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Abstract. ‘Manda Koso’ is a commercial fermented plant 
product (FPP) made from 53 types of fruits and vegetables that 
have been fermented for >3 years and 3 months. We hypoth-
esized that FPP intake improves the luminal environment 
of rats fed a high-fat diet. Thus, the present study examined 
the effects of consumption of 5% FPP diet for 3 weeks on 
colonic luminal parameters in rats fed a 30% beef tallow 
diet. Food intake and body weight gain were unaffected. 
Consumption of the FPP diet did not influence the proportions 
of Bifidobacterium, Lactobacillus, Bacteroides, Prevotella or 
Clostridium in cecal contents. However, the FPP diet caused 
a significant reduction (‑88%) in the level of cecal succinate, 
a putative inflammatory signal (P<0.01), but did not affect the 
levels of n-butyrate, propionate, acetate and lactate. The fecal 
levels of deoxycholate and hyodeoxycholate, which are toxic 
bile acids, were also significantly reduced by the FPP diet 
(P<0.05). The FPP diet significantly increased fecal immu-
noglobulin A and mucins responsible for intestinal immune 
and barrier functions (P<0.05). The results suggest that the 
consumption of FPP is beneficial for the colonic luminal envi-
ronment in rats fed a high-fat diet.

Introduction

‘Manda Koso’ (Manda Fermentation Co., Ltd., Onomichi, 
Japan) is a fermented plant product (FPP) made of naturally 
fermented fruits, plant roots, cereals, marine algae and kokuto, 

a type of non-antifungal cane sugar. The raw ingredients are 
crushed and fermented by Lactobacillus and yeast generated 
spontaneously from raw materials at room temperature for 
3 years and 3 months. The product is a well-known natural 
health food that is consumed in Japan. The FPP is a sweet, 
black-brown, paste-like substance comprising 36.9% water, 
2.4% proteins and amino acids, 3.7% dietary fibers, 55.2% 
carbohydrates and 1.8% ash. The consumption of FPP is 
reported to reduce the fat content without affecting bone 
weight or strength in ovariectomized rats (1). The FPP also 
exhibits free radical scavenging activity (2). The consumption 
of FFP in fish decreases thiobarbituric‑acid reactive substance 
levels in their tissues (3). Additionally, FPP intake has been 
recently suggested to improve feed efficiency and the intes-
tinal histological status in broilers (4).

The consumption of certain dietary fibers, including 
inulin and oligosaccharides, increases the concentrations of 
intestinal immunoglobulin A (IgA) and mucins, which have 
roles in the maintenance of gut barrier function (5,6). Colon 
IgA levels are decreased in patients with ulcerative colitis (7). 
IgA production was recently suggested to be associated with 
a decreased incidence of colon cancer (8). The intestinal 
fermentation of dietary fibers and oligosaccharides is associ-
ated with the enhanced intestinal production of n-butyrate (9). 
Elevated intestinal production of n-butyrate by fermentation is 
associated with decreased risks of colon cancer and ulcerative 
colitis (10,11). Certain fibers and polyphenols are reported 
to reduce fecal secondary bile acids, such as deoxycholate 
and lithocholate; secondary bile acids, which are the highly 
cytotoxic intestinal microbial metabolites of primary bile acid 
that promote colon cancer development (12,13). A high-fat 
diet increases fecal secondary bile acids and the production of 
succinate, a putative pro‑inflammatory signal, and decreases 
n-butyrate production (14-16). These alterations are believed 
to be associated with the increased risks of colon cancer and 
ulcerative colitis.

Due to the favorable effect of FPP intake on the intestinal 
histological status in broilers, as mentioned above (4), we 
hypothesized that FPP intake improves the colonic luminal 
environment of rats fed a high-fat diet. Therefore, the effects 
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of FPP consumption was investigated on intestinal luminal 
variables, including microflora, fermentation, secondary bile 
acids, IgA, mucins and harmful enzymes in rats fed a high-fat 
diet.

Materials and methods

Materials. The FPP was obtained from Manda Fermentation 
Co., Ltd., and the chemical composition is shown in Table Ⅰ.

