
cess of examining data sets to obtain relationships 
among variables and to draw conclusions from the 
information therein, and it is typically achieved 

with statistical tools; and predictive analytics is the 
process of making predictions and forecastings, 
typically achieved with modeling tools, about un-
known future events. The following definitions 
and notations commonly used in system dynamics 
modeling (Forrester, 1961; Sterman, 2000) were 
adopted throughout this paper for clarification 
and standardization. Level, state, or stock variables 
accumulate values over time; they hold the con-
tents from one time to another during simulation, 
serving as the memory of the system; and they can 
only be changed (increased or decreased) by rate 
or flow variables, which represents inflows or out-
flows, respectively, to and from the level (state or 
stock) variables. The rate (flow) variables have the 
same dimension as the level (state or stock) per unit 
of the time period. All other variables in the model 
are auxiliary and, from a reductionist perspective, 
they can be eliminated. They only help the mod-
eler to visualize and build the model. Consequently, 
a MM can be collapsed to level and rate variables 
(and time in dynamic models). Endogenous vari-
ables are variables that affect and are affected by 
other variables in the model, whereas exogenous 
variables can affect but cannot be affected by vari-
ables in the model because they are outside of the 
model boundaries. The number of level (state or 
stock) variables in the model dictates its order. For 
instance, a MM with one independent level variable 
is deemed a first-order model, two independent 
level variables a second-order model, and so on. A 
MM is deemed linear when the rate (flow) variables 
are linear combinations of the level (state or stock) 
variables and any exogenous variables. The graph-
ical representation of level vs. rate will always yield 
a straight line for linear models, whereas for nonlin-
ear models it will yield curved lines. The graphical 
representation of levels over time, however, may de-
pict a nonlinear behavior even for linear models.

Applications

Mathematical models, in general, have an im-
portant role in solving problems, especially in those 
conditions in which unforeseen variable relation-
ships exist and stakeholders need to make decisions 
to improve production. Specific applications of MM 
include the improvement of animal performance, 
reduction of production cost, and reduction of ex-
cretion of nutrients by accounting for more of the 
variation in predicting requirements and feed util-
ization (Tedeschi et al., 2005). The public’s lack 
of awareness and limited knowledge about MM 
are the main culprits of the negative perception of 
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modeling and simulation, which has hindered their 
development and broader application (Tedeschi et 
al., 2015b). Mathematical models are not immune to 
failures, and unintended consequences arise when a 
model’s limitations are misunderstood during the as-
sessment of its appropriateness to solve a perceived 
problem. Despite their fallibility, MM are great tools 
for biological systems because they help us to iden-
tify areas in the scientific knowledge that have limited 
information and need additional research.

Approaches

Models can be categorized in many ways, 
depending on their scope and purpose (France and 
Thornley, 1984; Haefner, 1996; Meerschaert, 2007; 
Thornley and France, 2007). Such categorizations 
include descriptive vs. prescriptive (i.e., elucidative 
vs. predictive) when the modeling context is appli-
cation; static (i.e., steady state) vs. dynamic, which 
can be further categorized as discrete vs. continuous, 
when the modeling context is time; deterministic vs. 
stochastic (i.e., probabilistic) when the modeling 
context is prediction (Guttorp, 1995); or empirical 
vs. mechanistic (i.e., theoretical or rational) when 
the modeling context is the nature of the model. 
The different approaches to developing an MM can 
be mixed (e.g., a deterministic, dynamic, mechanis-
tic model). Within the predictive analytics context, 
Miller (2014) considered 3 general approaches: the 
traditional approach uses linear regressions to esti-
mate parameters through fitting models to data 
(similar to the empirical category); the data-adap-
tive or data-driven approach searches through data 
to find useful predictors (similar to artificial intel-
ligence—AI); and the model-dependent approach 
defines the model (similar to the mechanistic cate-
gory) and uses it to generate data (e.g., meta-mod-
eling), predictions, or recommendations. Others 
have proposed additional approaches to categoriz-
ing MM such as teleonomic vs. teleologic models 
and functional models (France and Kebreab, 2008; 
Tedeschi and Fox, 2018).

Categorizing the MM sets the stage for the 
tasks of model development, such as determining 
model boundaries, assumptions, and what type of 
data and data analytics are needed. However, un-
necessary modeling complexity and nonessential 
categorization can easily overwhelm users or even 
knowledgeable modelers, entangling them in de-
tails, obscuring the bigger picture, and causing them 
to lose sight of the forest for the trees (Tedeschi and 
Fox, 2018). Figure 2 depicts critical components 
and steps of three major approaches for model 

development (empirical, mechanistic or knowl-
edge-driven, and AI or data-driven).

Hybridization of  these approaches is possible 
and may be employed more often in practice than 
has been recognized. The combination of  models 
and methods usually works best in the predictive 
context (Miller, 2014). The empirical approach 
relies largely on the goodness of  fit through statisti-
cal analyses and data selection, whereas the mech-
anistic approach (i.e., knowledge-driven) requires 
the conceptualization of  hypotheses of  what and 
how endogenous variables are interconnected (i.e., 
affect and are affected by other variables) and some 
data mining. The AI approach (i.e., data-driven) 
is at its core empirical, but recent development in 
this field (i.e., machine learning and deep learning) 
can be thought of  as having some mechanistic ele-
ments. The AI approach relies almost exclusively 
on neural network analysis as the base for estab-
lishing the nodes (i.e., neurons) structure and lay-
ers. Figure 2 shows important steps in the model 
development:

1)	 Data management indicates the development of 
databases following pre-established criteria for 
data acceptance.

2)	 Model conceptualization indicates the logical 
arrangement of important variables towards a 
common purpose.

3)	 Model coding indicates the parameterization 
process of variables purely statistically or ideo-
logically.

4)	 Training and evaluation, intrinsic processes 
in the AI approach, train the neural network 
formulation and establish the adequacy of its 
prediction. If  the adequacy of the prediction 
is suboptimum, the algorithm seeks out addi-
tional resources to improve its predictability or 
alters the neural network formulation (layers) 
by itself.

5)	 Model evaluation indicates how well the MM 
precisely and accurately makes predictions giv-
en its purpose (Tedeschi, 2006).

