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Abstract
Damage to the proximal tubule (PT) is the most frequent cause of acute kidney injury (AKI) in humans. Diagnostic and 
treatment options for AKI are currently limited, and a deeper understanding of pathogenic mechanisms at a cellular level is 
required to rectify this situation. Metabolism in the PT is complex and closely coupled to solute transport function. Recent 
studies have shown that major changes in PT metabolism occur during AKI and have highlighted some potential targets for 
intervention. However, translating these insights into effective new therapies still represents a substantial challenge. In this 
article, in addition to providing a brief overview of the current state of the field, we will highlight three emerging areas that 
we feel are worthy of greater attention. First, we will discuss the role of axial heterogeneity in cellular function along the PT 
in determining baseline susceptibility to different metabolic hits. Second, we will emphasize that elucidating insult specific 
pathogenic mechanisms will likely be critical in devising more personalized treatments for AKI. Finally, we will argue that 
uncovering links between tubular metabolism and whole-body homeostasis will identify new strategies to try to reduce the 
considerable morbidity and mortality associated with AKI. These concepts will be illustrated by examples of recent studies 
emanating from the authors’ laboratories and performed under the auspices of the Swiss National Competence Center for 
Kidney Research (NCCR Kidney.ch).
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Introduction

Acute kidney injury (AKI) is defined as an abrupt loss of 
kidney function, manifesting clinically as a rapid increase 
in blood markers of filtration (e.g., creatinine) and/or a 
decrease in urine output. AKI occurs in 10–15% of patients 
admitted to hospital and is associated with substantial mor-
bidity, mortality, and financial burdens on health systems 

[101]. Aside from specific other causes like glomerulone-
phritis and post-renal obstruction, most cases of AKI result 
from insults to the proximal tubule (PT), including ischemia/
hypoxia, sepsis, and toxicity from xenobiotics (e.g., drugs 
or heavy metals) or endogenous proteins (e.g., myoglobin 
in rhabdomyolysis, immunoglobin light chains in plasma 
dyscrasias).

The PT is the workhorse of the kidney, performing the 
bulk of fluid reabsorption post glomerular filtration. Metabo-
lism within PT cells is closely coupled to solute transport 
function, and substantial changes in metabolism occur dur-
ing AKI. PTs are densely packed with elongated and inter-
connected mitochondria, which are needed to generate ATP 
to drive the movement of solutes, and most of the aforemen-
tioned insults target these organelles. It therefore follows 
that deepening understanding of the metabolic/mitochon-
drial changes that occur could open the way to developing 
new therapeutic strategies. Accordingly, there has been an 
explosion of research on this topic in the last few years, and 
a number of recent in-depth review articles have nicely cov-
ered this [5, 17, 25, 49, 62, 64, 65, 107]. Our intention here 
is not to simply repeat the valuable information contained 
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within these verbatim, but rather to introduce the subject 
and succinctly summarize the current state of the field. We 
will then proceed to highlight three broad concepts that have 
received rather less attention to date, but might neverthe-
less be important for translating basic AKI research into 
the clinic.

Basic physiology of the proximal tubule

Solute transport

The PT begins immediately after the glomerulus and reab-
sorbs numerous filtered solutes to prevent their loss in the 
urine. Vectorial transport is driven by the highly abundant 
basolateral  Na+/K+-ATPase transporter [15], which is the 
major consumer of ATP in the PT. The movement of various 
solutes — including glucose, amino acids, phosphate, and 
bicarbonate — is then either directly or indirectly coupled 
to that of sodium and involves an array of membrane co-
transporters. In addition, a substantial amount of fluid is 
also reabsorbed via the leaky paracellular route. Another 
specialized function of the PT is to reclaim small filtered 
plasma proteins and their cargo, via receptor mediated endo-
cytosis [85]. In parallel to its resorptive function, the PT also 
secretes organic solutes that are poorly filtered (usually due 
to albumin binding), using various organic anion and cation 
transporters (OATs and OCTs, respectively) [123]. These 
have long been studied in the context of renal drug handling, 
but interest is also growing in their role in excreting puta-
tive uremic toxins, some of which are generated by the gut 
microbiome [117].

