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ABSTRACT Northern corn leaf blight (NCLB), a severe fungal disease causing yield losses worldwide, is
most effectively controlled by resistant varieties. Genomic prediction could greatly aid resistance breeding
efforts. However, the development of accurate prediction models requires large training sets of genotyped
and phenotyped individuals. Maize hybrid breeding is based on distinct heterotic groups that maximize
heterosis (the dent and flint groups in Central Europe). The resulting allocation of resources to parallel
breeding programs challenges the establishment of sufficiently sized training sets within groups. Therefore,
using training sets combining both heterotic groups might be a possibility of increasing training set sizes
and thereby prediction accuracies. The objectives of our study were to assess the prospect of genomic
prediction of NCLB resistance in maize and the benefit of a training set that combines two heterotic groups.
Our data comprised 100 dent and 97 flint lines, phenotyped for NCLB resistance per se and genotyped with
high-density single-nucleotide polymorphism marker data. A genomic BLUP model was used to predict
genotypic values. Prediction accuracies reached a maximum of 0.706 (dent) and 0.690 (flint), and there was
a strong positive response to increases in training set size. The use of combined training sets led to
significantly greater prediction accuracies for both heterotic groups. Our results encourage the application
of genomic prediction in NCLB-resistance breeding programs and the use of combined training sets.
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Northern corn leaf blight (NCLB), caused by the pathogen Setosphae-
ria turcica (anamorph Exserohilum turcicum), is a serious threat to
maize (Zea mays L.) cultivation worldwide, reportedly causing yield
losses of more than 50% (Raymundo and Hooker 1981; Perkins and
Pederson 1987). NCLB can be efficiently controlled through cultiva-
tion of resistant varieties (Dingerdissen et al. 1996), giving breeding
for NCLB resistance a high priority for disease control. Today’s avail-
ability of high-density molecular marker data greatly facilitates mo-
lecular resistance breeding approaches (Collard and Mackill 2008) and

the understanding of the genetic architecture of resistance traits. Pre-
vious studies on resistance to NCLB point to a complex genetic archi-
tecture with many quantitative trait loci (QTL) distributed throughout
the genome (Van Inghelandt et al. 2012; Poland et al. 2011; Wisser
et al. 2006). For instance, Poland et al. (2011) identified 29 QTL for
NCLB resistance, each with a small effect. This might hamper the
application of traditional marker assisted breeding approaches.

Genomic prediction, developed in dairy cattle breeding, uses all
available marker data of a genotyped and phenotyped training set for
building a prediction model without an intermediate QTL detection
step (Meuwissen et al. 2001). Subsequently, this model is used to
predict genotypic values of nonphenotyped individuals for which only
marker data are available. The major advantage of genomic prediction
is that all polymorphisms affecting a trait are modeled, regardless of
effect size, making it a potentially powerful approach for a complex
trait like NCLB resistance.

Initial studies on genomic prediction applied to maize showed
promising results with highly accurate predictions for traits like dry
matter yield and plant height (Riedelsheimer et al. 2012; Albrecht
et al. 2011). Although no results are available for genomic prediction
of disease resistance in maize, it has been successfully applied to predict
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resistance to Fusarium head blight (FHB) in barley (Lorenz et al.
2012) and wheat (Rutkoski et al. 2012).

In dairy cattle breeding, genomic prediction is now applied
routinely for large breeding populations like Holstein Friesian (Hayes
et al. 2009b). However, its application to small breeds seems to be more
challenging, mainly because difficulties of assembling large-enough
training sets. To make the advantages of genomic prediction available
for small breeds as well, the possibility of combined, multibreed train-
ing set were studied by several authors (Erbe et al. 2012; Weber et al.
2012; de Roos et al. 2009; Hayes et al. 2009a). These authors found this
approach to have the potential of increasing the prediction accuracies
for small breeds. The approach of using a training set that combines
different groups also has been studied in a plant breeding context for
genomic prediction of oat (Asoro et al. 2011) and barley (Lorenz et al.
2012). The results of these studies, however, were inconclusive.