Divergences

The separation between mechanistic vs. empirical 
is not always clear. At times, the difference has been 
contentious among researchers who have used it, im-
properly, to indicate the superiority of mechanistic 
over empirical models. For our purposes, the super-
iority of a model is related to its ability to satisfac-
torily perform (e.g., describe or predict) based on its 
intended purpose and development context (Tedeschi, 



1925Feats and prospects in ruminant modeling

2006). Similarly, model validation is not a valid state-
ment in mathematical modeling because it has often 
been misused to prove the rightness and legitimacy of 
models and promote their acceptance and usability 
(Oreskes et al., 1994; Sterman, 2002). The misuse has 
even led to alternative terminology such as “evaluda-
tion” as an attempt to clarify the issue (Augusiak et 
al., 2014). The term model evaluation or model testing 
is preferred instead (Tedeschi, 2006).

A mechanistic model is usually represented as a 
model made of a nested (i.e., vertical) structure of 
entities (i.e., objects) that are localized at different 
strata (i.e., ranks). This nested structure implies that 
an object of a higher rank depends on the outcome 
of one or more objects from one or more lower or 
nested ranks. For instance, the response of cells (rank 
#1) to a given stimulus (i.e., change of status) will af-
fect the response of an organ (rank #2) that is made 
up of these cells. In this case, cell organelles could be 
assigned to rank #0 and the animal body (a group 
of organs) to rank #3, and so forth. Mechanistic 
models can also be represented by a hierarchical 

representation of phenomena, but in a horizontal 
structure rather than a vertical one, in which the re-
sponse of an object depends on the outcome of a 
previous object within the same rank. For instance, 
in ruminants, compartmental modeling (digesta 
passing through the rumen to the small intestine to 
the large intestine) states that what happens to the 
digesta in the large intestine, for instance, depends 
on what happened to it in the rumen before the large 
intestine can initiate its series of events (e.g., diges-
tion and absorption). Within this context, MM that 
intrinsically rely on time are naturally categorized as 
mechanistic if each time step represents a change of 
status of level variables. Consequently, the nested/
vertical structure relies on the necessary mechan-
isms employed or required by the parts to make the 
whole, whereas the hierarchical/horizontal structure 
conveys the sequential mechanisms that objects need 
to go through in order to reach an end: that is, the 
parts follow a supply chain process to yield the final 
product. Both types of models have intrinsic mech-
anisms that ordain the logic of the calculation. In 

Figure 2. Illustration of pathways for the development of mathematical models using different approaches and paradigms: red is empirical, blue 
is mechanistic, and green is artificial intelligence.
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contrast, the main premise in the relatively new dis-
cipline of systems biology modeling is that the sum 
of the parts is not necessarily equal to the whole. 
In other words, modeling the parts independently 
may not yield the outcome observed with the whole, 
which contrasts with the underlying principle of 
mechanistic modeling. In this case, a holistic view-
point is necessary, and inverse problem modeling 
(IPM) is employed to develop the MM (Engl et al., 
2009; Vargas-Villamil and Tedeschi, 2014; Guzzi et 
al., 2018).

Paradigms

The creation of MM can be accomplished with 
different paradigms. Some paradigms are more 
appropriate than others depending on the purpose 
and nature of the model, which is largely imposed 
by the degree of abstraction (global vs. individual). 
Models with global, or high, abstraction are less 
detailed-oriented and have a macro scale. Models 
with individual, or low, abstraction are more 
detailed-oriented (complex) and have a micro scale. 
Individual-abstraction models usually have a short 
time step and sometimes have multiple time scales, 
further complicating the computational process. 
The four commonly used types of paradigms are 
discrete-events modeling (DEM) (Fishman, 2001; 
Law, 2007), dynamic systems, agent-based (or indi-
vidual-based) modeling (ABM) (Hellweger and 
Bucci, 2009; Crooks and Hailegiorgis, 2014), and 
system dynamics (or feedback-based systems) mod-
eling (SDM) (Ford, 1999; Sterman, 2000; Morecroft, 
2007). The DEM relies heavily on stochasticity to 
create time points (i.e., events) at which variables 
change their value or state rather than change con-
tinuously with time (Fishman, 2001). The ABM 
relies on self-governing, individual agents made of 
properties, behavioral rules, memory, and resources 
that allow each agent to independently make deci-
sions upon the occurrence of an event (Macal and 
North, 2005), usually triggered by a probabilistic 
distribution and randomness generators. The SDM 
is concerned with the behavior of complex systems, 
and it relies on the theory of nonlinear dynam-
ics and feedback processes in which the structure 
of the system (variable associations) gives rise to 
specific behavior over time (Tedeschi et al., 2011). 
Conceptually, SDM and IPM both determine the 
model’s internal structure that is responsible for 
the behavior of the system. From a simplistic view-
point, the goal of SDM and IPM is to build a model 
with the fewest number of variables that obey their 
causal relationships and that can accurately mirror 

the system’s behavior. Early proponents and adop-
ters of systems thinking have used SDM to develop 
DSS in agricultural sciences (Bawden, 1991; Yin 
and Struik, 2010; Tedeschi et al., 2013). The SDM 
is usually employed to solve high-abstraction prob-
lems and dynamic systems find their way with 
low-abstraction problems, but both are mainly for 
continuous-type problems. The DEM and ABM 
have a broader scope of abstraction but require 
discrete-type problems. Hybridization of para-
digms for model development is also possible, and 
common examples include discrete-event dynamic 
modeling (Sandefur, 1991, 1993) and hybrid agent-
based system dynamic modeling (Vincenot et al., 
2011; Wallentin and Neuwirth, 2017; Kim et al., 
2019).

