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Background: The prediction of the persistent pure ground-glass nodule (pGGN) growth is challenging 
and limited by subjective assessment and variation across radiologists. A chest computed tomography (CT) 
image-based deep learning classification model (DLCM) may provide a more accurate growth prediction.
Methods: This retrospective study enrolled consecutive patients with pGGNs from January 2010 to 
December 2020 from two independent medical institutions. Four DLCM algorithms were built to predict 
the growth of pGGNs, which were extracted from the nodule areas of chest CT images annotated by two 
radiologists. All nodules were assigned to either the study, the inner validation, or the external validation 
cohort. Accuracy, sensitivity, specificity, receiver operating characteristic (ROC) curves, and areas under the 
ROC curve (AUROCs) were analyzed to evaluate our models.
Results: A total of 286 patients were included, with 419 pGGN. In total, 197 (68.9%) of the patients 
were female and the average age was 59.5±12.0 years. The number of pGGN assigned to the study, the 
inner validation, and the external validation cohort were 193, 130, and 96, respectively. The follow-up time 
of stable pGGNs for the primary and external validation cohorts were 3.66 (range, 2.01–10.08) and 4.63 
(range, 2.00–9.91) years, respectively. Growth of the pGGN occurred in 166 nodules [83 (43%), 39 (30%), 
and 44 (45%) in the study, inner and external validation cohorts respectively]. The best-performing DLCM 
algorithm was DenseNet_DR, which achieved AUROCs of 0.79 [95% confidence interval (CI): 0.70, 0.86] 
in predicting pGGN growth in the inner validation cohort and 0.70 (95% CI: 0.60, 0.79) in the external 
validation cohort.
Conclusions: DLCM algorithms that use chest CT images can help predict the growth of pGGNs.
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Introduction

Lung cancer is the leading cause of cancer mortality 
worldwide (1). Extensive use of high-resolution computed 
tomography (CT) has resulted in frequent identification 
of ground-glass nodules (GGNs) (2,3). Most persistent 
pure GGNs (pGGNs) represent early-stage lung cancers; 
in particular, persistent lung GGNs may denote atypical 
adenomatous hyperplasia, adenocarcinoma in situ (AIS), 
minimally invasive adenocarcinoma (MIA), and invasive 
adenocarcinoma (IAC) (4,5). However, pGGNs include 
some rare cases of metastasis of gastric, colorectal, 
pancreatic, breast, and cholangiocarcinoma (6-10). 
Therefore, the careful follow-up and the early detection of 
the growth of tumor is important.

Although pGGNs have similar characteristics on CT 
imaging, their biological characteristics vary (11,12). 
Most pGGNs remain stable for long periods, whereas 
others are more invasive and prone to rapid growth 
(4,5,13). Therefore, most clinicians adopt a wait-and-see 
strategy incorporating regular follow-up. Follow-up has a 
crucial role in clinical decision-making and determining 
whether surgery is indicated and is therefore increasingly 
recommended by thoracic and pulmonary specialists. As 
with most guidelines, the Fleischner Society Guidelines 
for the management of pGGNs recommend follow-up 
intervals ranging from 3 to 6 months initially depending 
on the nodule characteristics, then every 2 years for a total 
of 5 years, if stable, and surgery if the pGGN or the solid 

component grows (14). The increased number of detected 
pGGNs requiring the long-term follow-up results several 
problems, such as the economic burden, overuse of medical 
resources, and overexposure to radiation. Therefore, it is 
necessary and reasonable to extend the follow-up intervals 
once stable pGGNs have been identified.

Most previous studies have used quantitative CT 
imaging to determine the size, density, and volume of 
GGNs and have estimated their invasiveness based on these 
characteristics (4,5). However, both the assessment of these 
characteristics and forecasting of pGGN growth have been 
inaccurate (3,13).