Animals. Male Sprague-Dawley rats (3-week-old) were 
purchased from Hiroshima Laboratory Animal Centre 
(Hiroshima, Japan) and maintained according to the ‘Guide 
for the Care and Use of Laboratory Animals’ established by 
Hiroshima University; the study protocol was approved by 
the University Ethics Committee. The rats were individually 
housed in an air‑conditioned room at 23‑24˚C with a 12‑h 
light cycle (light, from 08:00 a.m. to 8:00 p.m.). Following 
acclimatization and feeding with a non‑purified commercial 
rodent diet (moderate fat; Oriental Yeast Co., Ltd., Tokyo, 
Japan) for 7 days, 13 rats (mean body weight, 105 g) were 
divided into 2 groups with 6 or 7 rats in each. The composi-
tions of the experimental diets are shown in Table Ⅱ. The 
FPP was added to the diet at 7.9% (w/w) (5% on dry weight 
basis). The levels of dietary minerals and fibers in the FPP 
diet were adjusted by reducing the salt mixture and cellulose, 
respectively. The amounts of dietary fibers in the FPP were 
measured using the AOAC 2001.03 enzyme-gravimetric 
method in combination with high-performance liquid chro-
matography (17). Equal amounts of each experimental diet 
were incorporated daily into food cups at 7:00 p.m. (9, 10, 
12, 14 and 15 g for days 1, 2-4, 5-7, 8-13 and 14-21, respec-
tively) to ensure a standardized food intake. All the diet was 
consumed each day until the diet was served on the following 
day. The weight of the spilled diet was recorded daily and 
accounted for in the calculation of food intake. Feces were 
collected during the last 3 days. At the end of the 21-day 
feeding period, the rats were sacrificed by decapitation 
under diethyl ether anaesthesia. The liver, epididymal and 
perirenal adipose tissues and gastrocnemius muscle were 
excised rapidly and weighed. The cecum was excised, and its 
contents were immediately collected, weighed, and stored at 
‑70˚C until analysis.

Quantification analyses. Bacterial genomic DNA was extracted 
from cecal digesta using an Isofecal DNA extraction kit (Nippon 
Gene, Co., Ltd., Tokyo, Japan) according to the manufacturer's 
instructions. The cecal microflora was analyzed using a terminal 
restriction fragment length polymorphism method as described 
previously (18). Cecal organic acids were measured as described 
previously (19). Fecal acidic sterols were analyzed using an 
internal standard (nor-deoxycholic acid; Steraloids, Wilton, 
NY, USA) by gas chromatography as described previously. 
The total IgA concentration in feces was measured using an 
ELISA quantitation kit (Bethyl Laboratories Inc., Montgomery, 
TX, USA). Mucins were extracted according to the method of 
Bovee-Oudenhoven et al (20) and quantitated using a fluoro-
metric assay (21). The activities of harmful fecal enzymes, such 
as tryptophanase, β-glucuronidase and β-glucosidase, were 
determined as described previously (22).

Table I. Chemical composition of FPP.

Composition per 100 g FPP FPP

Nitrogen x 6.25, g 2.4
Carbohydrates, g 55.2
Glucose, g 18.6
Fructose, g 15.8
Maltose, g 0.23
Isomaltose, g 0.8
Dietary fibers, g 3.7
Ash, g 1.8
K, mg 530
Ca, mg 130
Mg, mg   54
Na, mg   49
P, mg   47
Fe, mg 3.2
Zn, mg 0.6
Water, g 36.9
Ile, mg   77
Leu, mg 142
Lys, mg   43
Met, mg   23
Phe, mg   83
Tyr, mg   44
Thr, mg   63
Try, mg   12
Val, mg   99
His, mg   23
Arg, mg   37
Ala, mg   86
Asp, mg 238
Glu, mg 336
Gly, mg   62
Pro, mg 115
Ser, mg   73
Vitamin B1, mg 0.01
Vitamin B2, mg 0.02
Vitamin B6, mg 0.16
Vitamin K1, µg     2
Folic acid, µg 11.5
Niacin, mg 0.73
Retinol, µg     7
α-Carotene, µg     5
β-Carotene, µg   85
Soy isoflavone, mg 1.3
Total polyphenols, g 0.48
Lactate, g 1.2
Acetate, g 0.3
Tartarate, g 0.01
Succinate, g 0.03
Gluconate, g 0.72

FPP, fermented plant product.
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Statistical analysis. Data are expressed as mean ± standard error. 
Statistical analysis was performed by Student's t‑test. P<0.05 
was considered to indicate a statistically significant difference.