The PT is divided anatomically into convoluted and 
straight parts, the latter entering the medulla. It can also be 
classified as having three distinct segments (termed S1-3), 
based on subtle differences in cellular ultrastructure vis-
ible with electron microscopy [15]. This segmentation is 
observed in various different species, including rodents, 
rabbits, dogs, and primates [15]. Previous micro-puncture 
studies in rats have suggested — somewhat intuitively — 
that reabsorption of filtered solutes is greatest in the early 
part of the PT [71]. Meanwhile, experiments performed 
in isolated segments of rabbit PT revealed a higher secre-
tion of organic anions in more distal regions [122]. These 
findings suggest that solute transport is somehow spatially 
organized along the PT, and that changes in cell morphol-
ogy probably reflect adaptation to sub-specialized tasks. 
But the extrinsic factors that shape these axial patterns, 
and to what extent specific transport mechanisms map 
exclusively to individual segments, remains far from clear 
[38] (although answers are starting to emerge from gene 

expression and functional imaging studies — see below). 
Moreover, it needs to be determined whether structure-
function relationships in the PT of laboratory animals are 
fully replicated in humans.

Metabolism

The high transport demands placed on the PT necessi-
tate a rich and constant supply of ATP, which is provided 
by mitochondria. Accordingly, the kidney is second only 
to the heart in terms of mitochondrial density [5]. It has 
long been known that renal tubular oxygen consumption 
displays a linear relationship with sodium transport [72], 
suggesting very tight coupling between the two. Previ-
ous studies have suggested that the PT is almost entirely 
dependent on aerobic metabolism to produce ATP and 
that — unlike distal tubular segments — it lacks substan-
tial glycolytic capacity [4]. While aerobic respiration is 
undoubtedly more efficient, the lack of a backup option 
renders the PT extremely vulnerable to mitochondrial 
insults; this concept is exemplified by the high prevalence 
of PT transport defects in patients with genetic disorders 
in mitochondrial function [74].

Older studies performed with isolated nephron seg-
ments demonstrated that PTs can metabolize an impres-
sively diverse range of substrates, including fatty acids 
(FAs), ketone bodies, amino acids, pyruvate, lactate, and 
citric acid cycle intermediates [121]. It is often stated 
that FAs are the preferred fuel for PTs [30, 51], and it is 
certainly true that — pound for pound — they produce 
the highest yield of ATP. However, this concept over-
looks the importance of substrate availability within a 
complex filtering organ and the increasing experimental 
evidence of metabolic heterogeneity along the PT (see 
later).

In addition to ATP generation, there are a number of 
other specialized metabolic processes that also take place 
within the PT, including plasma protein catabolism, argi-
nine metabolism, ammoniagenesis, the urea cycle, and 
detoxification/conjugation of xenobiotics and organic 
solutes. Once again, we unfortunately lack a detailed 
understanding of the spatial arrangement of these pro-
cesses along the PT, and how they might be integrated 
with other functions. Together with the liver, the PT is 
also a major site of glucose production (gluconeogene-
sis), which provides an explanation as to why reabsorbed 
glucose is apparently not used by the PT as a metabolic 
fuel (i.e., to avoid a futile cycle). During AKI, the loss 
of tubular metabolic functions with direct relevance to 
whole-body homeostasis, such as gluconeogenesis, might 
help to explain high levels of associated morbidity and 
mortality.
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Metabolic and mitochondrial responses 
to acute proximal tubular injury

Much has been learnt in recent years concerning meta-
bolic and mitochondrial changes that occur in PT cells 
in response to acute injury, which has uncovered a raft of 
potential new targets for therapeutic intervention. Most of 
this information has been derived from ischemia-reperfu-
sion models in rodents, and to a lesser extent cisplatin tox-
icity. Since this topic has been covered in detail by others, 
we will simply provide a summary of major findings here.

Acute cessation of aerobic respiration in the PT typi-
cally causes extensive fragmentation of the mitochondrial 
network [37, 111] and a rapid decline in intracellular ATP 
[125]. The GTPase dynamin-1-like protein (Drp1) proba-
bly plays an important role in mitochondrial fission during 
AKI, and blocking it seems to be protective [10, 67, 94]. 
Mitochondrial injury often leads to oxidative stress, espe-
cially during the post-ischemic reperfusion phase when the 
oxygen supply is restored. When severe, this can trigger 
mitochondrial swelling, perhaps in part due to opening of 
a large non-specific pore in the inner membrane (the mito-
chondrial permeability transition pore — mPTP) [110]. 
Mitochondrial targeted anti-oxidants have been developed, 
which have shown promise in pre-clinical AKI studies [2, 
53, 109], and are now entering human trials [64]. How-
ever, some caution may be required, since the chemical 
properties that enable these agents to target mitochondria 
can also lead to some unwanted side effects [32].