Artificial  intell igence in the form of automatic 
quantitative chest CT imaging has recently been shown to 
reliably diagnose pulmonary nodules and accurately predict 
lymph node metastasis (15-18). Artificial intelligence 
has proven so versatile and efficient in developing deep 
learning (DL) algorithms from otherwise uninterpretable 
neural network systems and medical imaging findings that 
it has been dubbed “Black Box” medicine. The present 
study aimed to construct and validate a DL classification 
model (DLCM) based on chest CT imaging findings for 
predicting the growth of pGGNs. We present this article in 
accordance with the TRIPOD reporting checklist (available 
at https://tlcr.amegroups.com/article/view/10.21037/tlcr-
23-666/rc).

Methods

Study design and patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This two-
institution (Institution 1: Beijing Chaoyang Hospital; 
Institution 2: People’s Liberation Army General Hospital), 
retrospective cohort study was approved by the institutional 
review board of Beijing Chaoyang Hospital (IRB No. 2021-
ke-135), and written informed consent for this retrospective 
analysis was waived. The People’s Liberation Army General 
Hospital was informed and agreed with this study. None of 
the patients who participated in this study were previously 
reported. We initially collected consecutive patients 
with at least two chest-CT scans for pGGNs performed 
at Institution 1 or Institution 2 from January 2010 to 
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December 2020.
The inclusion criteria were as follows: (I) patients with 

persistent stable pGGNs and a follow-up of ≥2 years and 
(II) growing GGNs, no limitation of the follow-up duration. 
The exclusion criteria were as follows: (I) a confirmed solid 
nodule on initial chest CT image; (II) transient pGGNs; (III) 
disappeared pGGNs and suspicion of interstitial lung disease, 
fibrotic changes, or bronchiolitis; and (IV) cancer history. A 
flowchart of participant enrollment is shown in Figure 1.

pGGN identification, growth analysis, follow-up time 
calculation, and region of interest (ROI) placement

pGGNs were identified by one reviewer at two institutions 
(X.T. and Y.T., 4/12 years of experience of chest images) 

who was not involved in image interpretation. Consecutive 
institutional retrospective searches of imaging databases 
were performed on or before May 31, 2021.

To assess intraobserver reproducibility, two radiologists 
reviewed all patients’ CT images (initial and last) twice 
in 1 week [Reader 1 (Tang Y, 12 years of experience of 
chest images) and Reader 2 (Jin X, 12 years of experience 
chest images)] and determined whether each pGGN had 
grown or was stable. Interobserver (Reader 1 vs. Reader 2) 
reproducibility concerning the status of all pGGNs was also 
evaluated. The nodules were defined as having grown only 
when both readers had reached this conclusion twice. Inter- 
and intraclass correlation coefficients were used to evaluate 
the agreement between judging that growth had occurred 
by Reader 1 (twice) and by Reader 2 (twice).

Patients who had at least one chest CT with pGGNs between 
January 2010 and December 2020  

(n=8,719)

Patients with at least twice chest CT follow-up for pGGNs 
between January 2010 and December 2020 (n=2,913)

Patients pGGNs with stable pGGNs with follow-up ≥2 years or 
persistent pGGNs that had grown (n=1,854)

Exclusion (n=1,568)
• Confirmed solid nodule on initial chest CT 

image (n=722)
• Transient pGGNs (n=79)
• Diffuse pGGNs and suspicion of interstitial 

lung disease, fibrotic changes, or 
bronchiolitis (n=293)

• Cancer history (n=474)

pGGNs n=419, growth pGGN n=166, stable pGGN n=253  
(patients n=286)

Primary cohort (n=193)
Growth pGGN, n=83
Stable pGGN, n=110

Inner validation cohort (n=130)
Growth pGGN, n=39
Stable pGGN, n=91

External validation group (n=96)
Growth pGGN, n=44
Stable pGGN, n=52

Figure 1 Cohort selection flowchart. Flow diagram shows the method for persistent pGGN patient inclusion and exclusion. CT, computed 
tomography; pGGN, pure ground-glass nodule.
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The follow-up time for stable pGGNs was calculated 
as the interval between the initial and last CT scan. For 
pGGNs that had grown, the follow-up time was defined as 
the interval between the initial CT scan and the CT scan in 
which growth was identified. ROIs the whole pGGNs of all 
layers, from pGGNs were first segmented by a radiologist 
(X.T.) by ITK-SNAP software (version 3.6; Penn Image 
Computing and Science Laboratory at the University of 
Pennsylvania, Philadelphia, PA, USA; http://www.itksnap.
org/pmwiki/pmwiki.php) and later modified by another 
radiologist (X.J.).