In maize breeding, the two parental lines of a hybrid are taken
from genetically distinct heterotic groups (dent and flint in Central
Europe) for maximum exploitation of heterosis (Messmer et al. 1993).
For resistance traits with mainly additive gene action, as applies to
NCLB resistance (Carson 1995), both parents of a hybrid should have
good resistance. The improvement of the resistance level of the inbred
lines within each heterotic group requires allocating the available
resources to parallel breeding programs. This makes it more challeng-
ing to establish a sufficiently sized training set within each heterotic
group. Therefore, enlarging the training set via combination of data
from both heterotic groups also would be an interesting approach for
genomic prediction in maize breeding. The objectives of this study
were to (1) assess the prospects of genomic prediction of NCLB re-
sistance in maize and (2) compare the prediction accuracy of separate
training sets for each heterotic group vs. combining both heterotic
groups in a single training set.

MATERIALS AND METHODS

Plant material and phenotypic evaluation
Our genetic material consisted of 100 dent and 97 flint maize
inbred lines, representing the breeding program of the University
of Hohenheim. More detailed information on the history of this
breeding program is given by Technow et al. (2012). All lines were
evaluated for NCLB resistance per se in the trial stations Bingen
(Rhineland-Palatinate, Germany) and Pocking (Bavaria, Germany)
in 2010. Plants were grown in single row plots, laid out in a 20 · 10
alpha-design with two replications at each location. E. turcicum in-
oculum was artificially applied using pathogen extract of naturally
infected leafs collected at each location in 2009. NCLB severity was
visually rated for each plot according to the lesion spot development
in the middle-to-upper part leaves on a scale from 1 (susceptible) to
9 (resistant). NCLB severity ratings were adjusted for effects pertain-
ing to the environment and field design. The dent heterotic group
had a phenotypic mean of 3.28 (range, 0.9826.45), the flint heterotic
group had a phenotypic mean of 3.77 (range, 1.2925.84). The her-
itability (H2) on an entry mean basis was 0.76 for dent and 0.64 for
flint. The adjusted entry means, computed as best linear unbiased
estimates by using a mixed model with genotypes treated as fixed
effects, are provided in Supporting Information, File S1.

Genomic data
All inbred lines were genotyped with the Illumina single-nucleotide
polymorphism (SNP) chip MaizeSNP50 (Ganal et al. 2011) containing
57,841 SNPs. Markers with more than 5% missing data within any
heterotic group were removed. Because the inbred lines were in very

advanced selfing generations (. S6), heterozygous marker genotypes
also were treated as genotyping errors and considered as missing.
“BEAGLE” software (Browning and Browning 2009), version 3.3.1,
was used to impute all remaining missing marker genotypes, resulting
in 37,908 SNP markers available for further analysis.

Second-order natural smoothing spline regression was used to
visualize the linkage disequilibrium (LD, calculated as r2) as a function
of the physical distance D in Mbp between markers on the same
chromosome. This was done separately for the set of dent lines, flint
lines, and across both sets. For LD calculations within heterotic groups,
all markers with a minor allele frequency (MAF) . 0.05 within the
corresponding group and for LD calculation across groups all markers
with a MAF . 0.05 within both heterotic groups were included.

The linkage phase persistence across heterotic groups was
computed following Technow et al. (2012). First, all marker pairs were
binned according to the physical distance D in 100 discrete bins of
0.05 Mbp width. Second, the proportion of marker pairs, with iden-
tical linkage phase within both heterotic groups, was calculated for
each bin. Again, second-order natural smoothing spline regression
was used to visualize this proportion as a function of the distance
between the center values of the bins.

A principal component analysis, based on the full 37,908 SNP
marker profiles of the inbred lines, was used to investigate the genetic
distinction of the dent and flint heterotic groups.

Prediction approaches and their validation
We investigated the potential of the following three prediction
approaches (Figure 1): (1) the “within” prediction approach, where
lines used for fitting the model (training set) and lines to be predicted
(prediction set) belonged to the same heterotic group; (2) the “across”
prediction approach, where lines in the training set belonged to an-
other heterotic group than lines in the predicting set and; (3) the
“combined” prediction approach, where lines of both heterotic groups
were combined in a training set to predict either lines in a flint or dent
prediction set. The dent and flint training sets comprised a random
sample of Nt = 75 (25, 50) lines from the corresponding group. The
remaining dent and flint lines then made up the prediction sets. The
training sets for the “combined” prediction approach were created by
merging the training sets from both heterotic groups (Figure 1). The
“prediction accuracy” was calculated by dividing the correlation be-
tween the predicted genotypic values and observed phenotypic values
by