ATP depletion induces acute changes in PT cell mor-
phology, including retraction of the brush border, mem-
brane blebbing, and shedding of cellular debris into the 
lumen [31], resulting in the appearance of a flattened epi-
thelia, the histological hallmark of AKI. Loss of normal 
calcium homeostasis results in large rises in intracellular 
calcium concentration [75, 119], which might in part drive 
some of these structural alterations, including rearrange-
ment of the actin cytoskeleton. Major changes in intracel-
lular lipid content also occur [27], likely driven at least 
in part by a decrease in consumption as a metabolic fuel. 
Moreover, the energetic crisis of AKI triggers organelle 
degradation by autophagy, and enhancing the specific 
removal of damaged mitochondria (mitophagy) might help 
to limit oxidative stress [118].

Post injury, flattened PT cells dedifferentiate and enter-
ing a quasi-dormant state, presumably reflecting a survival 
strategy to reduce ATP demands, and prevent uncontrolled 
and immunogenic cell death. There is some evidence that 
during this effective hibernation, they increase glycolytic 
capacity [58], before eventually re-differentiating during 
the recovery phase of AKI, the transcriptional regulation 
of which is currently the subject of intense research [56]. 

Large numbers of epithelial cells are also shed into the 
urine, leading to a substantial decrease in the remaining 
viable population [60]. Although mitochondrial damage 
can trigger apoptosis, this does not seem to be a predomi-
nant feature in most types of AKI [73]. However, other 
types of cell death, such as ferroptosis and necroptosis, 
probably contribute more substantially to tubular injury 
[73]. Of note, ferroptosis is triggered by oxidative stress 
(alterations in glutathione concentration/redox state and 
lipid peroxidation), which, as already stated, can arise 
from mitochondrial dysfunction.

Failure of surviving PT cells to re-differentiate triggers 
the release of pro-fibrotic factors and probably represents a 
critical watershed between reversible damage and the devel-
opment of progressive chronic kidney disease (CKD) [42]. 
Several studies have shown that mitochondrial biogenesis is 
temporarily downregulated in the PT in response to injury, 
at least in part due to a decreased expression of the master 
regulator peroxisome proliferator-activated receptor gamma 
coactivator 1-alpha (PGC1α) [62, 69]. There has therefore 
been much interest in developing compounds that might 
boost PGC1α activity at the appropriate time point to hasten 
recovery [5]. Meanwhile, the release of mtDNA from dam-
aged organelles might be important in triggering secondary 
inflammatory responses [16].

Finally, a landmark study in the field identified that abrupt 
decreases in intracellular nicotinamide adenine dinucleotide 
(NAD) occur during AKI, also probably linked to suppres-
sion of mitochondrial biogenesis [114]. NAD is a redox 
co-factor involved in many different critical metabolic pro-
cesses, including beta oxidation, the citric acid cycle, and the 
respiratory chain. Therefore, restoring NAD function could 
have myriad beneficial effects and might be substantially 
more potent than targeting a single pathway [52, 97]. Moreo-
ver, supplementation with precursors produces substantial 
increases in tissue levels of NAD [19], and thus represents 
an attractive therapeutic strategy, and the outcomes of clini-
cal trials are eagerly awaited [96]. Alternatively, pharma-
cologically targeting the de novo NAD synthesis pathway 
in the kidney also seems to be a promising approach in 
pre-clinical AKI models [52]. However, recent rodent stud-
ies suggest that NAD supplementation is not so effective 
in CKD [26], implying that attention should probably be 
focused on acute injury.

