
RESEARCH ARTICLE

Emergence of resistance mutations in simian

immunodeficiency virus (SIV)-infected rhesus

macaques receiving non-suppressive

antiretroviral therapy (ART)

Benjamin Bruno Policicchio1,2☯, Paola Sette1,3☯, Cuiling Xu1,3, George Haret-Richter1,3,

Tammy Dunsmore1,3, Ivona Pandrea1,2,3, Ruy M. Ribeiro4,5, Cristian Apetrei1,2,6*

1 Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America,

2 Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh,

Pennsylvania, United States of America, 3 Pathology, School of Medicine, University of Pittsburgh,

Pittsburgh, Pennsylvania, United States of America, 4 Theoretical Biology and Biophysics Group, Los

Alamos National Laboratory, Los Alamos, New Mexico, United States of America, 5 Laboratorio de
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Abstract

Two SIVmac251-infected rhesus macaques received tenofovir/emtricitabine with raltegra-

vir intensification. Viral rebound occurred during treatment and sequencing of reverse

transcriptase and integrase genes identified multiple resistance mutations. Similar to HIV

infection, antiretroviral-resistance mutations may occur in SIV-infected nonhuman pri-

mates receiving nonsuppressive ART. As ART administration to nonhuman primates is

currently dramatically expanding, fueled by both cure research and the study of HIV-

related comorbidities, viral resistance should be factored in the study design and data

interpretation.

Introduction

Due to the reverse-transcriptase (RT) infidelity [1], HIV replication is associated with rapid

and frequent development of viral mutations, often leading to the emergence of either nonin-

fectious or less fit strains. Antiretroviral (ARV) drug administration selects for specific

mutations allowing the virus to evade the drug(s) [2, 3]. Resistance mutations occur more

frequently in ARV-treated HIV-infected subjects with incomplete viral suppression. These

aspects are largely ignored for SIV-infected nonhuman primates (NHPs) on ART, even though,

until recently, ARV regimens were only partially effective in SIV-infected macaques [4, 5].

SIV variants engineered to harbor known HIV mutations to nucleoside RT inhibitors

(NRTIs) and integrase (INT) inhibitors (INTIs) become resistant to these drugs; indicating

that HIV and SIV share resistance profiles [6, 7]. Furthermore, SIV may develop in vitro
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mutations against INTI [8], and monotherapy with NRTIs and INTIs may result in emergence

of drug-resistant SIV strains in vivo [9–11].

Here, we report the development of resistance mutations in SIV-infected rhesus macaques

(RMs) in a study of INTI intensification following an initial administration of TFV/FTC. The

study of SIV resistance to ARVs is relevant, as ARV administration to SIV-infected NHPs is

currently dramatically expanding, fueled by both cure research and research targeting HIV-

related comorbidities. For these experiments, it is imperative to design appropriate ART regi-

mens ensuring complete and prolonged viral suppression for the assessment of viral reservoirs

and for the control of residual inflammation and immune activation. Preventing the emer-

gence of resistance to ARVs is paramount to such studies.

Materials and methods

Ethics statement

RMs were housed and maintained at the University of Pittsburgh, according to the standards

of the Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC),

and experiments were approved by the University of Pittsburgh Institutional Animal Care and

Use Committee (IACUC) (protocol # 16058287). The animals were cared for according to the

Guide for the Care and Use of Laboratory Animals and the Animal Welfare Act [12]. Efforts

were made to minimize animal suffering: RMs were socially housed together indoors in sus-

pended stainless steel cages, received 12/12 light/dark cycle, were fed twice daily with commer-

cial primate diet, and water was provided ad libitum. A variety of environmental enrichment

strategies were employed, including providing toys to manipulate and playing entertainment

videos in the animal rooms. The animals were observed twice daily for signs of disease or dis-

comfort, any of which were reported to the veterinary staff for evaluation. For sample collec-

tion, animals were euthanized with 10 mg/kg ketamine HCl (Park-Davis, Morris Plains, NJ,

USA).

Animals, infections and treatments

Two Indian-origin RMs (Macaca mulatta) were analyzed in this study. They were intrave-

nously infected with 300 tissue culture doses (TCID50) of SIVmac251 and were closely clini-

cally monitored throughout infection and treatment.

Starting in chronic infection (250 days postinfection), both RMs received tenofovir (TFV)

and emtricitabine (FTC) subcutaneously at 20mg/kg and 40mg/kg once daily, respectively. At

4 weeks, this regimen was intensified with orally-administered raltegravir (RAL) (20mg/kg

bid). RAL was interrupted after 12 weeks.

Sampling and sample processing

Blood was collected from all RMs biweekly, with daily blood sampled upon initiation and

interruption of RAL for one week. Within one hour of blood collection, plasma was harvested

and peripheral blood mononuclear cells (PBMCs) were separated from the blood using lym-

phocyte separation media (LSM, MPBio, Solon, OH).

