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ABSTRACT

Objective: For the UK Biobank, standardized phenotype codes are associated with patients who have been hos-

pitalized but are missing for many patients who have been treated exclusively in an outpatient setting. We

describe a method for phenotype recognition that imputes phenotype codes for all UK Biobank participants.

Materials and Methods: POPDx (Population-based Objective Phenotyping by Deep Extrapolation) is a bilinear

machine learning framework for simultaneously estimating the probabilities of 1538 phenotype codes. We

extracted phenotypic and health-related information of 392 246 individuals from the UK Biobank for POPDx

development and evaluation. A total of 12 803 ICD-10 diagnosis codes of the patients were converted to 1538

phecodes as gold standard labels. The POPDx framework was evaluated and compared to other available meth-

ods on automated multiphenotype recognition.

Results: POPDx can predict phenotypes that are rare or even unobserved in training. We demonstrate substan-

tial improvement of automated multiphenotype recognition across 22 disease categories, and its application in

identifying key epidemiological features associated with each phenotype.

Conclusions: POPDx helps provide well-defined cohorts for downstream studies. It is a general-purpose method

that can be applied to other biobanks with diverse but incomplete data.
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BACKGROUND AND SIGNIFICANCE

Artificial intelligence (AI) allows machines to recognize patterns in

electronic patient records (medical notes, laboratory tests, medica-

tions, and diagnosis codes). With increasing amounts of data avail-

able, machine learning algorithms have enabled healthcare

applications, ranging from the detection of pneumonia in frontal

chest X-ray images to the identification of heart failures in clinical

notes.1,2 There have also been growing efforts to predict clinical

events, that is, the automatic prediction of patient phenotypes with

data-driven approaches.3,4 However, most studies have focused on a

small number (<10) of disease diagnoses (eg, assessing the risks for

cardiovascular diseases), and so their general utility is limited.5

Large-scale biobanks with genetic and phenotypic data are a vital

source for studying a wide range of diseases. Cohort studies such as

UK Biobank support broad multiphenotype research with a range of

data including biological samples, physical measures, questionnaires

related to sociodemographic conditions, lifestyle and health-related

factors, and electronic medical records.6–8 Unfortunately, missing

data are common. In the UK Biobank, many individuals who have

been treated exclusively on an outpatient basis have missing pheno-

type labels. To maximize the utility of these data, large-scale patient

phenotyping is necessary but expensive, time-consuming, and diffi-

cult. Currently, only a subset of conditions has available algorithms

for the recognition of unlabeled phenotypes.9–11 These algorithms
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require extensive task-defined preprocessing and ad hoc feature

engineering.7,8,11 A disease recognition system that recognizes multi-

ple phenotypes would be helpful in defining patient cohorts for

downstream studies. Recognizing rare phenotypes with small (or

nonexistent) training data is a particular challenge, even in large bio-

banks.

Rare diseases affect about 3.5%–5.9% of people worldwide.12

While predictive models exist for common diseases using carefully

curated datasets in sufficient volume to allow statistical character-

ization, detecting rare or unseen diseases remains difficult.13,14

There is currently no framework that evaluates individual patients

for rare and common diseases in parallel. Rare diseases can be asso-

ciated with noisier data because of inconsistent diagnostic criteria

and clinician uncertainty.15 The phenotype-driven approaches to

rare diseases therefore typically rely on difficult-to-assemble cohorts.

For rare diseases, patient sample sizes follow a long-tailed class dis-

tribution. Conventional machine-learning methods typically per-

form better on the majority class and exhibit poor predictive

accuracy on rare disease classes. In recent years, semisupervised and

supervised methods have helped improve performance on imbal-

anced datasets, for example, single-cell annotations to classify cells

into cell types and cell states present or absent in the training

data.16,17 However, the techniques they employ have not been

applied to multiphenotype recognition with heterogeneous patient

data. We developed POPDx to associate patients with phenotypes

for both common and rare phenotypes. It combines embedded repre-

sentations of disease features with NLP-based encoding of the text

and network-based embedding of the Human Disease Ontology to

regularize the disease feature representation. We train POPDx with

numerical and categorical data including health records, laboratory

tests, individual demographics, lifestyles, and environmental expo-

sures. We compile clinical profiles of 392 246 patients in UK Bio-

bank6 and perform imbalanced learning with 1538 disease and

health-related labels. Our phenotype recognition algorithm outper-

forms the state-of-the-art predictive models. It recognizes a compre-

hensive set of phenotypes, and makes the following contributions:

1. It manages missingness, noise, and high dimensionality typical in

the electronic health record (EHR) data.