The aforementioned studies have generated numerous 
potential targets for intervention that are now being actively 
explored and have also uncovered key regulators of PT 
metabolism, such as members of the sirtuin family [14, 81]. 
Moreover, like NAD supplements, some therapies in devel-
opment target more than one pathway, which could increase 
their efficacy. For example, mitochonic acid displays both 
anti-oxidant and ATP boosting properties [108], while tar-
geting the nuclear pregnane X receptor has pleotropic effects 
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on mitochondrial function [127]. However, the inevitable 
excitement generated by all these discoveries is slightly 
dampened by the poor historical track record in the AKI field 
of successfully translating pre-clinical studies into effective 
treatments. There are a number of well-recognized generic 
reasons for this, including issues such as species differences, 
publication bias, and lack of randomization, blinding, and 
rigorous statistical analysis [22]. In our view, there are three 
additional concepts more specific to AKI that have received 
somewhat less attention to date, but might nevertheless be 
decisive. These are (1) the importance of heterogeneity in 
cellular function and metabolism along the PT in determin-
ing baseline vulnerability to insults; (2) the diversity of AKI 
causes and the need to identify insult specific mechanisms 
to develop precision therapies; and (3) the necessity to inte-
grate alterations in tubular function with changes in whole 
body homeostasis, in order to devise strategies to reduce 
associated morbidity and mortality. In the following sec-
tions, we will consider each of these issues in turn, and along 
the way will highlight relevant work performed within the 
auspices of the NCCR Kidney.ch.

Heterogeneity of cellular function 
along the proximal tubule

The nephron is divided into discreet functional segments, 
and it has long been known that each of these is rendered 
more or less vulnerable to certain disease causing insults 
by their intrinsic physiological properties and/or anatomical 
location [103]. The same concept applies to the sub-sections 
of the PT. For example, due to its outer medullary environ-
ment and hazardous blood supply (predominantly from post-
glomerular capillaries), the S3 segment of the straight PT 
is the major site of damage in ischemia-reperfusion injury 
[106]. Conversely, experimental application of respiratory 
chain inhibitors in rat kidneys causes maximal damage in the 
upstream convoluted segments, because of a lack of anaero-
bic capacity [9]. Meanwhile, since it endocytoses macromol-
ecules filtered by the glomerulus [104], the early PT (S1) is 
highly exposed to protein toxins such as myoglobulin [28] 
and light chains [68].

Nephrotoxins can also enter PT cells directly from the 
blood via basolateral OATs and OCTs, so axial expression 
patterns of these transporters are another important factor in 
determining baseline susceptibility [59, 123]. For instance, 
OAT1 can transport a wide range of different drugs, some 
of which are nephrotoxic, such as the anti-viral tenofovir 
[55]. Antibody staining in mice suggests that OAT1 is highly 
expressed in the S2 region [7], matching the functional 
experiments in rabbits mentioned earlier [122]. It remains 
unclear to what extent this OAT1 expression pattern is rep-
licated in humans [8], and this requires deeper study, but 

acquiring tissue of sufficient quality to perform quantita-
tive studies is a major practical issue here. In addition to 
transporters, the abundance of drug metabolizing enzymes 
(e.g., cytochrome P450s) and anti-oxidant defenses (e.g., 
glutathione) is also greater in some PT sub-segments than 
others in rodents and rabbits [91], but detailed human data 
are again lacking.

The concept of functional diversification along the PT has 
been further strengthened by live imaging studies, where the 
dynamic behavior of single cells can be mapped to their ana-
tomical position [76]. For example, we have recently discov-
ered evidence of striking gradients in spontaneous calcium 
signaling along the mouse PT [75]. Moreover, although S1 
and S2 segments are virtually indistinguishable in routine 
histology sections (unless the former is fortuitously captured 
leaving a glomerulus), they display very different patterns in 
metabolic autofluorescence signals [11, 40], many of which 
are related to mitochondrial metabolism and redox state. 
In addition, we (A.M.H.) found that inhibition of glucose 
metabolism had a sizeable effect on cytosolic NAD(P)H 
levels in S2 segments of mouse cortical PTs in freshly cut 
kidney slices [11], suggesting that glucose might be impor-
tant in this region to maintain redox balance via the pentose 
phosphate pathway, and raising the prospect of heterogene-
ity in substrate dependence among the segments of the PT.