ffiffiffiffiffiffi
H2

p
, following common practice (Legarra et al. 2008). The process

of generating training and prediction sets was repeated 100 times for
all three levels of Nt in the manner described. All prediction
approaches were applied to the same random splits of the data set
into training and prediction set, and a paired t-test was used to de-
termine the significance of differences in prediction accuracy observed
between the “combined” and “within” prediction approaches. Because
the training and prediction sets produced over the replications are
always drawn from the same data set, the replications are not inde-
pendent. To account for this, we used the correction method proposed
by Nadeau and Bengio (2003). Their adjustment is the stronger, the
larger the size of the prediction set (Np) is relative to Nt , because the
largerNp/Nt , the more overlapping the sampled prediction sets will be.
Therefore, the test is very conservative for Nt = 25 and Nt = 50.

Prediction model
The Bayesian version of genomic best linear unbiased prediction
(Kärkkäinen and Sillanpää 2012) was used to predicted genotypic
values as
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mi ¼ Xibþ ui

yi � N �
mi;s

2
e

�
; (1)

where mi denotes the linear predictor, yi is the scaled and centered
phenotypic entry mean of inbred line i and ui its total genetic value.
The Gaussian density function is denoted by N and s2

e refers to the
residual variance. The design row vector Xi codes for the fixed effects
in b. Depending on the prediction approach, these were either the
heterotic group effects (“combined” prediction approach) or a single
intercept (“within” and ’across’ prediction approaches). We used
a uniform, improper prior for b. The prior for ui was
MVNð0;As2

uÞ, where MVN denotes the multivariate-Gaussian
density function, s2

u the polygenic variance, and A the realized ad-
ditive relationship matrix. The latter was computed from the marker
data according to Method 1 of VanRaden (2008). Finally, the priors
for the variance components s2

e and s2
u were uninformative scaled

inverse x2 distributions with scale factor equal to 1/2 and degree of
freedom parameter equal to 2.

A single Gibbs-sampling chain run for 50,000 iterations was used
for sampling from the marginal posterior distributions of the
parameters involved. The first 20,000 iterations of the chain were
discarded as burn-in, and only every 20th sample of the remaining
iterations was stored. The posterior means of b and ui were used to
predict the genotypic values. The R (R Development Core Team 2011)
package “MCMCglmm” (Hadfield 2010) was used for Gibbs-
sampling.

Computation of realized additive relationship matrix
Only markers informative for a given prediction approach were
considered for computing A. Consequently, markers had to segregate
(always meaning MAF . 0.05) in at least one heterotic group for the
“combined” prediction approach, in both heterotic groups for the
“across” prediction approach and in the corresponding heterotic
group for the “within” prediction approach. Because the markers were
distributed unevenly across the genome, the number of markers was
reduced to a density of one marker per Mbp, with a distance of
approximately 1 Mbp between adjacent markers, to ensure equal
weighing of all genomic regions when computing A. This resulted

in a total of 1724 (“combined”), 1513 (“across”), and 1638 (“within”)
markers finally used. These marker data sets are provided in File S1.

RESULTS

LD and genetic relationship between lines
LD between markers with D less than 0.5 Mbp was at very high levels
of greater than 0.30 (Figure 2A). It then decreased but still amounted
to �0.25 within heterotic groups and �0.20 across at D = 1.0 Mbp.
Beyond D = 1.0 Mbp, LD continued to decrease slightly but remained
considerably greater than a value of 0.10 for the whole range of D
values considered. In general, the LD within the group of dent lines
was slightly greater compared with the group of flint lines, whereas the
LD across the set of dent and flint lines was lowest (Figure 2A).

The proportion of marker pairs with the same linkage phase in
both heterotic groups showed trends similar to the LD (Figure 2B). It
reached a maximum of � 0.75 for marker pairs with a distance D in
Mbp close to zero and then decreased rather quickly. However, at D =
1.0 Mbp it still remained just below 0.6. Afterward, it decreased slowly
toward the value 0.5 but nonetheless remained slightly above this
value over the whole range of D values considered.