Plasma viral load quantification

We monitored the degree of viral suppression by measuring plasma viral loads (pVLs) on

all samples collected. pVLs were tested by using qRT-PCR, using the following primers and

probe: SIVmac251F: (5’-GTC TGC GTC ATC TGG TGC ATT C-3’); SIVmac251R:

(5’-CAC TAG GTG TCT CTG CAC TAT CTG TTT TG-3’); SIVmac251Probe:
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(5’-CTT CCT CAG/ZEN/TGT GTT TCA CTT TCT CTT CTG CG/3IABkFQ/-3’)

and the conditions described in [4].

Flow cytometry

Whole blood was stained using a two-step TruCount technique to enumerate the absolute lev-

els of CD4+ T cells in the blood, as previously described [13]. The following fluorescently-

labeled antibodies were using for staining blood (all antibodies from BD Biosciences, San Jose,

CA, USA): CD4 (APC), CD8 (PE-CF594), CD3 (V450), CD45 (PerCP), Ki-67 (PE). Ki-67 was

stained by first fixing and permeabilizing cells prior to staining. Flow cytometry acquisitions

were performed on an LSR-II flow cytometer (BS Biosciences).

Assessment of the occurrence of resistance mutations

The RT and INT genes of the SIVmac variants circulating in plasma samples collected prior to

initiation of ART [0 weeks post-treatment (wpt)], as well as 2, 8, 12 wpt and finally, after cessa-

tion of RAL (20 wpt) were sequenced to determine the presence of resistance mutations. The

following primers were used for PCR and sequencing: RT outer primers RT3 (5’-GTT GCA
TTA AGA GAA ATC TGT GAA AAG ATG G-3’) and RT5 (5’-CCA GGT CTC TCT
TTG TGG CAA CTC-3’) and inner primers RT6 (5’-CCA ATC CAT ACA ACA CCC
CCA C-3’) and RT7 (5’-CAA CTT CCA TTT TGT CGG CCA C-3’); INT outer primers

INTF1 (5’-CAT GGG CAG GTA AAT TCA GAT C-3’) and INTR1 (5’-TAT CCC CTA
TTC CTC CCC TTC-3’), and nested primers INTF2 (5’-TAG GGA CTT GGC AAA TGG
AYT G-3’) and INTR2 (5’-CTG AAT TTG CTT GTT CCC TGA TTC-3’). These partial

gene sequences correspond to specific regions within the RT (566 bp fragment, between N54

and L241) and INT (342 bp fragment, between G59 and S171) known to encompass common

resistance mutations. PCR conditions were as follows: RT outer: initial denaturation of 5 min-

utes at 95˚C; 30 cycles of 1 min at 95˚C, 30 sec at 54˚C, 45 sec at 68˚C; and a final elongation of

5 min at 68˚C. RT inner: initial denaturation of 5 min at 95˚C; 40 cycles of 1 min at 95˚C, 30

sec at 51˚C, 45 sec at 68˚C; and a final elongation of 5 min at 68˚C. INT outer: initial denatur-

ation of 5 min at 95˚C; 30 cycles of 1 min at 95˚C, 30 sec at 50˚C, 30 sec at 68˚C, 30 sec; and

a final elongation of 5 min at 68˚C. INT inner: initial denaturation of 5 min at 95˚C; 40

cycles of 1 min at 95˚C, 30 sec at 51˚C, 30 sec at 68˚C; and a final elongation of 5 min at 68˚C.

PCR products were gel-purified and submitted to conventional sequencing using the nested

primers.

The RT and INT sequences were aligned to the SIVmac251 isolate Mm251 (GenBank:

M19499.1) using Sequencher software and the emergence of resistance mutations was assessed

based on the Stanford HIV Drug Resistance Database (https://hivdb.stanford.edu).

Nucleotide sequence accession numbers

The nucleotide sequences of the RT and INT from the RMs included in these studies were

deposited in the GeneBank (accession numbers: MG686471-MG686486).

Results and discussion

Upon initiation of the TFV/FTC treatment, a ~1.5 log decrease was achieved within the first

two weeks in RM130, followed by a 0.7 log rebound in pVL. In RM127, a ~2.5 log decrease in

pVL occurred, which was maintained through week 4. Following RAL intensification, at 4

weeks, a ~0.5 log decrease in pVLs occurred in RM130, which was maintained for 2 weeks,

but was rapidly followed by a robust pVL rebound throughout the follow-up. Conversely, in
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RM127, RAL intensification further suppressed the virus, with pVLs below the limit of detec-

tion for at least four weeks. However, at week 8, pVLs rebounded by ~3 log and remained high

throughout RAL treatment. Robust pVL rebounds were observed in both animals (~2 log in

RM130 and ~1.5 log in RM127) after RAL discontinuation (Fig 1a).

In both animals, CD4+ T cells recovered slightly after initiation of NRTIs, with a further

recovery following RAL intensification, which was reversed after RAL cessation (Fig 1b),

although there was an initial unexplained spike in the number of CD4+ T cells. The frequency

of CD4+ and CD8+ T cells expressing Ki-67 remained stable during RAL intensification, and

increased after RAL cessation (Fig 1c).