2. It scales to population-scale sets of patients and phenotypes.

3. It leverages the Human Disease Ontology to derive an integrated

model for 1538 phenotypes that can recognize phenotypes even

when there are few or no examples of these phenotypes in the

training set.

MATERIALS AND METHODS

The POPDx framework leverages phecode embeddings that are con-

structed from the Human Disease Ontology covering all the diag-

nostic codes in UK Biobank and the textual descriptions of the

phenotypes18–20 to achieve simultaneous recognition of multipheno-

type that outperforms the state-of-the-art models. We assessed our

embeddings by computing the dissimilarity of phenotypes within

and outside of the disease category. The importance scores of

38 663 features were evaluated to aid the POPDx explainability.

UK Biobank cohort
We extracted phenotypic and health-related information from the

UK Biobank including clinical assessments, lifestyle questionnaires,

physical measurements, and electronic medical records. Among

approximately 500 000 individuals from the UK Biobank dataset,

392 246 individuals have ICD-10 coded diagnosis information. We

binned and applied one-hot encoding to numerical and categorical

features, respectively, into 38 663 binary variables. For 1538 diag-

nostic labels, we map 12 803 International Classification of Diseases

Tenth Revision (ICD-10) codes to 1538 phecodes.18–20 ICD billing

codes are routinely used to identify patient cohorts from large obser-

vational datasets. Cases of multiple ICD codes are often accumu-

lated to define the case or control status of a specific phenotype.20

The use of phecodes is a recognized strategy in clinical research that

combines relevant ICD codes into meaningful phenotypes.21 For the

repeatability of POPDx to be established, we leveraged a beta ver-

sion of map from ICD-10 to phecode introduced by Wu et al18

which was validated based on about 84% coverage of the ICD-10

codes in the UK Biobank database. The entire dataset was split into

training, validation, and test sets. Instead of dividing the data ran-

domly, we split the individuals to allow experimental evaluation of

unseen, rare, and common diseases. We generated a large multilabel

patient dataset to contain phecodes that are present or absent in the

training dataset. Some phecodes occur zero or a few times to simu-

late unseen and rare diseases while others are common.

The joint semantic and structure-based embeddings of

phenotypes
We relied on both the textual information and hierarchical tree-

structure of the phenotypes to compute the joint semantic and

structure-based embeddings of phecodes. The phecode embeddings

depend on embeddings of the ICD-10 codes which comprise them.

We downloaded the hierarchical tree-structured representation of

the ICD-10 data from the online showcase of UK Biobank resources.

We use the hierarchical relation of the ICD-10 codes to construct an

undirected network of phenotypes. There are 19 155 nodes in the

network, corresponding to 19 155 codes. Edges are not weighted.

We perform a shortest-path graph search and then compute the low-

dimensional representation of each diagnostic code by using the sin-

gular value decomposition (SVD).22 We thus have a compressed,

low-dimensional representation of each ICD-10 code based on the

undirected disease network.

The text description of each ICD-10 code is a sentence or a short

term that characterizes the meaning of the code. For example, ICD-

10 code P29 is described as “Cardiovascular disorders originating in

the perinatal period.” We use the pretrained version of the Bio-

BERT23 model which has been widely adopted and very effective for

biomedical text mining tasks, to extract a fixed vector of ICD-10

code based on this text. The BERT23,24 model breaks down the tex-

tual description of each ICD-10 code into tokens. Then, it adds a

special classification token [CLS] at the beginning of each text. The

768-dimensional hidden state embedding of the “[CLS]” token from

the last layer is used as the aggregate representation for the ICD-10

code. Finally, we merge the final 2 representations from NLP-

mapping and network-based embeddings of disease terms. Given the

ICD-10 codes and the vector representation of their textual descrip-

tion, we can calculate the embedding for each phecode by averaging

the representations of the ICD-10 codes to which the phecode corre-

sponds. We included 12 803 ICD-10 codes present in our UK Bio-

bank dataset which map to 1538 phecode labels (Figure 1B, C).