Dataset establishment

All patients in Institution 1 were randomly allocated to the 
study cohort or inner validation cohorts at a ratio of 4:1, 
keeping the ratio of stable and growth pGGN data in these 
cohorts at 1:1. Patients in Institution 2 were all assigned to 
an independent external validation cohort. In patients who 
had multiple pGGNs, 40×40 pixel areas of each nodule on 
each lung CT were extracted separately. Subgroups of patients 
with pGGNs that had grown in the inner validation cohort 
were formed based on the duration of follow-up [0–1 year  
follow-up (D0–1), 1–2 years follow-up (D1–2), and more 
than 2 years follow-up (D2+)].

Model development, evaluation, and interpretability

We implemented four DLCMs, including Inceptionv3 (19), 
ResNet18 (20), DenseNet121 (21), and DenseNet_DR. All 
DLCMs were trained to predict whether pGGNs would 
grow (22).

We quantified all the DLCM predictive performances 

by using the receiver operating characteristic (ROC) curve 
and the area under the ROC curve (AUROC) in the inner 
validation and external validation cohorts. Moreover, we 
calculated each model’s AUROC for the following subgroups 
in the inner validation cohort: D0–1, D1–2, and D2+.

In the testing phase, the DLCM predicted all images 
of each pGGN and calculated the average predicted 
probability to obtain the prediction of the growth state of 
nodules, as shown in Figure 2. By comparing the predictive 
performance of all models, the model with the best 
predictive performance was established as the final model in 
this study. In-depth information about the selected model 
development is provided in the supplementary material.

Score-CAM (23) was used to interpret the DLCM. Score-
CAM incorporated an increase in confidence in the design 
of weight for each activation to eliminate the dependence on 
gradients. The specific process is described in Figure 3.

Statistical analysis

Statistical analyses were conducted with R Studio (version 
1.3.959; R Project for Statistical Computing, Vienna, 
Austria; https://www.r-project.org) and Python (version 
3.6; Bioinformatics Lab at University of Ljubljana, 
Ljubljana, Slovenia; https://www.python.org/downloads/
release/python-360/), with P<0.05 considered statistically 
significant. The data are expressed as the means ± standard 
deviations (SDs) for continuous variables if normally 
distributed and percentages for categorical variables. 
Clinical data were analyzed using the Pearson χ2 test 
for categorical data and the Wilcoxon rank sum test for 
continuous data. Kappa consistency analysis was used for 
intra- and intergroup consistency analysis.

CT images in one nodule The probability of each CT image

DenseNet_DR
1

1 n

i
i
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Figure 2 Overview of DLCM predicting pulmonary nodules. CT, computed tomography; DLCM, deep learning classification model.
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Results

Clinical characteristics

We enrolled 286 eligible patients, who had 419 pGGNs, 
including 253 persistent stable pGGNs and 166 with 
pGGNs that had grown (Institution 1, primary cohort, 206 
patients, 323 pGGNs; Institution 2, external validation 
cohort, 80 patients, 96 pGGNs). The primary cohort 
comprised 58 males and 148 females with a mean age of 
59.53 (range, 18–93) years, and the external validation 
cohort comprised 31 males and 49 females with a mean age 
of 59.26 (range, 33–83) years.

pGGN growth analysis, follow-up time calculation, and 
ROI placement

Dataset establishment
Among all 419 pGGNs, 168 were classified as growth 
pGGNs by Reader 1 and 166 by Reader 2; 251 were 
classified as stable pGGNs by Reader 1 and 253 by Reader 2.  
In total, two cases with different growth statuses were 
finally identified as stable. Satisfactory interobserver 
and intraobserver reproducibility regarding whether 
growth had occurred was achieved, with the intraobserver 
and interobserver agreement of 0.96, 0.97, and 0.99, 
respectively. The follow-up times of stable pGGNs for the 
primary and external validation cohorts were 3.66 (range, 
2.01–10.08) and 4.63 (range, 2.00–9.91) years, respectively.