Such patterns of viral replication under ART being suggestive of resistance mutations, we

investigated whether this incompletely suppressive treatment resulted in the emergence of

drug-resistant strains. Serial sequence analyses demonstrated that major and minor mutations

emerged in both genes in both animals (Fig 1a). Thus, sequence analyses showed that, in

RM130, major drug resistance mutations occurred at the same time point (12 wpt) in both

INT (Q148R) and RT (K65R). Conversely, in RM127, only one major mutation was observed

to occur only in the RT at one time point (K65R, 12 wpt), while only one minor mutation was

selected in the INT gene at the same time point (I74L, 12 wpt). In humans, occurrence of these

mutations was reported to be associated with treatment failure: K65R results in a 3.3–3.6-fold

increase in resistance to TFV and Q148R results in a 44-46-fold increase in resistance to RAL

[14].

Multiple minor mutations were observed at several time points (2, 8, and 20 wpt) in RM130

RT, with no minor mutations occurring in RM127 (Fig 1). Interestingly, in spite of cessation

of RAL treatment, VLs decreased in RM127 at 20 wpt. This may be due to an boost of cell-

mediated immune responses against the rebounding resistant virus, as previously reported

[11]. Further, the reversion of the K65R mutation to wild type at 20 wpt may explain the

observed decrease in VL in RM127.

The mutation M184V/I is a known, frequently-selected major mutation against FTC. The

viral strains harboring this mutation have an increased susceptibility to TFV [15, 16]. In our

study, none of the sequences from any of the RMs at any time points yielded this major muta-

tion, in spite of the inclusion of FTC in the regimen leading to incomplete SIV suppression.

The reasons for the lack of selection of M184V/I may be multiple: (i) first, it is possible that

M184V/I never occurred under the combination of TFV and FTC; (ii) second, it is possible

that M184V/I occurred, but, as was previously reported [17], it increased viral susceptibility to

TFV, thus drastically reducing the fraction of the viruses carrying M184V/I in the virus quasis-

pecies, limiting the probability of detection by Sanger sequencing; (iii) M184V/I occurred but,

as was previously reported [18], the fitness of the virus carrying it was drastically altered,

resulting again in a frequency of the mutated strains below the limits of detection by Sanger

sequencing. Analysis through deep sequencing might thus permit the detection of such minor

variants in the quasispecies.

Our analysis documented the accumulation of ART resistance mutations as the cause of

treatment failure in two analyzed RMs. To our knowledge, it is very uncommon to find SIV

resistance to ARV in vivo in RMs on combination therapy, probably due to the fact that in

the past, the duration of treatment was relatively limited, with the treatment given just for the

duration of the in vivo experiments and for a much shorter length of time than in HIV-infected

subjects [19, 20]. Previous studies reporting that SIV may share similar resistance profiles to

HIV and can develop resistance mutations against NRTI or INTI were performed in mono-

therapy [6–11].

Clinical trials conducted during the last two decades were plagued by HIV resistance to

ART [21], but emergence of viral strains carrying resistance mutations to ARVs tends to be
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Fig 1. Administration of nonsuppressive ART to two SIVmac251-infected rhesus macaques resulted in

development of resistance mutations and treatment failure. (a) Plasma viral load levels following treatment with

TFV/FTC followed by intensification with RAL four weeks later. Reverse transcriptase (RT) and integrase (INT)

regions of virus amplified from plasma at select points post-treatment listed in the figure were sequenced to determine

the presence or absence of ART-resistance mutations. In the absence of detected resistance mutations at the selected

time points, those strains are considered wild type. (b) Peripheral CD4+ T cell counts during the follow-up; (c)

Changes in the levels of circulating CD4+ and CD8+ T cell activation during the follow-up, as documented by the

frequency of Ki-67 expression.

https://doi.org/10.1371/journal.pone.0190908.g001
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ignored when designing and performing NHP studies involving treatments. This is particu-

larly true when the experiments include ARVs administered orally, as in such experimental

environments it is very difficult to ensure adherence to treatment in NHPs. The emerging

fields of HIV cure and comorbidities combined with new highly-effective suppressive ART

regimens for macaques have increased the use of the ART-treated macaque model [22]. How-

ever, inappropriate drug regimens or incomplete administrations will not only impact our

ability to study the viral reservoirs or HIV-related comorbidities, but will also increase the like-

lihood of the emergence of SIV resistance to ARVs. The addition of an INTI to the drug regi-

men effectively reduces viremia [22, 23], suggesting the importance of using first-line ART

regimens used in humans for insuring robust and persisted control of the virus. As both cure

and comorbidity research require prolonged viral suppression to ART, resistance to ARVs

need to be considered as a potentially critical limitation factor in the rapidly emerging field of

modeling ART in NHPs, particularly when nonsuppressive ART regimens are used.
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