Calculating phenotype dissimilarity
We compute 3 measures of phecode dissimilarity based on the dis-

ease ontology embedding, the embedding of the associated text, and
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both together. We measure the distance between embeddings with

cosine distance. The distances are calculated as in-group (intra-) and

out-group (inter-) distances. The cosine distances between a pheno-

type and those within the same disease category are considered in-

group dissimilarity. The cosine distances between phenotypes of dif-

ferent disease categories are computed as out-group dissimilarity.

Figure 1. POPDx overview. (A) The flowchart of patient phenotyping in UK Biobank includes raw data extraction, data processing, POPDx development, and result

evaluation. After extracted and preprocessed the raw data from UK Biobank, we obtained vectors of features for all patients as shown in the patient data table

and a vector of diagnostic labels of phecodes for each patient. We developed POPDx to encode the patient features that are eventually used to perform phenotype

recognition. The output of POPDx is a matrix of probabilities which represents the likelihoods of all phecodes for all the patients. We evaluated the accuracy of

POPDx by AUROC and AUPRC. (B) The architecture of POPDx is a bilinear model that leverages an embedding matrix of 1538 phecodes. A total number of 38 663

features per patient were input into POPDx. The structure of POPDx includes an input layer, 2 hidden layers each with 150 and 1268 neurons, and a bilinear trans-

formation through an embedding matrix of the phenotypes. The output layer is the probability distribution that this patient is assigned with each phecode label.

The predicted labels are either 0 or 1 based on the decision threshold, illustrated as the vertical dashed line. (C) POPDx embeds the phenotypes into low-dimen-

sional space. The hierarchical tree-structured representation of the phenotypes is utilized. For simplicity, we only show 4 categories of diseases. Even if the phe-

code does not have any patient examples in the training data (686: local infections of skin and subcutaneous tissue), POPDx can leverage its relation to other

phecodes (172.11: melanomas of skin, 165.1: cancer of bronchus and lung) in the embedding space. Figure adapted from “Distribution of TRM Cells,” by BioRen-

der.com (2022). Retrieved from https://app.biorender.com/biorender-templates.
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Simultaneous recognition of multiple-phenotypes
Our algorithm (Figure 1B) leverages the text description and onto-

logical relationships of phenotypes to predict novel phenotypes

(with no training examples) by relating them to clinically and con-

textually similar phenotypes. We use a bilinear model to predict the

disease type for both seen and unseen phenotypes. Let P be an m by

n matrix of input embedding of the patients, where m is the number

of patients and n is the number of features. Let Y be an m by c label

matrix, where c is the total number of phenotypes. Yij ¼1 if patient i

has a diagnostic label of phenotype j, otherwise Yij¼0. c is the total

number of phecodes, and the majority of these phenotypes have

fewer than 1000 examples in the training data. For example, when a

patient is associated with 126 disease labels, the corresponding col-

umns of diseases are ones while the others are all zeros in the label

matrix. Let U be a c by h matrix of the low-dimensional representa-

tions of disease types, where h is 1268, the dimension of phenotype

embedding space. We optimize the following binary cross-entropy

loss:

Xm

i¼1

Xc

j¼1

½Yij log rðPiW1W2UT
j Þ þ ð1� YijÞ logð1� rðPiW1W2UT

j Þ�;

where W1 2 Rn�q and W2 2 Rq�h are the parameters that need to be

estimated, and q is set to be 150 through parameter tuning. POPDx

optimizes the objective function by Adam optimizer. After the opti-

mization, the likelihood of a diagnostic code j presented by a patient

with a feature vector p is estimated as

Lj ¼ SigmoidðpW1W2UT
j Þ;

where Lj is the probability that the phenotype j belongs to this

patient. L¼ fL1, L2, . . ., L1538g is the probability distribution of

diagnosis labels for a patient. We use Pytorch,25 Matplotlib,26 and

Numpy27 for the experiments.

Feature importance analysis
Scoring the importance of individual features provides some inter-

pretability for model predictions. We use DeepLIFT to compute the

importance and relevance of 38 663 features on each of the 1538

phenotypes via a balanced selection of true-positive and true-

negative cases. DeepLift is a backpropagation algorithm that meas-

ures the contribution of individual features on the output of a neural

net for a specific input.28 It computes the differences between the

activation of each neuron and their reference activation, where the

“reference” is computed based on the selected negative samples.