EXTANT MATHEMATICAL MODELS IN 
RUMINANT PRODUCTION

Many MM for ruminants exist, and they differ 
significantly in numerous ways. Figure 3 depicts the 
chronological evolution of influential MM for nu-
trition (Tedeschi et al., 2014a; Tedeschi and Fox, 
2018) and, more specifically, for producing grazing 
ruminants (Tedeschi et al., 2019) and their derivative 
works. Around the world, the most commonly used 
static and deterministic nutrition models are based 
on the National Research Council (NRC, 2000, 
2001, 2007) in the United States, the Agricultural 
Research Council (ARC, 1965) and Agricultural 
and Food Research Council (AFRC, 1993) in 
the United Kingdom, the Institut National de la 
Recherche Agronomique (INRA, 1989) in France, 
the Commonwealth Scientific and Industrial 
Research Organization (CSIRO, 1990, 2007) in 
Australia, the Rostock Feed Evaluation System 
(Jentsch et al., 2003; Chudy, 2006) in Germany, the 
DVE/OEB [DarmVerteerbaar Eiwit (ileal digestible 
protein)/Onbestendig Eiwit Balans (rumen degrad-
able protein balance)] system (Tamminga et al., 1994; 
Van Duinkerken et al., 2011) in the Netherlands, 
and the Nordic Feed Evaluation System [NorFor; 
Volden (2011)] in Scandinavia. Other nutrition 
models containing mechanistic or dynamic elem-
ents include the Cornell Net Carbohydrate and 
Protein System [CNCPS; Fox et al. (2004); Tylutki 
et al. (2008)], Ruminant (Herrero, 1997; Herrero 
et al., 2013), Molly (Baldwin, 1995), and Karoline 
(Danfær et al., 2006a, b). These nutrition models 
have been modified to account for specific produc-
tion concerns of their eras by including novel or 
revised submodels, subsequently leading to many 
derivative models. For instance, the INRA (1989) 
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went through significant overhauls in 2007 (INRA, 
2007) and 2018 (INRA, 2018) with the intent of 
revisiting the calculations of available dietary en-
ergy and protein by including digestive dynamics 
(ruminal degradation and passage rates) and mi-
crobial growth (Sauvant et al., 2014; Sauvant and 
Nozière, 2016). The Ruminant Nutrition System 
[RNS; Tedeschi and Fox (2018)], a CNCPS-based 
model, incorporated many additional submodels 
and revised equations as discussed below. Dumas 
et al. (2008) portrayed a historical perspective of 
how early ruminant nutrition knowledge led scien-
tists to dwell on MM in the search for unanswered 
questions. Some review papers have compared and 
highlighted the modern state of agricultural system 
models (Jones et al., 2017). Others have contrasted 
the different ways nutrition models represent im-
portant elements in predicting the requirements 
and dietary supplies of energy and nutrients to im-
prove ruminant production while providing a more 
contemporary perspective of mathematical mod-
eling in the field of ruminant nutrition (Sørensen, 
1998; Tedeschi et al., 2005; Tedeschi et al., 2014a; 
Tedeschi et al., 2015a) as well as some prerequisites 
to advance the utility of animal systems modeling 
(McNamara et al., 2016a).

Mathematical Nutrition Models

Ruminant production DSS became fully embod-
ied and more evident after the 1960s (Figure 3),  
though many mathematical modeling efforts 
took place prior to 1925 (Dumas et al., 2008). In 
the United States, the first, and ultimately unsuc-
cessful, request to study nutrient requirements 
of food animals, especially protein, was issued in 
1910 by Henry P. Armsby (Christensen, 1932). The 
National Research Council (NRC) underwrote a 
second request in 1917. The resulting Cooperative 
Experiments upon the Protein Requirements for 
Growth of Cattle had several participating experi-
mental stations across the country from 1918 to 
1923 (Christensen, 1932) and culminated with the 
publications of two reports summarizing the experi-
mental results (NRC, 1921, 1924). Several reports 
were released by the then-called National Academy 
of Sciences–National Research Council, includ-
ing the first attempt to establish nutrient require-
ments of beef cattle (NRC, 1945a) and dairy cattle 
(NRC, 1945b). In 1974, a report on the Research 
Needs in Animal Nutrition was released (NRC, 
1974) with the intent to address important issues 
for ruminant nutrition at that time, such as non-
protein nitrogen utilization, better understanding 

of rumen fermentation, nutrient requirements of 
“exotic” breeds, and factors affecting feed intake 
and utilization, among many others. As discussed 
above, computer modeling was not even brought 
up during these early deliberations because experi-
mental data were still being collected and digital 
computing was in its infancy with few practical ap-
plications (Power, 2008).

Today, precision feeding is possibly the most 
relevant application of nutrition models for the 
livestock industry. The primary reason is mid-1990s 
federal and state regulations that required feeding 
programs to be more protective of water and air 
quality by minimizing excess of nutrients in the 
environment. Consequently, precision feeding (a 
technical misnomer—from a modeling perspective 
it should be called accurate feeding) encompasses 
accurate diet balancing and formulation in unique 
production situations to deliver appropriate energy 
and nutrients that allow animals to express their 
genetic production potential. In the process of 
applying precision feeding, the minimization of 
excess nutrients (those that will not be absorbed 
and utilized by the animal) helps us to decrease 
nutrient excretion to the environment, especially 
nitrogen (Cerosaletti et al., 2004) and phosphorus 
(Vasconcelos et al., 2007).

In the United States, two major schools of 
thought have dominated the modeling efforts in 
ruminant nutrition. The first school was based on 
a more biochemical, process-based, fundamen-
tal-type model initiated in the late 1970s, includ-
ing submodels for rumen function (Baldwin et al., 
1977) and postabsorptive metabolism (Baldwin and 
Black, 1979). After a series of integration with ex-
isting United Kingdom models in the early 1980s, 
the first model of lactating dairy cows was de-
veloped in 1984 (France, 2013) and published in 
1987 (Baldwin et al., 1987a; Baldwin et al., 1987b; 
Baldwin et al., 1987c). Molly, a dynamic, mech-
anistic model based on biochemical reactions in 
animal metabolism, became available in the 1990s 
(Baldwin, 1995). Molly’s research and modeling 
efforts inspired new developments and improve-
ments in many places around the world (Nagorcka 
et al., 2000; Hanigan, 2005; Gregorini et al., 2013b; 
McNamara and Shields, 2013; Gregorini et al., 
2015; McNamara et al., 2016b). Concomitantly, the 
modeling efforts of the second school, a more func-
tional-oriented, applied-type modeling approach 
that is based on the NRC recommendations, started 
in the late 1970s at Cornell University (Chalupa 
and Boston, 2003; Sniffen, 2006). Many papers 
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have been published on the specific components of 
this second school’s CNCPS model (Tedeschi and 
Fox, 2018).

National Research Council.  As indicated above, 
the NRC’s feed evaluation and nutrient require-
ments of ruminants started in the mid-1940s with 
the publications of the Recommended Nutrient 
Allowances for Beef Cattle (NRC, 1945a) and 
Recommended Nutrient Allowances for Dairy Cattle 
(NRC, 1945b). As scientific knowledge was ac-
quired, the information contained in subsequent 
publications grew exponentially as did citations 
and number of pages to them (Figure 4). Multiple 
factors may have facilitated the growth in the size 
of the NRC publications. The rate of knowledge 
acquisition and the interest in the enhancement of 
these publications were so intense that the first 6 
revisions happened quickly (on average, less than 
7 yr apart) compared with more recent publication 
rates.

