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Clinical Decision Support Tools for
Optimizing Guideline-Directed Medical
Therapy for Heart Failure
Computing the Possibilities*
Tien M.H. Ng, PHARMD
G uideline-directed medical therapy (GDMT)
for heart failure (HF) with a reduced ejec-
tion fraction confers a substantial benefit

by reducing the risk for hospitalizations and mortality
by more than 75%,1,2 in addition to positive effects on
ventricular function and quality of life. Importantly,
the impressive benefits are based on several key
evidence-based tenets. First, GDMT need to be used
in combination with the benefit proportional to the
number of therapies and the greatest benefit seen
when the 4 pillars of renin-angiotensin-aldosterone
system (RAAS) inhibitor, beta-blocker, mineralocorti-
coid receptor antagonist, and sodium-glucose
cotransporter-2 inhibitor comprise the regimen.3,4

Second, the magnitude of benefit exhibits some
dose-dependency. Therefore, the guidelines clearly
indicate the need for continuous assessment of op-
portunities to optimize GDMT regimens.2

In reality, prescribing of GDMT remains subopti-
mal. Real-world data consistently demonstrate an
underutilization of GDMT, and when prescribed, the
minority are at target doses shown to confer maximal
benefits.5,6 There are many reasons, however, clinical
inertia is a major contributor. An analysis of outpa-
tient HF registry data found the majority of patients
fail to have GDMT added or doses uptitrated despite a
lack of obvious contraindications.7

Efforts to improve GDMT optimization have
included a variety of modalities and interventions.
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One relatively naïve area of investigation is the
development of clinical decision support (CDS) tools
specifically for GDMT optimization. Literature of CDS
tools in HF is limited with only 2 recent studies tar-
geting greater use of GDMT,8-10 while others focused
on selecting patients for advanced HF therapies11 and
diagnosis in primary care.12 Application of CDS for
cardiovascular disease in general has been limited
and with variable success.13 Barriers to CDS design
and implementation have been reviewed extensively
elsewhere.13-16

In this issue of JACC: Advances, Dorsch et al17

describe the validation of an application program-
ming interface computational algorithm for the
identification and provision of recommendations for
GDMT optimization for HF with reduced ejection
fraction. The algorithm also calculates a medication
optimization score (MOS), providing a percentage of
how closely a regimen includes all evidence-based,
first-line GDMT and proximity to target doses. The
decision-tree utilizes medication name and dose,
New York Heart Association functional classification,
race, allergies, and select readily available clinical
data (systolic blood pressure, heart rate, serum
creatinine, and potassium levels). The algorithm was
tested by applying data from 2 clinical trials (GUIDE-
IT [Guiding Evidence-Based Therapy Using Biomarker
Intensified Treatment in Heart Failure] and ACTION-
HF [Heart Failure: A Controlled Trial Investigating
Outcomes of Exercise Training]). Major findings were:
1) the algorithm correctly identified non-optimized
medication regimens at any specific visit with high
specificity (very few cases of failure to identify a
particular drug class); 2) the algorithm identified a
significant number of potential opportunities to
optimize GDMT (initiating new therapies or uptitrat-
ing doses); and 3) the MOS was prognostic of the risk
of HF hospitalizations and cardiovascular death at
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baseline and as a time-dependent covariate. Analyses
of the MOS also confirmed incremental benefit of
GDMT by number of medications and proximity of
dosing to evidence-based target doses. Of note, the
MOS suggested substantial room for improvement in
GDMT prescribing despite high rates of baseline use
in prospective studies specifically designed to
improve HF care.

The algorithm developed by these authors is
noteworthy as it satisfies many of the desired
characteristics of effective CDS tools. Inputs utilize
individual patient-level data easily gathered auto-
matically through electronic health records (EHRs), it
can be embedded into an EHR system, it not only
provides assessment-based prompts but also specific
recommendations, and recommendations are tied to
well-accepted evidence-based guidelines. The out-
puts appear modifiable for different stakeholders,
including providers, patients, or health systems for
benchmarking and continuous quality improvement.
Since the MOS is associated with clinical outcomes,
this tool may also have utility for population health if
adaptable to other populations.

As currently constructed, the algorithm was indeed
effective at identifying shortcomings in medication
regimens, however, there are limitations. As
acknowledged by the investigators, validation with
more contemporary clinical trial data that includes
angiotensin receptor neprilysin inhibitor and sodium-
glucose cotransporter-2 inhibitor use and with real-
world data is needed. The algorithm itself has limi-
tations that may hinder implementation. It uses
select clinical factors with fixed thresholds and ap-
pears to handle inputs as static values. Trends or
directional changes of lab values and vital statistics
that may affect clinical decision-making are not
accounted for. Taken further, clinical decision-
making is much more complex than the factors
currently included in the tool. Other factors remain
unaccounted for that may influence the decision not
to optimize certain therapies during certain visits
(logistical, patient, other clinical factors). As such, the
algorithm recommendations may not reflect real-
world clinical complexity which could contribute to
lack of provider trust, alert fatigue, and other iden-
tified barriers to successful CDS system implementa-
tion.13,14 Importantly, the algorithm currently does
not incorporate a determination of safety where de-
escalation of therapy may be required (eg, high po-
tassium does not trigger advice about lowering or
discontinuing RAASi therapy).

The MOS was associated with patient outcome,
potentially making this metric a useful tool for
benchmarking and improving outcomes. However,
the relationship between MOS and the relative
magnitude of outcome improvement was not exam-
ined by specific drug class. Thus, it may be less
helpful in differentiating between multiple GDMT
recommendations when a step-wise approach to
optimization is desired. Refining the MOS, allowing
each therapy decision to be quantified, may aid in
shared decision-making discussions with patients.

The authors should be commended in developing
an application programming interface algorithm with
much potential value. In the time of digital health,
the development of effective tools that utilize EHR
and can be easily integrated into CDS systems re-
mains a high priority. To encourage adoption of these
tools, their functionality must be efficient, precise,
and recommendations accurate. For optimization of
HF GDMT, incorporation of other clinical, patient,
and health system factors would be important to
improve precision and accuracy. Utilizing artificial
intelligence and machine learning has advantages
over regression-based computational approaches as
many more factors can be incorporated.18 Addition of
predictive analytics, such as using EHR data to select
patients that would benefit or be at risk from further
optimization steps, could also enhance accuracy.
These computational techniques could allow for more
individualized recommendations. These technologies
could then be tailored to different populations and
care settings more easily.

As the care of patients with cardiovascular dis-
eases becomes more complex, integration of digital
health technologies continues to be increasingly
relevant. Achieving optimal GDMT remains a major
challenge. The demonstration of a simple EHR
computational approach to systematically improving
HF medication optimization is step in the right di-
rection. More research is needed to define best
practices for the design and implementation of
computational tools for HF, but the possibilities are
within reach.
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