DeepLIFT highlights both positive (supportive) and negative (not

supportive) influences on the prediction. The magnitude of the rele-

vance value corresponds to its importance. We implemented Deep-

LIFT in the framework Captum.29 First, DeepLIFT scores are

computed for each feature and for each patient. Then, for each phe-

notype, the DeepLIFT scores of all the true-positive patient data are

averaged to obtain an importance score for each feature. We create

a vector of feature importance scores for each phenotype.

RESULTS

Overview of POPDx
Figure 1A summarizes POPDx. First, the raw data are downloaded

from UK Biobank. Second, the collected data are transformed into

38 663 patient features and 1538 associated phenotype codes.

Third, we apply POPDx to recognize a diverse set of phenotypes,

yielding a profile of phenotypes for each patient. Because the train-

ing data for many phenotypes are sparse, we introduce the use of

ontological relationships to supplement the raw data. In particular,

POPDx framework leverages disease ontological relationships (as

represented in the Human Disease Ontology) embedded in a low-

dimensional space and then projects the high-dimensional features

of each patient to the same low-dimensional embedding space by a

nonlinear transformation (Figure 1B, C). This has been used in other

settings and has been shown to improve classification for classes

with zero or few examples.16 The framework encodes the patient

data through a bilinear framework with 2 hidden layers of POPDx

architecture and a matrix transformation (Figure 1B). The resulting

outputs denote the probabilities of each phenotype for each patient.

POPDx is written in Python and is made available as an open-source

package. Importantly, with a pretrained model, we can recognize

1538 disease phenotypes given an input patient matrix in a few

minutes on a GPU.

392 246 individuals selected from UK Biobank cohort
In the UK Biobank, there are about 500 000 participants in total.

392 246 of these individuals have ICD-10 codes in their records. For

these patients, we selected 219 604, 86 361, and 86 361 unique

patients for training, validation, and testing respectively. The 3 sets

have similar basic characteristics (Table 1). Fifty-six percent of indi-

viduals are women. The majority of participants are white. Elderly

adults dominate the selected cohort with an average age of 71. We

assessed 1538 phecode labels extracted from 12 803 ICD-10 codes

from the cohort. Diagnostic labels have a long-tail distribution

(Figure 2A): nearly 40% of these phecode labels have fewer than

100 positive patients (Figure 2C). Among 392 246 individuals,

377 612 people have fewer than 30 phenotypes (Figure 2B). We inte-

grate 38 663 category-specific features and summarize them into 20

data subgroups as potential risk factors to aid our analysis (Supple-

mentary Table S1).

Phecode embeddings reflect disease similarity
Since POPDx addresses rare and unobserved diagnostic codes based

on their textual description and the ontological relationship to com-

mon diseases, its performance relies on high-quality embeddings of

phenotypes. For that reason, we verified that diagnostic codes that are

Table 1. Basic characteristics of the selected UK Biobank cohort

Training set Validation set Test set

(N¼ 219 604) (N¼ 86 321) (N¼ 86 321)

Race, n (%)

White 206 394 (93.985) 81 646 (94.584) 81 365 (94.259)

Mixed 1304 (0.594) 478 (0.553) 497 (0.576)

Asian 3489 (1.589) 1394 (1.615) 1364 (1.580)

Black 4459 (2.030) 1468 (1.701) 1621 (1.878)

Chinese 728 (0.332) 159 (0.184) 213 (0.247)

Other 2046 (0.932) 670 (0.776) 747 (0.865)

Unknown 690 (0.314) 293 (0.339) 325 (0.377)

Did not answer 494 (0.225) 213 (0.246) 189 (0.219)

Sex, n (%)

Female 122 353 (55.715) 47 315 (54.813) 47 786 (55.358)

Male 97 251 (44.285) 39 006 (45.187) 38 535 (44.641)

Age, n (%)

<65 years 58 988 (59.447) 16 905 (59.472) 19 680 (59.449)

�65 years 160 616 (74.378) 69 416 (75.381) 66 641 (74.946)