The mean pairwise relationship coefficient, from the A matrix
computed for the “combined” prediction approach, between dent lines
was 0.46 with standard deviation of 0.38, and between flint lines 0.49
with standard deviation of 0.32. Between the dent and flint lines, the

Figure 1 Schematic illustration of the investigated prediction
approaches: “within” prediction approach (full line), “across” predic-
tion approach (dotted line) and “combined” prediction approach
(dashed line). Nt corresponds to the training set size and Np to the
size of the prediction set.

Figure 2 (A) LD (calculated as r2) as a function of physical distance (D)
in Mbp between markers on the same chromosome for the group of
dent lines (full line), flint lines (dashed line), and across both heterotic
groups (dotted-dashed line). (B) Proportion of markers with equal link-
age phase across heterotic groups as a function of D in Mbp between
markers on the same chromosome. The horizontal gray line indicates
the value 0.5. LD calculations within heterotic groups included all
markers with MAF . 0.05 within this group; LD calculation across
groups included all markers with MAF . 0.05 within both heterotic
groups.
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mean was 20.49 with standard deviation of 0.18 (Figure 3). The
principal component analysis showed a very clear genetic distinction
of the dent and flint heterotic groups (Figure 4).

Prediction accuracy
Overall, prediction accuracies increased with increasing Nt. For exam-
ple, the prediction accuracy of dent (flint) lines increased from 0.366
(0.389) at Nt = 25 to 0.589 (0.576) at Nt = 50 to 0.706 (0.690) at Nt =
75 (Table 1, combined training sets). The “combined” prediction
approach resulted in greater prediction accuracies than those of the
“within” prediction approach for all levels of Nt. Thereby, the largest
differences were observed at Nt = 75 with 0.065 for dent lines and
0.082 for flint lines (Table 1). These differences were also statistically
significant (P , 0.05).

Prediction accuracies of the “across” prediction approach were
relatively low in both cases, whereby prediction of flint lines using
a dent training set was more accurate than vice versa.

DISCUSSION

Merit of selection based on genomic prediction
Successful adoption of genomic prediction approaches to plant
breeding programs depends on their advantage over traditional
selection methods. For quantifying this potential advantage, genomic
prediction can be viewed as an indirect selection method. The merit of

indirect selection per unit time, relative to the merit of direct selection,
can be described as the indirect selection response (CRX) divided by
the direct selection response (RX). Following Falconer and Mackay
(1996), this ratio can be calculated as

CRX

RX
¼ iY  HY   rA   LX

iX  HX   LY
(2)

where iY is the selection intensity applied on the indirect trait and iX
the selection intensity on the target trait, LY and LX are the cycle
lengths of indirect and direct selection, respectively, HX is the square
root of the heritability of the target trait, and HY the square root of
the heritability of the indirect trait. The latter is assumed to be 1 in
the case of genomic data. The genetic correlation between the target
and indirect trait is denoted by rA and corresponds to the prediction
accuracy in our context. A ratio greater than 1 indicates superiority
of indirect selection over direct selection. Assuming equal selection
intensities, we can arrange equation (2) to the inequality

LY ,
rA
HX

LX : (3)

It describes the merit of indirect selection as a function of the
selection cycle lengths. Accordingly, indirect selection is superior to
direct selection when LY is shorter than a certain fraction of LX,
which depends on H2 of the target trait and the accuracy of genomic
predictions.

Using our H2 estimates and the accuracies observed for the “com-
bined” prediction approach at Nt = 75, selection for NCLB resistance
based on genomic predictions would already be superior to pheno-
typic selection when LY is less than 81% (dent) or 86% (flint) of LX.
These are promising numbers, given that other authors found genome
based breeding programs to require less than 50% of the time as
traditional programs (Heffner et al. 2010).

Equation (3) assumed that iY = iX. However, after sufficiently sized
training sets are established, which requires phenotypic as well as
genotypic data, iY can be raised almost arbitrarily by genotyping
large numbers of individuals. When novel techniques such as

Figure 3 Density histograms of pairwise relationship coefficients
between dent lines (A), flint lines (B) and between dent and flint lines
(C). Values are elements of the realized additive relationship matrix A
as computed for the “combined” prediction approach.

Figure 4 Plot of principal component (PC) 1 vs. PC 2 scores based on
37,908 SNP markers of all 100 dent lines (red dots) and 97 flint lines
(blue squares).