Older studies performed in vitro with isolated PTs sug-
gested that they can utilize a range of different fuels [121], 
but what they actually do metabolize in their native envi-
ronment is a different matter and will obviously be greatly 
influenced by substrate availability. For example, recent 
transcriptomics studies suggest that early (S1) PT cells in 
mice display a high expression of apical transporters for fil-
tered metabolites such as lactate, pyruvate, and amino acids 
[13, 98]. Moreover, endocytosis of filtered plasma proteins 
also represents a potential source of nutrients in this region 
[34], while albumin bound FAs can hitch a ride into S1 cells 
this way [80]. Quantitative in vivo studies of metabolite 
exchange in pigs have also highlighted substantial metab-
olism of circulating citrate in the PT [46]. Meanwhile, as 
already mentioned, S2 PT cells have a very high abundance 
of the basolateral metabolite transporter OAT1, which can 
transport FAs [35], and recent transcriptomic studies in mice 
also suggest a high expression of the FA transporter CD36 
in S2/3 [66]. They are also much more densely packed with 
peroxisomes [11], which could supply additional lipid fuels 
via beta oxidation of very long chain FAs. Furthermore, 
they contain multi-lamellar bodies that probably represent 
intracellular lipid stores and grossly enlarge in response to 
sustained high fat feeding [57].

Conceptually, therefore, it can be considered that the 
early (S1) PT might be to an extent “fed” by the bountiful 
glomerular filtrate, with luminal substrates such as lactate, 
proteins (and their cargo), and amino acids taken up by cells 
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from the apical side. Conversely, deprived of this option, 
downstream segments (S2) have to forage for a living in the 
bloodstream by directly importing metabolites across the 
basolateral membrane (Fig. 1). Thus, the oft repeated adage 
that FAs are the major fuel of the PT is perhaps slightly 
simplistic and should be revised to take account of axial 
heterogeneity in metabolite supply, transporter expression, 
and pathway activity.

The implications of this for understanding the topogra-
phy of PT damage in AKI need to be carefully considered. 
For example, in regions with high peroxisomal density, FA 
oxidation in these organelles could help to compensate for 
a lack of lipid metabolism in damaged mitochondria, thus 
limiting harmful rises in free FAs [14]. In addition, there is 
even evidence that cross-talk between PT segments might 
occur in sepsis [50], reinforcing the importance of delineat-
ing the spatiotemporal evolution of damage in vivo during 
AKI. How exactly different tubular cells communicate with 
each other remains far from clear, but release of extracellular 
vesicles like exosomes is one intriguing possibility, which is 
currently receiving much attention [88]. The range of usable 
fuels delivered to the early (S1) PT raises the possibility of 
a carbon excess under normal conditions that could explain 
high gluconeogenic activity in this region [124], which is 

lost in AKI (see below). Finally, the importance of devel-
oping a more holistic view of PT metabolism in AKI was 
nicely illustrated by a recent study showing that effective 
coordination of mitochondrial biogenesis and mitophagy 
requires cross-talk with endo-lysosomal system function, 
and more specifically alignment with regulation of lysoso-
mal biogenesis [70].

Diversity of insults causing tubular injury

The historical rebranding of “acute tubular necrosis” to AKI 
was driven by a number of factors, not least the inconvenient 
fact that necrosis is rarely observed in biopsy specimens 
[102]. However, one important influence was the success of 
renaming ischemic heart diseases as “acute coronary syn-
dromes,” which brought numerous benefits for cardiology. 
These included (1) the recognition that previously distinct 
clinical entities — like unstable angina and myocardial 
infarction — can represent different severity points on the 
same patho-physiological spectrum; (2) the development 
of effective biomarkers like troponin that changed clinical 
practice; and (3) the impetus to reorganize services around 
patient needs and thus improve outcomes. Unfortunately, 

Apical
(urine)

Basolateral
(blood)

Lactate/pyruvate
Amino acids
Proteins

Fa�y acids

Peroxisome Mul�-lamellar body

S1

S2S1

S2

Fig. 1  Schematic of metabolic substrate usage along the proximal 
tubule. The convoluted part of the proximal tubule (PT) comprises of 
2 distinct segments (S1 and S2), which display differences in expres-
sion levels of membrane transporters for metabolic substrates. Metab-
olites filtered by the glomerulus are reabsorbed from the primary 
urine by S1 cells, across the apical membrane. Conversely, cells in 
S2 have a high abundance of basolateral fatty acid and organic anion 

transporters, which can import substrates directly from the blood. 
Moreover, they are more densely packed with peroxisomes that can 
generate lipid substrates by beta oxidation of long chain fatty acids. 
Meanwhile, excess free fatty acids within S2 cells can be stored in 
specialized multi-lamellar bodies found in this region, to prevent 
potentially harmful lipotoxicity. LoH, loop of Henle; DT, distal 
tubule; CD, collecting duct
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the adoption of “AKI” has not so far had the same trans-
formative effect in nephrology. Again, there is likely to be 
more than one reason for this, but a major factor is surely 
the heterogeneity of insults that can cause AKI in humans 
[103], in comparison to acute coronary syndromes, which 
are overwhelmingly driven by atherosclerosis and ischemia.