All 219 604 (70.367) 86 321 (72.266) 86 321 (71.413)
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direct neighbors in the graph of Human Disease Ontology are also

close in our low-dimensional embedding space. We compared 3 types

of phenotype similarities: the disease ontology structure-based similar-

ity, the text-based similarity, and joint semantic and structure-based

similarity (Materials and Methods). We assessed the phenotype

embeddings using direct neighborhood and nondirect neighborhood

proximity. We first observe the average cosine distance of direct

neighbors in the disease ontology graph is 0.156 0.04, which is

69.70% higher than that of the text-based embeddings (0.056 0.01),

while the average cosine distance of k-hop neighbors (0.346 0.02) in

the disease ontology graph is 83.02% higher than those of the text-

based embeddings (0.066 0.01) (Figure 3B). The average cosine dis-

tances of joint embeddings in the same disease-type neighborhood

and k-hop neighborhood are 0.056 0.01 and 0.076 0.01 respectively

(Figure 3C). POPDx incorporates the joint semantic and topology-

preserving embeddings under the principle that the unobserved or

unseen phenotypes in training can borrow information from other dis-

orders based on their shared characteristics.

Dimension reduction via t-distributed stochastic neighbor embed-

ding (t-SNE)30 on the joint semantic and structure-based embeddings

reveals distinct disease groups (Figure 3A). The joint embeddings of

phecodes via a biomedical domain-specific pretrained language

model23 and canonical classification of the diagnoses present disjoint

clusters in the low-dimensional embedding space (Figure 3A, Supple-

mentary Figure S4A, B). Whereas diseases of most organ systems

(Figure 3A, B) are independently clustered in latent space (for exam-

ple, Diseases of the ear and mastoid process, Diseases of the eye and

adnexa, Diseases of the circulatory system), some categories of diag-

nostic codes do not form a clear cluster but intermix (eg, External

causes of morbidity and mortality, Injury, poisoning and certain other

consequences of external causes). To quantify the similarity of the

phecodes within and outside of the disease category, we measure the 2

types of dissimilarity of each disease class (Supplementary Figure S2).

The phenotype codes for pregnancy, childbirth, and the puerperium

have the highest similarity with a mean in-group cosine distance of

0.04 6 0.01, in contrast with diseases of the musculoskeletal system

and connective tissue that have the lowest in-group similarity with a

mean in-group cosine distance of (0.086 0.06). The relationships are

visualized in the dendrograms (Supplementary Figure S3) which

present the hierarchical relationship between our phenotypic embed-

dings for different disease categories. For example, phenotypes for the

infectious and parasitic diseases (Supplementary Figure S3A) form cor-

related groupings in the topological space, such as 41.1 and 41.2

(staphylococcus and streptococcus infections).

Improved disease recognition for unseen, rare, and

common phenotypes
To evaluate the performance of POPDx on different phenotypes, we

categorize phenotypes according to the number of instances in the

Figure 2. Diagnostic label statistics. (A) The UK Biobank has a long-tailed distribution of phecode labels. The x-axis is the number of patients per phecode label

and y-axis is the number of labels. Most of the phecode labels have fewer than 1000 patients in the UK Biobank. (B) The patients in UK Biobank are associated

with multiple phenotype labels. The x-axis is the groups of phecode counts and log-scale y-axis is the number of patients. The majority of the patients have fewer

than 30 phecodes labels. (C) The phenotypes are categorized based on the number of training samples. The exploded pie chart shows the relative abundance of

phecodes based on the number of patients in training.
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Figure 3. Phenotype embeddings. (A) The t-SNE plot shows the segregation of phenotypes into different disease categories using the joint structure and semantic

embedding method. The legend associates a color to each phenotype category based on the hierarchical tree-structure of ICD-10. (B) The Euclidean distance of

phecodes to the cluster center of each disease category in the t-SNE plot. (C) The similarity analysis of phenotype groups embedded with 3 different methods is

presented as cosine differences within groups and between groups.