The first revision of  the beef  and dairy NRC 
publications was issued in 1950 (NRC, 1950a; 
1950b). The second revisions of  the dairy (NRC, 
1956) and beef  (NRC, 1958) publications were 
retitled to Nutrient Requirements instead of 
Recommended Nutrient Allowances. At that time, 
establishing protein requirements for cattle was 
critical for increasing production. They were ex-
pressed as concentrations in the diet because 
most recommendations were based on summaries 
of  experiments using feeding trials in which 

performance and digestibilities were routinely 
measured as the concentration of  protein in the 
diet was gradually increased. The third revisions 
occurred in 1963 for beef  (NRC, 1963) and in 
1966 for dairy (NRC, 1966). Subsequent revisions 
for nutrient requirements of  beef  and dairy cattle 
had significant modifications. In the 1960s, metab-
olism trials started to take place, and the research 
results led to the development of  net energy sys-
tems for cattle, which were published in the fourth 
revisions of  the beef  NRC (1970) and dairy NRC 
(1971). In the 1970s, rumen microorganisms re-
ceived increased scrutiny, and by the 1980s, the 
factorial method was used to compute protein re-
quirements. For beef  cattle, the fifth revision was 
released in 1976 (NRC, 1976). The sixth revision, 
released in 1984 (NRC, 1984), contained major 
changes in the energy requirements section and 
included the concepts of  ruminal protein degrad-
ation and bypass.

For dairy cattle, the fifth Nutrient 
Requirements revision was issued in 1978 (NRC, 
1978), with major modifications to the calcula-
tion of  protein requirements based on the work 
of  Swanson (1977), including unavailable feed 
protein and feed protein solubility. The sixth revi-
sion, released in 1989 (NRC, 1989), included the 
concept of  ruminally undegraded protein and 
microbial crude protein as the main sources of 
metabolizable protein.

The seventh revisions of  both the beef  and 
dairy NRC publications saw a drastic increase in 

Figure 4. Indicators of knowledge progression of the National Research Council’s Nutrient Requirements for Beef and Dairy Cattle throughout 
the years.
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the numbers of  pages and citations to the pub-
lications (Figure 4). Major modifications were 
proposed, motivated by the extensive data collec-
tion and analyses of  accumulated experimental 
research enabled by more accessible digital com-
puting. Along with the development of  net energy 
systems for beef  (NRC, 1970, 1976, 1984) and dairy 
(NRC, 1971, 1989) cattle and the mathematical de-
scription of  the rumen fermentation (NRC, 1985, 
1989), equations needed to initiate the prediction 
of  requirements for each primary physiological 
function (maintenance, growth, pregnancy, lacta-
tion, rumen fermentation, intestinal digestion and 
absorption, and metabolism) allowed the develop-
ment of  more complex and mechanistic nutritional 
models. These models were released with the sev-
enth revisions of  the beef  (NRC, 1996, 2000) and 
dairy (NRC, 2001) cattle publications and again 
with the eighth revision for beef  cattle (NASEM, 
2016) after the inclusion of  additional advance-
ments. The latest NRC publications include the 
concept of  degradation kinetics for feed protein, 
to compute readily available, potentially available, 
and unavailable protein fractions. Because of  the 
removal of  so-called safety factors when formu-
lating and balancing rations and the more accurate 
estimates of  energy and nutrient requirements for 
diverse production conditions, these computations 
have informed DSS and reduced the cost per unit 
of  production while reducing the excretion of  ex-
cess nutrients, including N, P, and greenhouse 
gasses, to meet U.S. government regulations.

Cornell Net Carbohydrate and Protein 
System.  The concepts of the CNCPS were initially 
published in 1992 (Fox et al., 1992; Russell et al., 
1992; Sniffen et al., 1992; O’Connor et al., 1993), 
but the engine and calculation logic of the model 
were developed in the 1980s (Fox et al., 1990). At 
that time, a large portion of the requirement sub-
models of the CNCPS was based on the NRC pub-
lications. In 1996 this scenario was reversed, and 
the NRC (1996, 2000) adopted many concepts from 
the CNCPS modeling effort (Tedeschi and Fox, 
2018) that have extended until the seventh revision 
for dairy (NRC, 2001) and the eighth revision for 
beef (NASEM, 2016) cattle. For the supply side, the 
CNCPS model was heavily based on Peter J. Van 
Soest’s ideas about the fractionation of carbohy-
drate (Van Soest, 1967) and protein (Van Soest et 
al., 1981), which themselves rest on many concepts 
of the classification of carbohydrate and protein 
for ruminants dating back to the 1950s with the 

work of Lauri and Irja Paloheimo (Paloheimo and 
Paloheimo, 1949).

The CNCPS possesses the characteristics of 
a deterministic, static, and empirical model, with 
some mechanistic features, whose main objective is 
to function as an applied DSS. The modeling core 
of the CNCPS limits its usability as a fully mech-
anistic, dynamic model, though some continuous 
simulations can be achieved pending the adaptation 
of some elements (Reynoso-Campos et al., 2004; 
Tedeschi et al., 2004). CNCPS-based models uti-
lize detailed fractionation of dietary carbohydrate 
and protein (Sniffen et al., 1992) and horizontal 
mechanistic elements (i.e., supply chain process) to 
compute total digestible nutrients. The mechanistic 
elements include ruminal fermentation of nutrients 
and production of volatile fatty acids and ruminal 
pH (Pitt et al., 1996), two pools of ruminal bacte-
ria (Russell et al., 1992), and intestinal digestibil-
ity for undegraded feed. The animal requirements 
are essentially based on those recommended by the 
NRC (1996, 2000) and NASEM (2016) publications 
for beef cattle and the NRC (2001) publication for 
dairy cattle.