200 | F. Technow, A. Bürger, and A. E. Melchinger



genotyping-by-sequencing are used, this could be done at very com-
petitive costs (Elshire et al. 2011). Thus, in the near future, it is likely
that iY . iX, which would add to the advantage of selection based on
genomic predictions.

The potential advantage of selection based on genomic predictions
was also pointed out by other authors. For example, in simulation
studies, Heffner et al. (2010) and Bernardo and Yu (2007) found
genomic breeding programs to be clearly superior over traditional
recurrent selection programs for complex traits in maize.

Our results and conclusions are based on rather low training set
sizes Nt. Other studies in crop species too reported high prediction
accuracies with surprisingly low Nt (Zhao et al. 2011; Lorenz et al.
2012). One likely explanation for this are the commonly low effective
population sizes Ne and consequently low effective number of inde-
pendent chromosome segments Me, found in plant breeding popula-
tions (Riedelsheimer et al. 2012). Following Daetwyler et al. (2010b),
the expected prediction accuracy can be calculated asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

NtH2

NtH2 þMe

s
(4)

where Me = 2NeG/log(4NeG) and G is the genome length in Morgan.
From equation (4), it can be seen that low Me combined with high
H2 can lead to a high expected prediction accuracy at low Nt. For
example, with Ne = 25, which is at the upper end of the range
postulated in populations of maize inbred lines (Guzman and
Lamkey 2000), and a genome length of 16.34 Morgan (Martin et al.
2011), the expected prediction accuracy at Nt = 25 is 0.38 (dent) and
0.35 (flint) and 0.58 (dent) and 0.55 (flint) at Nt = 75. These values
agree well with our results. Nevertheless, Nt will likely be greater in
routine applications by plant breeders. This is expected to increase
the prediction accuracy, and thereby the merit of selection based on
genomic predictions, even further.

Merit of combined training sets
In accordance with other studies on genomic prediction in crops
(Asoro et al. 2011) and livestock (Weber et al. 2012; Erbe et al. 2012;
Daetwyler et al. 2010a; de Roos et al. 2009; Hayes et al. 2009a), we
observed an increase in prediction accuracy when using a combined
training set as compared with using training sets comprising lines
from one heterotic group only.

Interestingly, this was already the case at a comparatively low
marker density of 1 Mbp–1 or about 1600–1700 markers. However,
there is consensus among the aforementioned authors that very high
marker densities are required to take advantage of combined training
sets. This is to ensure consistent linkage phases between QTL and

markers across groups, a necessary condition for the combined pre-
diction approach to work. However, despite several centuries of sep-
aration of dent and flint (Rebourg et al. 2003), our results showed that
there is still consistent LD across the heterotic groups, even for
markers at greater distances (i.e., the proportion of marker pairs with
equal linkage phase was considerably greater than 0.5, the value rep-
resenting independence). Further, we did not find that using higher
marker densities led to an increase in the prediction accuracy (results
not shown). Similar results on the required marker density for pre-
diction purposes in elite germplasm of maize were reported by
Riedelsheimer et al. (2012), who found that the prediction accuracy
did not increase markedly when increasing the number of markers
beyond 2500.

Genomic best linear unbiased prediction, the prediction method
used by us, uses marker data merely for estimating the realized
relationship between individuals. Marker effects based methods
(Kärkkäinen and Sillanpää 2012) might be able to capitalize more
on higher marker densities (Erbe et al. 2012). However, using
a ‘BayesB’ type algorithm (Meuwissen et al. 2001) in the implemen-
tation employed by Technow et al. (2012) did not yield greater pre-
diction accuracies (results not shown). Likely, this was because such
algorithms require much larger training set sizes to overcome the
added complexity of the model due to greater dimensionality and
redundancy of the predictor set.