Figure 4. POPDx can recognize phenotypes that are not present in the training set. Bar plots comparing POPDx and other methods in terms of (A) AUROC and (B)

AUPRC on the test set. POPDx presents competitive performance across all the groups of phenotypes.
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training set (Figure 4). Most diagnostic labels (98.6%) have fewer

than 10 000 patient samples (Figure 2C). POPDx (Figure 4, Supple-

mentary Figure S6) yields AUROC (Area Under the Receiver Oper-

ating Characteristic Curve) scores of 0.71 and 0.74 for phenotypes

with 0-10 and 10-100 training samples. The AUROC and AUPRC

(Area Under the Precision-Recall Curve) scores improve with train-

ing size. We also investigated performance for phenotypes with no

patient sample in the training dataset. For these, POPDx achieves an

AUROC score of 0.68 and an AUPRC score of 0.24, which are 74%

and 218% higher than those of the logistic regression baseline. A

sampling ratio of positive to negative patients of 1:10 is consistently

used to report the AUROC and AUPRC of all the experiments.

Across different disease categories of phenotypes, we investigate

how well POPDx outperforms the baseline of logistic regression

based on AUROC and AUPRC scores (Figure 5A, B). We achieve an

AUROC of 0.81 and an AUPRC of 0.37 with 131 phenotypes for

Diseases of the circulatory system (Table 2). We outperform the ran-

dom forest and logistic regression for increases in AUROC and

AUPRC scores by 0.16 and 0.15. We compared POPDx with other

strategies for phenotype embedding (Figure 4, Supplementary Figure

S4). The joint semantic and structure-based embedding method

achieves the best performance compared to NLP-based and

ontology-based frameworks. Interestingly, for phenotypes that have

fewer than 100 patient samples, the NLP-based and ontology-based

frameworks improve the AUROC and AUPRC scores compared to

those of random forest and logistic regression. To assess the ability

of POPDx to work with even larger sets of phenotypes, we applied

patient phenotyping across 12 803 ICD-10 diagnostic codes (almost

8 times more codes than with phecodes) with the same dataset.

POPDx detects diagnostic labels for both rare and common codes

with competitive AUROC scores (Supplementary Figure S5).

Explaining output of POPDx
We obtained feature relevance scores over 1538 phenotypes using

DeepLIFT (Materials and Methods). For individual predictions, we

visualize the features with a polar plot where the radial values repre-

Figure 5. POPDx improves disease recognition compared with logistic regression across 22 disease categories. (A) The AUROC scores for all the disease catego-

ries are substantially improved compared to the logistic regression (LR) baseline. The x-axis is the improvement of AUROC score by POPDx. The y-axis repre-

sents different disease categories. (B) The AUPRC scores for all the disease categories are substantially improved compared to the logistic regression (LR)

baseline. The x-axis is the improvement of AUPRC score by POPDx. The y-axis represents different disease categories.
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sent their contribution scores. Because of the high dimensionality of

patient features in our dataset, all the 38 663 variables are organized

into 20 data subgroups that summarize different categories of UK

Biobank data (Supplementary Table S1). For the phenotype athero-

sclerosis (440.0 Diseases of arteries, arterioles, and capillaries),

Figure 6A shows a polar chart for 3 true-positive patients, who share

a similar pattern of feature importance. In particular, features from

medical history, education and employment status, and physical

measures are important. Figure 6B shows 5 categories of diseases for

which we computed the max value of the importance scores of the

selected data subgroups. Features in the lifestyle subgroup are crit-

ical for the recognition of endocrine, nutritional, and metabolic dis-

eases. Patients’ medical history is important for the recognition of

phenotypes originating in the perinatal period. For the external

causes of morbidity and mortality, the features related to mental

health status are essential.

DISCUSSION

As large databases of patient records become available for research,

associating precise phenotypes with patients becomes critical. Our

method comprehensively and simultaneously scores hundreds to

thousands of phenotypes. Automated phenotyping of a patient, even

for a single disease, faces 2 central challenges: variations in the syn-

tax and semantics of health records (different electronic systems,

lack of standards for interoperability among hospitals, etc.), and

patient-to-patient variability in the clinical manifestations of the dis-

eases.31,32 Most existing computational approaches to phenotype

recognition are built by hand and model a small number of clinical,

pathological, and laboratory attributes of patients.33,34 These meth-

ods do not easily generalize to cover the whole disease ontology.35,36

In addition, no methods using machine learning have been able to

recognize phenotypes for which there are new or no training exam-

ples in the UK Biobank. Our integrated analysis allows us to make

some progress in recognizing such examples.