Tedeschi and Fox (2018) meticulously reviewed 
significant modifications and additional submod-
els implemented during the development of the 
RNS compared with the original 1990s CNCPS 
supply model (Fox et al., 2004; Tylutki et al., 2008), 
including 1) the adoption of urea-N used for an-
abolism rather than recycled ruminal N (Eisemann 
and Tedeschi, 2016), 2) a more mechanistic ruminal 
fiber degradation submodel based on GnG1 mod-
els (Vieira et al., 2008a, 2008b), 3) a revised micro-
bial growth submodel to account for deficiency of 
ruminal N and branched-chain amino acids, 4) a 
revised volatile fatty acids and ruminal pH sub-
model, 5) a revised methane yield calculation, 6) a 
lipids and long-chain fatty acids submodel (Moate 
et al., 2004), 7) revised submodels of ruminal pas-
sage rates (Seo et al., 2006; Seo et al., 2007; Seo et 
al., 2009), 8) a revised fecal submodel with correc-
tions proposed by Cannas et al. (2004), and 9) a 
slightly modified calculation logic for metabolizable 
energy from digestible energy and total digestible 
nutrients. Despite the enormous efforts in data col-
lection, development and improvement of method-
ology, and meticulous use of cutting-edge statistical 
analyses, inconsistencies have been identified and 
recommendations have been proposed (Alderman 
et al., 2001a; Alderman et al., 2001b; Alderman et 
al., 2001c). Recently, others (Galyean and Tedeschi, 
2014; Galyean et al., 2016; Tedeschi et al., 2017; 
Tedeschi, 2019) have brought to light additional 
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flaws and limitations in the NRC- and CNCPS-
based models. These include restrictions and prob-
lems associated with the fixed and long-standing 
82% efficiency index of conversion of digestible 
energy to metabolizable energy, the conversion of 
metabolizable energy to net energies for mainten-
ance and growth, the empirical prediction of rumi-
nal bacteria growth, the contribution of microbial 
protein to metabolizable protein, the quantification 
of urea-N recycled in the rumen and truly used by 
the ruminal microbes for anabolism, the efficiency 
of use of metabolizable protein by the ruminant 
animal, the energy requirement for maintenance for 
grazing animals, the inconsistencies in predicting 
protein retained by growing cattle, and the energy 
required for animals under cold-stress conditions, 
among many others. Some of these inconsistencies 
were inherited because of limitations (often by de-
sign) in the methods employed to measure the re-
quired data (Tedeschi, 2019). Solutions to these 
limitations may require procedural changes to the 
methods and considerable quantities of new data.

Tedeschi et al. (2014a) summarized the evolu-
tion of six empirical and five mechanistic nutrition 
models, describing their key characteristics and 
highlighting their similarities and differences. These 
authors also performed a comparative prediction of 
milk production of dairy cows among four nutrition 
models. They developed a database of milk produc-
tion from 37 published studies from six regions of 
the world, totaling 173 data points: 19 for Africa, 
45 for Asia, 16 for Europe, 12 for Latin America, 44 
for North America, and 37 for Oceania. Tedeschi 
et al. (2014a) indicated that these four nutrition 
models could not easily be compared, despite their 
similar assumptions and calculations, because the 
conceptual and structural foundations inherent to 
their intended purposes were too different. They 
concluded that not all nutrition models were suit-
able for predicting milk production of dairy cows 
and that simpler systems might be more resilient 
to variations in studies and production conditions 
around the world. Later, on another assessment of 
model predictability, Tedeschi et al. (2015a) reached 
a similar conclusion that the prediction of metab-
olizable protein required for lactation was uniform 
among nutrition models, but the metabolizable pro-
tein required for growth varied largely.

Integrated Mathematical Models

Whole-farm decision support systems 
(WFDSS) use a multiobjective modeling approach 
in which independent DSS are systematically 

and harmoniously integrated into a highly ag-
gregated platform to simulate specific operations 
within the boundary of a farm, ranch, or basin. 
As shown in Figure 3, several WFDSS have been 
developed for ruminant production, including 
the Agricultural Production Systems Simulator 
(APSIM) (Moore et al., 2007), Australian Dairy 
Grazing Systems (DairyMod) (Johnson et al., 
2008), DairyNZ Whole Farm Model, Discrete 
Event Simulation Environment (DIESE) (Martin-
Clouaire and Clouaire, 2009), EcoMod (Johnson 
et al., 2008), Farm Assessment Tool (FASSET) 
(Berntsen et al., 2003), GRAZE (Loewer, 1998), 
GRAZPLAN (Donnelly et al., 1997; Moore et al., 
1997), Great Plains Framework for Agricultural 
Resource Management (GPFARM) (Andales et al., 
2003), Hurley Pasture Model (HPM) (Thornley, 
1998), Integrated Farm System Model (IFSM) 
(Rotz et al., 1999; Rotz et al., 2005), LINCFARM, 
Pasture Simulation (PaSim) (Graux et al., 2011), 
PROGRASS, Sustainable Grazing Systems (SGS) 
(Johnson et al., 2003), and Whole Farm Model 
(WFM).

The literature of  WFDSS aimed at mode-
ling grazing ruminant animals is vast and slowly 
expanding. The interest in integrating scientific 
knowledge of  animals, plants, and soil to under-
stand the behavior of  animal agricultural systems 
and to better manage and control them has led 
the scientific community to develop individual 
models and integrate them for a common goal: 
maximize productivity (per area or per animal) 
while minimizing the use of  resources as an 
attempt to increase efficiency and profitability. 
In the United States, such DSS were promoted 
starting in the mid-1970s following the many 
NRC publications on nutrient requirements of 
cattle (Loewer, 1998). However, the modeling 
limitations of  complex systems (e.g., WFDSS) 
such as overparameterization, inadequate param-
eter estimation, and simulation instability led to 
well-known chaotic behavior (Woodward, 1998). 
Furthermore, many of  these individual models 
did not “speak the same language”: they had dif-
ferent objectives and purposes, and their mod-
eling approaches and paradigms were distinct 
enough that integrating them required their total 
re-engineering and re-programming. These inher-
ent discrepancies have created inconsistencies and 
delays in the development of  WFDSS for rumi-
nant production, but the field has been moder-
ately active in the last decade. Not until recently 
have some of  these WFDSS been evaluated under 
different production scenarios. Bryant and Snow 
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(2008) reviewed nine pastoral simulation mod-
els (APSIM, EcoMod, FASSET, GRAZPLAN, 
GPFARM, HPM, IFSM, LINCFARM, and 
WFM) and concluded that there was a need to 
include the effect of  pests and diseases on pasture 
production as well as improved animal perfor-
mance predictions, including a more mechanis-
tic model for voluntary feed intake and ruminal 
fermentation processes. Snow et al. (2014) sum-
marized six of  these models (APSIM, AgMod, 
DIESE, FASSET, GRAZPLAN, and IFSM) and 
compared their different approaches to model 
forage mixtures in the paddocks, animal–forage 
interactions, N transfers by the animal in the pad-
docks, management of  the whole farm, and future 
prospects. They also provided ideas and solutions 
for the inherent limitations of  these six models.