The maximum diameter, volume, and density of all 

pGGNs were calculated by the mask placement of the 
ROI on ITK-SNAP software. The growth pGGN with 
bigger diameter (8.23 vs. 13.06 mm, P<0.001), larger size 
(208.52 vs. 830.55 mm3, P<0.001) had a higher CT value 
[−672.59 vs. −615.89 Hounsfield unit (HU), P<0.001] than 
the stable pGGN group, similar as previous study (24). 
Patient characteristics in the two institutions and pGGNs 
in the study cohort, inner validation cohort, and external 
validation cohorts are listed respectively in Tables 1,2.

Model establishment and prediction in the internal 
validation cohort
Four models were used to predict the growth of pulmonary 
nodules: Inceptionv3 (19), ResNet18 (20), DenseNet121 (21),  
and DenseNet_DR. The performance of the four feature 
extractors was as follows: the AUROC was 0.54 for 
Inceptionv3, 0.63 for ResNet18, 0.76 for DenseNet121, 
and 0.79 for DenseNet_DR (Figure 4A). The performance 
of DenseNet_DR was significantly better than that of the 
other model and established as the predicting model in our 
study. The detailed number of nodules images used in the 
training and validation set is provided in the supplementary 
material.

Prediction in subgroups, in external validation cohort, and 
interpretability of model prediction decision

The use of DenseNet_DR for predicting the growth 
of pulmonary nodules was more accurate in the D0–1 

DenseNet_DR

DenseNet_DR

Feature maps

CT image

Upsampling

Normalizing

Linear combination 

Point-wise manipulation

Heat map

Output

Feature weights

f1 f2 f3 fn......

Figure 3 Overview of the interpretable analysis of Score-CAM algorithm. Feature maps were first extracted by DenseNet_DR and worked 
as masks on the original CT image. The result could be generated by a linear combination of feature weights and feature maps. CT, 
computed tomography.
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Table 1 The patients-based clinicopathologic characteristics

Characteristics Institution 1 (n=206) Institution 2 (n=80) Total (n=286) P value

Age (years) 59.5±12.7 59.3±10.0 59.5±12.0 0.77

Gender 0.08

Male 58 (28.2) 31 (38.8) 89 (31.1)

Female 148 (71.8) 49 (61.3) 197 (68.9)

Surgery <0.01

No surgery 180 (87.4) 37 (46.3) 217 (75.9)

Surgery 26 (12.6) 43 (53.8) 69 (24.1)

Multiple/solitary nodules 0.01

Multiple nodule 48 (23.3) 8 (10.0) 56 (19.6)

Solitary nodule 158 (76.7) 72 (90.0) 230 (80.4)

Nodule number 1.6±1.6 1.2±0.7 1.5±1.4 0.01

CT follow-up times, year 4.2±2.4 3.9±1.8 4.1±2.3 0.53

Values are expressed as n (%) or mean ± SD. Institution 1: Beijing Chaoyang Hospital; Institution 2: People’s Liberation Army General 
Hospital. CT, computed tomography; SD, standard deviation.

Table 2 pGGN-based clinicopathologic characteristics

Characteristics Study cohort (n=193) Inner validation cohort (n=130) External validation cohort (n=96) Total (n=419) P value

Follow-up (years)

Stable pGGNs 3.59±1.68, n=110 3.84±1.41, n=91 4.66±2.25, n=52 3.90±1.76, n=253 <0.01

Growth pGGNs 2.80±1.98, n=83 2.19±2.40, n=39 3.46±2.29, n=44 2.83±2.20, n=166 0.03