The UK Biobank cohort is a long-tailed dataset with heavy class

imbalance (Figure 2A). POPDx provides robust and scalable recog-

nition of phenotypes; it performs quite well on common phenotypes

for which there are many examples, and gracefully degrades its per-

formance down to phenotypes with zero examples. The ROC curves

(Supplementary Figure S6) display the trade-off between sensitivity

and specificity and can be helpful when considering the cut-off

threshold to identify the diseased cohorts. The AUPRC (Figure 4) is

prevalence dependent and less optimistic when the phenotype preva-

lence is low. Our framework significantly improved the AUPRC for

unseen and rare phenotypes (<10 cases in training) by 218% and

151% compared to the logistic regression model. If a clinical team

wants to identify patients for a phenotype with very low prevalence,

our model on average doubles the ability to find the positive cases in

the UK Biobank. When high specificity is desired over sensitivity in

a clinical setting, more expert filtering can be used to detect the false

positives. Our model provides a better starting point for the clini-

cians. This is encouraging since POPDx makes rare disease imputa-

tion feasible. Our method takes advantage of the non-linear

correlation structure of the patient features to assign multiple diag-

nostic labels. In contrast, conventional machine-learning methods

such as random forest are unable to recognize phenotypes that are

not present in the training dataset, inevitably limiting their applica-

tions in the recognition of new phenotypes. Table 2 shows that the

mean and standard deviation (SD) of AUROC and AUPRC are simi-

lar for certain disease categories (eg, PERIN and CONGEN). This

might imply that some of the phenotypes in those disease categories

Table 2. AUROC and AUPRC scores of different disease categories

Disease category AUROC AUPRC

(Abbrev.) Mean SD Mean SD

(PERIN) Certain conditions originating in the perinatal period 0.6859 0.1669 0.2606 0.2253

(ID) Certain infectious and parasitic diseases 0.7215 0.1106 0.2793 0.1318

(CONGEN) Congenital malformations, deformations, and chromosomal abnormalities 0.6403 0.1686 0.1953 0.1156

(BLOOD) Diseases of the blood and blood-forming organs and certain disorders involving

the immune mechanism

0.7520 0.0649 0.2851 0.1105

(CV) Diseases of the circulatory system 0.8141 0.0725 0.3695 0.1238

(GI) Diseases of the digestive system 0.7913 0.0887 0.3621 0.1495

(EAR) Diseases of the ear and mastoid process 0.7561 0.1007 0.3179 0.1598

(EYE) Diseases of the eye and adnexa 0.7642 0.0762 0.3132 0.1103

(GU) Diseases of the genitourinary system 0.7902 0.0765 0.3252 0.1177

(MSK) Diseases of the musculoskeletal system and connective tissue 0.7423 0.0982 0.2819 0.1285

(NEURO) Diseases of the nervous system 0.7560 0.0849 0.3232 0.1592

(RESP) Diseases of the respiratory system 0.8113 0.0700 0.3886 0.1434

(SKIN) Diseases of the skin and subcutaneous tissue 0.6995 0.1149 0.2439 0.1392

(ENDO) Endocrine, nutritional, and metabolic diseases 0.7633 0.1135 0.3234 0.1366

External causes of morbidity and mortality 0.7226 0.0979 0.2934 0.1053

Factors influencing health status and contact with health services 0.7591 0.0960 0.3077 0.1427

(EXT) Injury, poisoning, and certain other consequences of external causes 0.7378 0.0657 0.2684 0.0930

(BEH) Mental and behavioral disorders 0.7656 0.0859 0.3175 0.1452

(NEO) Neoplasms 0.7571 0.0826 0.3028 0.1208

(GYN) Pregnancy, childbirth, and the puerperium 0.9282 0.0856 0.6344 0.1879

(LAB) Symptoms, signs and abnormal clinical and laboratory findings, not elsewhere clas-

sified

0.7375 0.0779 0.2609 0.0903

(RHEU) Systemic connective tissue disorders 0.7334 0.0915 0.2730 0.1231
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are close in the embedding space and exist on overlapping patients.

In the future, we can explore other aspects of phenotyping such as

disease comorbidity to explain specific patterns we have observed in

this study.