Environmental Aspects.  Recently, the emis-
sion of  greenhouse gases (GHG) from ruminant 
production operations (i.e., methane and nitrous 
oxide) became an important issue within the sci-
entific community because of  its perceived con-
tribution to the global warming phenomenon 
(Tedeschi and Fox, 2018, Ch. 3). Currently, the 
net abatement potential of  GHG from ruminant 
production systems can be obtained only through 
WFDSS and life-cycle assessments (Eckard et 
al., 2010). These results have led to the issuing 
of  recommendations for effective reduction in 
the emission of  GHG (Crosson et al., 2011). Del 
Prado et al. (2013) indicated that WFDSS are the 
appropriate scale for mitigating GHG emissions 
because the farm represents the unit at which 
management decisions are made. They analyzed 
different approaches to modeling GHG. Most 
of  the reviews of  WFDSS suitability for GHG 
assessment have discussed the strengths and 
drawbacks of  WFDSS, but they lack model inter-
comparisons under different production systems. 
Tedeschi et al. (2014a) indicated that accurate 
prediction of  milk production by dairy cows by 
mathematical nutrition models is a critical pre-
requisite to further development of  systems that 
can effectively and correctly estimate the contri-
bution of  large ruminants to GHG emissions and 
their true share of  the global warming event. The 
inaccuracies in predicting GHG become even 
more complicated and uncertain when the whole 
farm system is considered. Given the complex 
nature of  WFDSS, Tedeschi et al. (2014b) rec-
ommended that simple nutrition models should 
be used with WFDSS to predict GHG emissions 
for the time being.

Sustainable Production.  The ability to fore-
cast social and economic aspects that prevent the 
broader use of WFDSS in decisions involving sus-
tainability is limited. More integrated approaches 
are needed to combine MM from different fields 
within animal production to develop substantial 
programs of sustainable intensification (Garnett 
and Godfray, 2012; Tedeschi et al., 2015b). Liu et 
al. (2015) suggested that a “holistic approach to 
integrating various components of coupled human 
and natural systems across all dimensions is neces-
sary to address complex interconnections and iden-
tify effective solutions to sustainability challenges.” 
The development of integrated systems and cross-
scale interactions of dynamic systems may facili-
tate social–ecological resilience, with a focus on 
our complex adaptive transformability, learning 
capacity, and ability to innovate (Folke, 2006). The 
SDM paradigm can combine accumulated scientific 
data with knowledge and strategic management to 
improve the animal industry by better assessing 
market opportunities with biological limitations 
and potentials of the agroindustry (Tedeschi et al., 
2011) while accounting for the three pillars of sus-
tainability: environmental, social, and economic 
aspects (Makkar, 2013; Makkar and Ankers, 2014; 
Tedeschi et al., 2015b).

Disease Outbreak.  Another important, and 
more recent, application of integrated and dynamic 
DSS is in the control and management of disease 
outbreak. The development of mathematical epi-
demiological models simulating animal infectious 
diseases and providing solutions to minimize their 
life-threatening menace to animals and humans has 
advanced considerably in the United States (Harvey 
et al., 2007) and Europe (Lantier, 2014) in the last 
decade. Epidemiological DSS help us to understand 
the dynamics of spreading infectious diseases, such 
as foot-and-mouth disease, in susceptible popula-
tions (Webb et al., 2017). Lofgren et al. (2014) used 
real-time modeling and simulation tools to identify 
the spread of the 2014 outbreak of Ebola virus in 
West Africa and provide timely guidance for pol-
icymakers. Perry et al. (2013) believe that though 
the use of powerful MM of the distribution and 
dynamics of livestock disease have been increased 
in the last decade, incomplete understanding of 
the models’ underlying assumptions may result in 
dangerous decisions that might create a false con-
fidence of our understanding of the model predic-
tions. Furthermore, many of these epidemiological 
DSS seek to aid understanding of the spreading 
dynamics of infectious diseases, not necessarily 
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their prevention. The latter could be addressed by 
accounting for animal nutritional deficiencies as 
well as animal management malpractices if  nutri-
tion were incorporated in the DSS for epidemiolog-
ical modeling.

Opportunities

Although integrated systems are required to 
develop more inclusive WFDSS to assist with sus-
tainability, there are several limitations in modeling 
the dynamics of metabolism (McNamara, 2004), 
including lack of detailed and accurate data likely 
because of limitations in experimental focus and 
design (McNamara et al., 2016a). For instance, 
accurate nutrition and growth models could assist 
in the management of feedlot animals if  the mod-
els accurately predicted body composition brought 
about by fat and protein deposition, two of the 
most influential variables in predicting animal 
requirements for growth. However, different geno-
types have different rates of fat and protein depo-
sition, and few MM accounts for them. Since the 
early 1980s, there have been considerable efforts 
in the understanding of growth of ruminants and 
the development of DSS to predict it (Loewer et 
al., 1980; Loewer et al., 1983; Bridges et al., 1986; 
Oltjen et al., 1986; Di Marco and Baldwin, 1989; 
Keele et al., 1992; Williams and Bennett, 1995; 
Kilpatrick and Steen, 1999; Oltjen et al., 2000; Hoch 
and Agabriel, 2004; Tedeschi et al., 2004). Because 
many factors inherent to the genetic makeup of the 
animal affect its composition of gain, the incorpo-
ration of nutrition with a genetic predisposition 
may likely advance the modeling and simulation of 
growth biology. Tedeschi (2015) provided a prelim-
inary modeling approach to combine a nutrition 
and growth model with molecular breeding val-
ues obtained from commercial, single-nucleotide 
polymorphism panels. The author indicated that 
the molecular breeding values for the ribeye area 
were an important piece of genetic information for 
increasing the precision in predicting mature weight 
at a given body composition.