Results

Characteristics. Final body weight, total food intake, weights 
of tissues and fecal weight did not differ significantly between 
the groups (Table Ⅲ). The data of cecal microflora and 
organic acids are shown in Table Ⅳ. The proportions of the 
cecal microflora examined were unaffected. The cecal level of 
succinate was markedly reduced in the FPP diet group (-88%, 
P<0.01), while the levels of other organic acids did not differ 
significantly between groups.

The fecal contents of deoxycholate and hyodeoxycholate acid 
were significantly lower in the FPP diet group (‑50 and ‑56%, 
respectively, P<0.05, Table Ⅴ), while those of cholate and litho-
cholate were not significantly different. Cecal levels of IgA and 
mucins were 1.9‑ and 3.2‑fold significantly greater in the FPP 
diet group (+91 and +219%, respectively, P<0.05). Furthermore, 
the activity of fecal β-glucuronidase tended to be lower in the 

FPP diet group (-23%, P=0.073). The activities of the other 
enzymes did not differ significantly between the groups.

Discussion

Notably, the cecal succinate level was markedly reduced by 
the FPP diet in the present study, whereas other organic acids 

Table II. Composition of the experimental diets.

Composition g/100 g Control FPP

Beef tallow 30.0 30.0
Casein (net protein 17.4 g/100 g diet) 20.0 19.8
L-cystine   0.3   0.3
Vitamin mixture   1.0   1.0
Salt mixture   3.5   3.4
Cellulose   5.0   4.7
Sucrose 20.0 20.0
Corn starch 20.2 15.8
FPP (net content 5.0 g/100 g diet)   0.0   7.9

FPP, fermented plant product.

Table III. Body, tissue, cecal content and fecal weights.

Characteristics Control FPP

Final body weight, g 253±4 242±5
Total food intake, g 275±2 271±5
Liver weight, g 11.2±0.3 11.1±0.4
Epididymal adipose 3.20±0.23 3.19±0.19
tissue weight, g
Perirenal adipose 3.85±0.41 4.06±0.31
tissue weight, g
Gastrocnemius 2.86±0.11 2.59±0.07
muscle weight, g
Weight of cecum 1.67±0.08 1.47±0.11
contents, g
Fecal dry weight, g/3 days 3.44±0.15 3.35±0.32

Mean ± standard error (n=6-7). FPP, fermented plant product.

Table IV. Effect of consumption of fermented plant product 
(FPP) diet on cecal mucroflora and organic acids.

Characteristics Control FPP Change, %

Cecal microflora, %   
  Bifidobacterium 0.74±0.26 0.40±0.19 
  Lactobacillales 16.36±6.18 10.76±3.42 
  Bacteroides 21.60±4.51 22.76±4.14 
  Prevotella 1.99±0.78 3.67±1.00 
  Clostridium 0.52±0.52 0.29±0.21 
  cluster IV
  Clostridium 12.50±1.69 13.90±1.28 
  subcluster XIVa
  Clostridium 12.39±1.15 13.60±1.80 
  cluster XI
  Clostridium 4.70±0.91 3.77±1.24 
  cluster XVIII
  Others 29.19±2.62 30.85±2.69 
Cecal organic acids,
µmol/total contents
  Succinate 9.3±2.9 1.1±0.3a -88
  Lactate 1.3±0.3 1.6±0.2 +23
  Acetate 42.7±3.3 44.6±6.2   +4
  Propionate 15.5±1.3 13.0±1.5 -16
  n-Butyrate 15.9±2.0 10.7±2.1 -33
  Total organic acids 84.7±6.8 70.2±9.7 -17

Mean ± standard error (n=6-7). aP<0.05 by Student's t‑test.