Lorenz et al. (2012) studied the potential of combined training sets
for predicting resistance to FHB and related deoxynivalenol toxin
(DON) production in barley. They did not find that using a combined
training set of 200 individuals from two groups increased the pre-
diction accuracy over using just 100 individuals from either group for
predicting individuals from the same group. However, their popula-
tions seemed to be rather unresponsive to increases in training set size
Nt. For example, even doubling Nt from 100 to 200 for prediction
within a group just barely increased the prediction accuracy (4% for
FHB and 10% for DON). Therefore, combining 100 + 100 individuals
from different groups should not be expected to yield much improve-
ment either. Focusing on prediction accuracies within heterotic
groups, we found that increasing Nt from 25 to 50 increased predic-
tion accuracies by 64% (dent) and 46% (flint). In contrast, the same
increase in Nt for the populations of Lorenz et al. (2012), increased
their prediction accuracies just by 17% and 26% for FHB and DON
respectively. Further, we observed a relative increase in accuracy from
Nt = 50 to Nt = 75 that was considerably greater than the relative
increase Lorenz et al. (2012) observed from Nt = 50 to Nt = 100. Thus,
responsiveness to Nt, which may be a function of the effective pop-
ulation size, seems to be a key requirement for an advantage of com-
bined training sets.

n Table 1 Average and SD of prediction accuracies over the 100 replications of the validation procedure for northern corn leaf blight
resistance based on a Bayesian GBLUP model using either pure dent, pure flint, or combined training sets of size Nt to predict either the
dent or flint lines

Training Set Prediction Set Nt = 25 Nt = 50 Nt = 75

Dent (Nt) Dent 0.325a 6 0.125 0.532a 6 0.112 0.641a 6 0.131
Flint 0.084 6 0.205 0.210 6 0.213 0.292 6 0.257

Flint (Nt) Dent 0.093 6 0.110 0.078 6 0.150 0.110 6 0.279
Flint 0.340A 6 0.151 0.498A 6 0.133 0.608A 6 0.156

Combined (2Nt) Dent 0.366a 6 0.123 0.589a 6 0.097 0.706b 6 0.114
Flint 0.389A 6 0.144 0.576A 6 0.117 0.690B 6 0.157

Values followed by identical letters within a column are not statistically different in adjusted paired t-tests for P , 0.05. The comparisons considered were (1) within
and combined prediction approach for dent (lowercase superscript letters) and (2) within and combined prediction approach for flint (uppercase superscript letters).
GBLUP, genomic best linear unbiased prediction.
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Compared with the increase in prediction accuracy when in-
creasing Nt by adding individuals from the same group (e.g., moving
from Nt = 25 to Nt = 50 within groups), the increase in prediction
accuracy was only marginal, when the same increase in Nt was
achieved by adding individuals from the other group. This was be-
cause the information added in the latter case was much lower than in
the former, as is exemplified in the low linkage phase consistency
between the heterotic groups. It is reasonable to assume, however,
that the increase would have been more pronounced when the groups
were less genetically distant then our dent and flint groups.

Nonetheless, under a fixed budget that has to be allocated to all
heterotic groups, increasing Nt within one group can only be achieved
by decreasing it in another. This would necessarily lead to differential
selection progress, which is undesirable when the heterotic groups are
developed reciprocally. Therefore, combining training sets is still
worthwhile, since the gain in prediction accuracy obtained is essen-
tially cost neutral and does not lead to a negligence of the other group.

Balancing the large increase in prediction accuracy when moving
from Nt to 2Nt within one group and the goal of even development of
both groups; however, is possible with an alternating selection scheme.
Here, the full phenotyping capacity would be applied to one group in
one cycle and to the other group in the next cycle and so on. Thus,
always one group would be selected based on a training set of size 2Nt

from the same group and one based on across group predictions.
Following Falconer and Mackay (1996) and assuming constant selec-
tion intensities, heritabilities and genetic variances across cycles, the
aforementioned alternating scheme would lead to a greater selection
gain over two cycles than a scheme based on the combined prediction
approach, when rw;2Nt þ ra;2Nt . 2rc;Nt (rw;2Nt denotes the within
group prediction accuracy at 2Nt, ra;2Nt the across group prediction
accuracy when the training set size in the other group is 2Nt and
rc;Nt the prediction accuracy from the combined training sets, when
each group has a training set size of Nt). From our results for Nt = 25
at least, however, the alternating scheme would be inferior for both
groups. For the alternating scheme to succeed, the across group pre-
diction accuracy needs to be greater than observed by us. As is the case
for the gain from combined training sets, the across group prediction
accuracy will likely be the greater the lower the genetic distance be-
tween groups is.

In conclusion, our results encourage the application of genomic
prediction in a NCLB resistance breeding program. Furthermore,
combining maize heterotic groups into a single training set is
a promising approach for increasing the prediction accuracy of NCLB
resistance.
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