The future of mathematical modeling intrigues 
many researchers. Understanding it guides the in-
vestment of resources, including the time devoted 
to new learning experiences, towards the develop-
ment of new techniques and the exploration of sci-
entific frontiers. As depicted in Figure 3, the rise in 
the development of MM for ruminants occurred in 
1985, and, as expected, a 10-yr delay was observed 
for pasture-related modeling. A collapse in the re-
lease of new MM for ruminant nutrition became 

evident after 2010. It is hard to distinguish when the 
period of great model development and idea-shar-
ing within the modeling community ended and the 
period of development decline and reshuffling of 
ideas within the community, plagued by a lack of 
innovation in nutrition modeling, started.

The field of animal nutrition modeling seems 
to have been stagnant for quite some time. On the 
one hand, this apparent stagnation may indicate that 
the field has reached a certain level of maturity that 
adequately meets the expectations of producers and 
stakeholders, taking away any pressure for further 
development. On the other hand, this apparent stag-
nation might be the reflection of many deficiencies 
acting alone or in combination that are suppressing 
interest by the scientific community and limiting 
resources to further develop the field. Continuous 
and effective communication and knowledge-shar-
ing with non-scientists stakeholders is vital to raising 
their awareness and appreciation for complex mod-
eling. Historically, however, this communication, 
including clear instructions on the acquisition of 
inputs needed to operate complex modeling in prac-
tice (Newman et al., 2000), has not been properly 
executed for many reasons (Cartwright et al., 2016).

There are indications that computer-based 
modeling and simulation are, in general, important 
in the learning and teaching of sciences, as well as 
proposals to include modeling in STEM (science, 
technology, engineering, and mathematics) curric-
ula (Feurzeig and Roberts, 1999). Systems thinking 
has been commended as a required discipline for 
the development of systems-oriented MM (Senge, 
1990; Sherwood, 2002). Systems thinking has to do 
with how we perceive the connection among entities 
(i.e., objects and variables) within a defined bound-
ary; in essence, it is how we see the forest for the 
trees. However, under specific circumstances, the 
shortage or decline of innovative modeling in agri-
culture and life sciences may be partially explained 
by academia’s failure to properly introduce students 
to MM (or systems thinking for that matter) and 
the overloading of faculty, which decreases their 
time for critical thinking about the subject.

Another deficiency leading to this apparent 
stagnation is the lack of novel ideas and concepts to 
further challenge the status quo. Reduced funding 
at the state and federal levels may have also contrib-
uted to the ever-declining rate of scientific produc-
tion in agriculture (Rouquette et al., 2009; Black, 
2018). The lack of learning experiences, slow trans-
fer of knowledge, and the shortage of resources 
may not be exclusive to agriculture, but they are 
certainly restraining its development.
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On the bright side, novel developments may be 
on the horizon with the advancement of innovative 
technologies in data analytics, such as deep learn-
ing. We may be entering an era of growth like the 
one in the 1950s, when the development and appli-
cation of digital computing gave the needed boost 
to mathematical modeling in agriculture. The inte-
gration of mathematical modeling and AI is likely 
to spur an avant-garde technological wave in pre-
dictive analytics, yielding hybrid knowledge- and 
data-driven models.

HYBRID KNOWLEDGE- AND DATA-DRIVEN 
MATHEMATICAL MODELING

The artificial neural network (ANN) technique 
has been around for some decades. It comprises 
many single, connected processors, called nodes, 
that are assembled to computationally mimic 
the perceived function of human brain neurons. 
Thousands of ANN neurons are interconnected 
among themselves and embedded in multiple layers 
of similar or different shapes (i.e., different neuron 
connection layouts). The ANN neurons of the first 
layer usually receive the inputs (e.g., values of inde-
pendent variables), one input per neuron. When 
activated, each neuron sends a signal to another 
neuron in the next layer. This process happens sub-
sequently throughout all layers until the ANN pro-
duces an overall output (e.g., a dependent variable).

The basic building block of an ANN is the 
adaptive linear element that consists of cascaded 
neurons (i.e., layers) that produce binary outputs 
(±1) depending on the pattern of inputs (Widrow 
and Lehr, 1990). Many different forms and 
architectures of the basic ANN technique exist, 
including supervised and unsupervised learning, 
back-propagation, deep learning, and reinforce-
ment learning, among many others (LeCun et al., 
2015; Schmidhuber, 2015). These variants have 
been developed since the 1960s to improve the reli-
ability and stability of imagery and sound recogni-
tion, patterns of quantifiable data over time, and 
prediction of output given different combinatorial 
variables, among many other uses. The mathemat-
ics behind these ANN variants are sophisticated, 
complex, and expanding as novel techniques are 
developed by combining operational research tools 
(e.g., dynamic programming and Markov chain) to 
assist in the credit assignment for problems of dif-
ferent characteristics (Widrow and Lehr, 1990).

Artificial intelligence comprises a group of 
extremely powerful data analytics, including 
machine learning (ML) and deep learning (DL), 

that have benefited from the quick progress of 
ANN since the 1950s. A typical computer program 
uses inputs (i.e., raw data and independent varia-
bles) and hard code (i.e., logic and calculation rules) 
to produce outputs (i.e., dependent variables). In 
contrast, ML and DL use inputs and outputs to 
generate a set of rules (mostly statistical and optimi-
zation methods) that can sufficiently and accurately 
represent the data for detection and classification 
(LeCun et al., 2015; Chollet and Allaire, 2018).

Despite current applications of AI to solve 
problems in many different fields, including 
agriculture, and the tremendous technological 
advancement and refinements of AI, its role and 
utility in mathematical modeling are still unknown. 
Although some studies comparing ML and AI were 
improving the recognition of objects or increasing 
the predictability of models, other studies were 
identifying the limitations and shortcomings of this 
technology (NASEM, 2018). For instance, DL is a 
data-thirsty process that requires large data sets for 
training and evaluation processes (Figure 2) and, 
ideally, large variability within the data sets to cover 
as many combinatorial possibilities among varia-
bles as practicable (Kamilaris and Prenafeta-Boldú, 
2018). Although the bootstrapping technique 
can partially alleviate the data shortage problem 
(Breiman, 1996), it may exclude natural variations 
and correlations among variables. The bootstrap-
ping technique should be carefully used as it cannot 
substitute measured data. The second, and perhaps 
most serious, the drawback with the adoption of AI 
and its variants is the lack of transparency in the 
reasoning behind each prediction. Once an ANN 
layout is developed, almost nothing is known about 
the underlying mechanisms that produce the over-
all output (Knight, 2017). Indeed, DL methods are 
commonly called representation-learning methods 
with low to high degrees of abstraction as the num-
ber of layers increases (LeCun et al., 2015).