Our framework incorporates structural knowledge of the disease

ontology by embedding disease relationships in a low-dimensional

space. The recognition of unseen and rare phenotypes is enabled by

explicitly providing information about the network relationships of

these phenotypes to others which are well-represented in our data

set. This phenotype ontology embedding preserves proximity rela-

tions, so two representations of nearby phenotypes are embedded in

similar locations. In addition to the disease ontology, our method

leverages semantic information about phenotypes by including tex-

tual information (embedded by BioBERT23) that provides further

context for the phenotype and its distance from other phenotypes. In

addition to the widely used BioBERT, other BERT models trained

on slightly different biomedical data such as PubMedBERT,37 Bio-

ClinicalBERT,38 and ClinicalBERT38 can also serve our objective

well. The POPDx makes it simple to train with different types of

phenotype embeddings. Either the NLP-based or ontology-based

embedding provides meaningful correlations of the phenotypes

which can be demonstrated by their competitive performance in rec-

ognizing uncommon conditions. The combination of structure-

based representations from the disease ontology with the contextual

embeddings of phenotype text descriptions provides complementary

information. The t-SNE representations (Figure 3A) of the joint

embeddings demonstrate that our method preserves the separations

of major disease types.

In our study, we assume that the collected ICD-10 codes and the

associated phecode membership can be reliable representations of

the underlying health state of the individuals in the UK Biobank

resource. The faithfulness of diagnosis code can be compromised by

several sources of errors. The complexities of the ICD coding system

and a short time available for clinicians to match the patients with

all the ICD-10 codes may cause inappropriate coding and variations

in judgments.39,40 Preferably, POPDx could be validated against a

true “gold standard” manually contributed by the physicians. How-

ever, this is not practicable given the constraints inherent in the data

source.

In clinical research, phenotype labels such as ICD-10 codes and

phecodes enable an initial selection of patient cohorts.41 We antici-

pate that POPDx will allow researchers to assemble patient cohorts

beyond ICD-10-based search strategy, addressing the challenges of

rare diseases and incomprehensive recognition of common pheno-

types. With reliable identification of patients with phenotypes, we can

use the genotype information present in the UK Biobank to seek

genetic associations. We can also use known genetic associations

between phenotypes to add an additional element to our embedding

Figure 6. POPDx explainability across different disease categories. (A) Feature relevance profile for phenotype 440.0. The polar plots summarize feature impor-

tance for 3 true-positive patients with atherosclerosis. The polar plots on the right represent the zoomed-in region as highlighted in red to aid the eye. The legend

associates a line color to a feature subgroup. Radial value in the polar plots is feature importance magnitude from DeepLIFT. All features are analyzed into differ-

ent subgroups to show the consistency of the POPDx interpretability. (B) Additive contributions of individual features (medical history, education and employ-

ment, lifestyle, eye, physical measures, mental health shown here) to the outputs of POPDx. Each color is associated with a disease category which is consistent

with the colors of disease categories in panel C. X-axis specifies the importance value of the corresponding feature subgroups (higher importance to the right). Y-

axis is 5 disease categories sampled based on the median importance values from DeepLIFT. (C) A horizontal bar plot of the number of phecodes in the disease

categories. The colors in (B) and (C) are consistently used to represent different categories of phenotypes.
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to help with phenotype recognition (ie, a third element to our embed-

ding in addition to the text and ontology structure). Our results dem-

onstrate that our model’s DeepLIFT feature relevance scores28 can

offer some insights to explain the assignment of 1538 phenotypes.

Our results with DeepLIFT show promise but they may not provide

sufficiently clear justification for the reasons a feature contributes to a

phenotype. For example, chest pain felt outside physical activity has a

high importance score for the phecode 335.0 (hereditary/degenerative

nervous conditions). While this may be reasonable, the mechanistic

connection between these concepts is not clear.

The algorithm is implemented in Python (https://github.com/

luyang-ai4med/POPDx).

CONCLUSIONS

The POPDx framework was developed for multiphenotype recogni-

tion with heterogeneous patient data in the UK Biobank. Our model

outperforms other existing methods on recognizing a comprehensive

set of nonexistent, rare, and common phenotypes in training. While

we demonstrate our framework on UK Biobank, the model can be

applied to any biobank-related records.
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