Diameter (mm) 9.4±4.1 10.7±15.0 10.8±3.9 10.1±9.0 <0.01

Volume (mm3) 452.0±1,165.3 417.2±637.4 511.9±793.4 511.9±793.4 <0.01

CT value (HU) −654.3±107.6 −654.4±109.7 −635.9±108.3 −635.9±108.3 0.14

Location 0.28

Left upper lobe 42 (21.8) 33 (25.4) 26 (27.1) 101 (24.1)

Left lower lobe 19 (9.8) 23 (17.7) 7 (7.3) 49 (11.7)

Right upper lobe 90 (46.6) 54 (41.5) 44 (45.8) 188 (44.9)

Right middle lobe 14 (7.3) 5 (3.8) 7 (7.3) 26 (6.2)

Right lower lobe 28 (14.5) 15 (11.5) 12 (12.5) 55 (13.1)

Cell type <0.01

AIS 4 (2.1) 4 (3.1) 4 (4.2) 12 (2.9)

MIA 1 (0.5) 1 (0.8) 10 (10.4) 12 (2.9)

IAC 9 (4.7) 7 (5.4) 31 (32.3) 47 (11.2)

No surgery 179 (92.7) 118 (90.8) 51 (53.1) 51 (53.1)

Values are expressed as n (%) or mean ± SD. pGGN, pure ground-glass nodule; CT, computed tomography; HU, Hounsfield unit; AIS, 
adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive adenocarcinoma; SD, standard deviation.
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Figure 4 The ROC curve of nodules in the inner validation cohort, D0–1, D1–2, and D2+ predicted by the DLCM. The ROC curve in the 
inner validation cohort of all nodules (A), D0–1 (B), D1–2 (C), and D2+ (D) as predicted by DLCM. AUROC, area under the ROC curve; 
ROC, receiver operating characteristic; D0–1, 0–1 year follow-up; D1–2, 1–2 years follow-up; D2+, more than 2 years follow-up; DLCM, 
deep learning classification model.

Table 3 The performance of DLCM on internal validation cohort and subgroups

Subgroup AUC ACC SENS SPEC PPV NPV

Internal validation cohort 0.787 0.727 0.719 0.730 0.489 0.878

D0–1 0.855 0.743 0.813 0.731 0.351 0.956

D1–2 0.723 0.711 0.500 0.730 0.143 0.942

D2+ 0.715 0.732 0.750 0.730 0.200 0.970

DLCM, deep learning classification model; AUC, area under the curve; ACC, accuracy; SENS, sensitivity; SPEC, specification; PPV, 
positive predictive value; NPV, negative predictive value; D0–1, 0–1 year follow-up; D1–2, 1–2 years follow-up; D2+, more than 2 years 
follow-up.

(AUROC =0.855, Figure 4B) than in the D1–2 (AUROC 
=0.723, Figure 4C), and D2+ (AUROC =0.715, Figure 
4D) subgroups (Table 3). DenseNet_DR achieved an 

AUROC of 0.70 [95% confidence interval (CI): 0.60, 0.79, 
Figure 5] in the external validation cohort. DenseNet_DR 
performed worse in the external validation cohort than in 
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the internal validation cohort, but the AUROC was similar 
to that for the D2+ subgroup. Feature-weighted activation 
maps overlaid with CT images showed that DenseNet_
DR focused its attention on the pulmonary nodules and 
periphery of nodules (Figure 6).

Discussion

In our study, the DLCM accurately predicted the growth of 
pGGNs in the inner validation cohort (AUROC =0.79) and 
somewhat less accurately in the external validation cohort 
(AUROC =0.70). The performance of our proposed DLCM 
indicates that it could provide an alternative to current 
prediction methods, which use long-term serial CT findings 
to assess growth risk in patients with persistent pGGNs.