Unlike ML, DL has been shown to help 
solve multidimensional problems with intricate 
structures in several fields of science, including 
pharmaceutical, medical, physical, and psycho-
logical challenges (LeCun et al., 2015). The DL 
is a compelling data-crunching technique, but it 
may not be a genuine modeling approach because 
it is a black box whose workings we do not know 
or understand. DL alone incompletely fulfills the 
hierarchical learning steps of Ackoff’s (1989) data–
information–knowledge–wisdom (DIKW; Figure 
5) pyramid that humans have been taught for cen-
turies because it cannot provide insightful know-
ledge that leads to wisdom. The wisdom in the 
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DIKW hierarchy (Figure 5) adds value to know-
ledge through methodical judgments, an important 
characteristic that differentiates humans from ma-
chines (Ackoff, 1989). The question then becomes, 
can we move forward with DL and mechanistic 
mathematical modeling and, if  so, how?

Despite being incipient, the applications of 
ML and DL in agriculture are already a reality 
(Kamilaris and Prenafeta-Boldú, 2018; Liakos et 
al., 2018). However, their integration with MM, 
more specifically mechanistic modeling, is embry-
onic. In cattle production, few studies in animal 
welfare (Dutta et al., 2015), genome-wide pre-
dictions (González-Recio et al., 2014) and breed 
classification (Santoni et al., 2015), genomics’ 
expected progeny difference (Okut et al., 2013), 
anatomical biometrics for animal identification/
recognition (Kumar et al., 2018), animal growth 
(Alonso et al., 2013; Alonso et al., 2015), and 
rumen functioning (Craninx et al., 2008; Dong 
and Zhao, 2014) have used AI technologies alone 
or in combination with other statistical methods. 
Craninx et al. (2008), for instance, compared the 
adequacy of  ML to multilinear regression tech-
niques for predicting ruminal volatile fatty acids 
production, measured by milk fatty acid compos-
ition, using data from 10 studies (n = 138 obser-
vations) of  rumen cannulated dairy cows. They 
reported that no significant differences between 
the techniques based on the mean square error 
of  prediction statistic. Kumar et al. (2018) used 
DL and muzzle biometrics (imagery) for regis-
tration, unique identification, and verification of 
cattle. This is an interesting application of  DL 

ability to process images. The use of  DL with ani-
mals’ physical biometrics, to improve our ability 
to identify desired body characteristics and pro-
ject growth patterns and carcass composition, 
has an enormous potential to identify optimum 
slaughter time of  live cattle (Tedeschi, 2017).

The integration of knowledge- and data-driven 
modeling technologies, yielding hybrid artificial 
MM, seems plausible in the near future, after the 
fever of adopting new technology passes. Some 
fields have already partially addressed the possi-
bility of incorporating ML with other modeling 
techniques. For instance, though it is not entirely 
clear how IPM can benefit from AI techniques, 
Vemuri (2003) might have shed some light on how 
ML can assist with broader usage of IPM. The 
supervised learning architecture is most commonly 
used in DL. However, unsupervised learning and 
reinforcement learning might be the way to com-
bine DL and mechanistic MM because most human 
learning about the world’s complexity is done in an 
unsupervised way, i.e., there is no pre-established 
relationship among variables, we learn them from 
inside-out. LeCun et al. (2015) indicated that AI is 
progressing by combining representation–learning 
methods (e.g., DL) with complex reasoning, per-
haps including mechanistic modeling.

The data analytics field can be daunting to those 
with inadequate understanding. When combined 
with modeling approaches, data analytics may even 
frighten some potential users away from predictive 
analytics. Although there have been localized ef-
forts (Xu and Rhee, 2014), our society must stimu-
late adequate training in AI technologies: their 

Figure 5. The data–information–knowledge–wisdom pyramid based on Ackoff (1989). Data have no value until they are processed into a use-
able form given a context. Information contains data that underwent some kind of organization and systematic analyses. Knowledge represents 
information that has been gained and put into use, generally by a human. Wisdom is the possession of knowledge used to make intelligent connec-
tions between different agents and patterns needed to understand the principles and underlying mechanisms that govern the behavior of the data. 
In the decision risk color scale, red indicates high risk and green indicates the low risk associated with decision-making processes.
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possibilities, drawbacks, and opportunities. There 
is no good in teaching how to properly collect data 
when principles in data analytics, and modeling for 
that matter, are absent.

CONCLUSION

Our inability to pose the right questions about 
the problem that needs to be solved and define its 
boundaries when developing models, as well as our 
intrinsic ambition to develop models to simulate sys-
tems rather than problems, might have limited the 
breadth and depth of mathematical modeling in 
agriculture and perhaps other fields of science. The 
emergence of data-intense computational technolo-
gies that require less systems-thinking about how 
things are interrelated may have helped disperse 
the interest in mechanistic, conceptual mathemat-
ical modeling. It also may have shifted the interest 
of, and attracted adopters to, statistics-oriented, 
data-intense, less-mechanistic modeling approaches 
such as AI. AI has its niche, but it cannot entirely 
replace mechanistic learning and systems-thinking 
approaches. Data-driven and knowledge-driven ap-
proaches must be merged into functional DSS that 
are sustainable and resilient by transferring funda-
mental knowledge while providing effective fore-
casting experiences. The premature adoption of AI 
or its derivations, likely sparked by the excitement 
of using cutting-edge technology, at the expense of 
knowledge-driven approaches may be obfuscating 
unintended consequences, such as the lack of learn-
ing and teaching practices, poor transfer of know-
ledge for training of future leaders and researchers, 
and the shortage of resources for experimental re-
search. The future success of mathematical mode-
ling relies on the development of redesigned models 
that can integrate existing technological advance-
ments in data analytics to take advantage of accu-
mulated scientific knowledge. However, reaching 
the next technological level requires the investment 
of resources in creating novel technologies for data 
gathering and analyses, confronting established as-
sumptions, and rethinking and pioneering concepts 
rather than amending limited technologies or con-
tinuing to collect futile data (Tedeschi et al., 2017; 
Black, 2018).
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