Table V. Effect of dietary FPP on fecal parameters in rats fed 
a high-fat diet.

Characteristics, 
amount/3 days Control FPP Change, %

Lithocholate, µmol 1.00±0.13 0.92±0.32
Deoxycholate, µmol 1.87±0.23 0.93±0.26a   -50
Hyodeoxycholate, µmol 5.78±0.83 2.52±0.95a   -56
Cholate, µmol 0.54±0.20 0.18±0.09
IgA, mg 0.89±0.05 1.70±0.31a   +91
Mucins, mg 1.18±0.12 3.76±0.38a +219
Tryptophanase activity, U 0.27±0.06 0.90±0.56
β-glucuronidase activity, U 3.28±0.27 2.51±0.33
β-glucosidase activity, U 0.66±0.15 1.18±0.31

Mean ± standard error (n=6-7). aP<0.05 by Student's t‑test (P<0.05).
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were unaffected. To the best of our knowledge, this is the first 
evidence of the marked reduction of colonic succinate by 
dietary factor(s). A high-fat diet was recently found to increase 
colonic succinate production and decrease butyrate produc-
tion together with low‑grade inflammation (16). Succinate is 
considered an inflammatory and hypoxic signal; it stabilizes 
the transcription factor hypoxia-inducible factor-1α in specific 
tumors and activated macrophages, and stimulates dendritic 
cells via succinate receptor GPR91 (23). Succinate, produced 
abundantly by members of the family Bacteroidaceae, 
particularly B. caccae, is considered the ulcerogenic agent 
in dextran sulfate sodium colitis (24). Succinic acid has been 
reported to reduce the proliferation rate of the epithelial cells 
in the colon, as well as the crypt size (25). Succinic acid has 
been shown to inhibit the motility of the large intestine and to 
stimulate water secretion from the small intestine (25). Thus, 
the present findings raise the possibility that the suppression 
in cecal succinate by FPP intake is beneficial for the colon. 
However, further study is required to confirm this.

Another important finding was the marked reduction 
in fecal deoxycholate and hyodeoxycholate (cytotoxic bile 
acids) by FPP intake. Deoxycholate is considered cytotoxic 
to normal colonic crypt cells, resulting in increased compen-
satory proliferation of colonic epithelium cells, which is 
associated with an increased risk of colon cancer (26,27). 
Meanwhile, deoxycholate causes DNA damage and oxida-
tive stress, and has pro‑inflammatory activity by activating 
nuclear factor-κB (28). Our previous study found that a 0.5% 
dietary supplementation with certain polyphenols, particu-
larly curcumin, significantly reduces these secondary bile 
acids in rats fed a high-fat diet (13). As the FPP diet used 
in the present study contains a small amount of polyphenols 
(Table Ⅰ), it is required to determine whether the effects of the 
FPP diet are due to the polyphenols in the diet.

The FPP diet significantly increased fecal IgA and mucins, 
which are responsible for intestinal immune and barrier 
functions (5,6). Certain dietary fibers and oligosaccharides 
are reported to increase IgA and mucin levels (5,6). The FPP 
contains small amounts of dietary fibers (Table Ⅰ). Therefore, it 
is required to determine whether these ingredients are respon-
sible for the observed effects. As certain harmful enzymes 
are considered to be associated with colon cancer (15,29), the 
activities of such fecal enzymes were examined further. The 
FPP diet tended to reduce the activity of fecal β-glucuronidase, 
although not significantly. Thus, collectively, the FPP diet 
appeared to be favorable for the luminal environment of rats 
fed a high-fat diet.

In conclusion, the present study provides evidence that the 
FPP, Manda Koso, is a beneficial agent for the colonic luminal 
environment in rats fed a high-fat diet by reducing succinate 
and deoxycholate levels, and increasing IgA and mucins levels. 
However, further study is required to elucidate the underlying 
mechanisms by which the FPP exerts such effects and to iden-
tify the active compounds responsible.
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