In this study, the prediction accuracy of subgroup 
D0–1 was superior to that of the other two subgroups 
(D0–1 vs. D1–2, D2+; AUROC, 0.855 vs. 0.723, 0.715). 
The pGGNs can be stable for a long time, and their 
identifying characteristics may be most obvious when 
they become unstable or about to become unstable within 
one year of their identification (4,13,25-29). The CT 
image characteristics of pGGNs that remain stable over 
long periods before eventually growing probably differ 
considerably from the CT characteristics of those that 
grow soon after detection (5,11,30). This may explain why 
prediction is more accurate in pGGN growth within a short 

follow-up than within a long follow-up.
The diagnostic performance of DLCM was lower in 

the external validation cohort than in the inner validation 
cohort (AUROC, 0.70 vs. 0.79) but was nonetheless 
encouraging. Explanations for this discrepancy were 
different follow-up times and different image parameters 
between the two cohorts. The average follow-up time of 
growth pGGNs for the external validation cohort (3.46 years)  
was longer than for the inner validation cohort (2.19 years), 
and the diagnostic performance of DLCM is better in 
pGGN growth within short follow-ups. Differences in 
image conditions, such as window width and window level, 
were observed between the inner and external validation 
cohorts. The window width and level were mostly 1,800 
and 800 HU, respectively, in the inner cohort, whereas 
they were 1,500 and 800 HU, respectively, in the external 
cohort. The different parameters for CT imaging cause 
ineradicable differences in baselines for all images inputted 
into the DLCM. What’s more, the follow-up protocol is 
not rigid and it is determined by each physician according 
to the preference.

In this study, we chose 2 years of follow-up as the cutoff 
for defining stable pGGNs, which is one of the limitations 
of this study. Despite this, most growth of pGGNs occurs 
within 2 years (25.5–51.9%) or 3 years (41.0–86.0%) of its 
detection reported in previous studies (11,27,29-35). In the 
current study, 157 (62.1%) stable pGGNs were followed up 
for more than 3 years.

In previous studies, the growth of pGGNs had been 
defined as at least a 20% increase in volume or ≥2 mm 
increase in diameter (26,36-38) between follow-ups. 
However, it is inaccurate in measurement because of 
the partial volume effect, especially for small pGGNs, 
which would cause classification errors. In this study, we 
minimized classification error by defining growth based 
on independent assessments by two radiologists rather 
than based on simple increases in volume or diameter. 
There was 0.99 agreement between the two radiologists, 
demonstrating high consistency and low classification error.

Most previous studies have excluded patients with 
multiple pGGNs or chose the largest pGGN to represent 
all pGGNs in a single individual (5,13,39,40). In the present 
study, we included multiple pGGNs and evaluated them 
independently for two reasons. First, multiple pGGNs 
comprise approximately 35% of newly discovered pGGNs 
(27,29,41,42). It would therefore result in a large selection 
bias if we excluded multiple pGGNs. Second, in patients 
with multiple pGGNs, the largest lesions and those with a 
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Figure 5 The ROC curve of all nodules in the external validation 
cohort, with AUROC =0.704. AUROC, area under the ROC 
curve; ROC, receiver operating characteristic.
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A B

Figure 6 Representative CT images overlaid with heatmaps for model interpretation from the primary cohort. (A) A CT image of pGGN 
and (B) a heatmap of pGGN. Pulmonary nodules and their periphery were activated by the CT-based DLCM. CT, computed tomography; 
pGGN, pure ground-glass nodule; DLCM, deep learning classification model.

high risk of growth are recommended to be simultaneously 
resected. Therefore, it is important to identify each growing 
pGGN among multiple pGGNs.

We acknowledge that this study had limitations. First, 
the CT scan protocol and follow-up times of enrolled 
patients were heterogeneous because of the nature of 
the retrospective study. Second, 24.48% of all patients 
underwent surgical resection, and only 29.8% with growing 
pGGNs patients were underwent survival resection, 
which means that most pGGNs were not pathologically 
diagnosed. What’s more, the rate of surgical procedure 
is different between inner cohort and external validation 
cohort. Third, the follow-up period for stable pGGNs was 
not long enough, which may have resulted in bias.

Conclusions

In conclusion, a DLCM that directly analyzes pGGN 
identified on chest CT images could facilitate the prediction 
of the growth of pGGNs. Considering all the limitations 
and the potential sources of bias, we believe further research 
and a larger database are required to validate and optimize 
our model.
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