Clinician scientists working in the AKI field will have no 
doubt been struck previously by the markedly differing inci-
dences of ischemia-reperfusion injury in pre-clinical studies 
and patients; being virtually endemic in the former, but mer-
cifully rare in the latter. For sure, renal hypoperfusion can 
happen during major surgery or hemorrhage, while sepsis 
probably causes alterations in intrarenal hemodynamics, but 
these scenarios are not directly comparable with completely 
clamping the renal artery in rodents. Moreover, although 
absolute warm ischemia certainly does contribute to tubu-
lar damage in the realm of transplantation, a lot of other 
things happen there too, including prolonged cold ischemia, 
immune responses, urological problems, and exposure to 
nephrotoxic drugs, which together vastly complicate the 
picture. Besides, where warm ischemia does occur in non-
transplant settings, evidence suggests that human PTs are 
more resistant than rodents [90].

Thus, while studies of ischemic AKI have undoubtedly 
brought some benefits, including reproducibility and the 
uncovering of generic cellular responses to aerobic insults, 

transitioning to a more individualized, precision medicine 
approach necessitates a renewed focus on insults that actu-
ally cause AKI in patients and on elucidating specific pro-
cesses critical in each of these [23]. For comparison, a num-
ber of very precise molecular mechanisms have now been 
elucidated in genetic diseases affecting mitochondria in the 
PT [54, 100], and similar breakthroughs in the AKI field 
could open the way to more targeted therapies. By anal-
ogy, meticulous elucidation of the complement cascade has 
enabled development of effective antibody treatments for 
atypical hemolytic uremic syndrome, a rare but important 
cause of renal failure [39].

Metabolic changes in specific types of acute kidney 
injury

AKI often occurs in the setting of plasma cell dyscrasias 
like myeloma, due to the toxic effects of free light chain 
immunoglobulins, which are filtered by glomeruli and endo-
cytosed by the PT. However, the exact reasons why these 
proteins are harmful to the PT were previously unclear. In 
a recent breakthrough study, it was shown that lysosomal 
metabolism of pathogenic light chains induces ROS produc-
tion, which then activates pro-inflammatory and pro-fibrotic 
signaling cascades, via the redox-sensitive JAK2/STAT1 
pathway [126] (Fig.  2). Critically, depletion of STAT1 

ROS

Lysosome

ROS
ROS

JAK2/STAT1 

NAD+

NADH

Acidosis

Fa�y acid
oxida�on

Fibrosis

DFX DFX DFXDFX

ATP

1.

2.

3.
Mitochondria

Light 
chains

Apical
(urine)

Basolateral
(blood)

Fig. 2  Examples of recently discovered metabolic pathways in acute 
kidney injury. (1) Uptake of filtered, non-degradable immunoglobu-
lin light chains in proximal tubular cells and accumulation in lys-
osomes induces reactive oxygen species (ROS) production, which 
then activates the redox-sensitive JAK2/STAT1 pathway and inter-
stitial inflammation and fibrosis. (2) During acute metabolic acido-
sis, changes in redox state of the vital metabolic co-factor NADH 

(towards oxidation) and inhibition of fatty acid oxidation lead to the 
accumulation of intracellular lipids. (3) The nephrotoxic iron che-
lator deferasirox (DFX) is highly lipophilic and interacts with the 
mitochondrial inner membrane, causing severe swelling in these 
organelles and a decrease in cellular ATP, probably due to partial 
uncoupling of the respiratory chain
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in vivo was then protective, demonstrating that elucidation 
of specific molecular pathways in AKI can facilitate targeted 
approaches. Moreover, it was recently shown that oxalate 
excess — which occurs clinically in the setting of ethylene 
glycol poisoning — results in mitochondrial damage and 
cell death (necrosis and necroptosis) via induction of the 
mPTP [82]. Admittedly, this phenomenon occurs mainly in 
the distal tubule rather than the PT, due to the high luminal 
concentration and the formation of harmful crystals, but it 
nevertheless provides another example of a druggable target 
in a specific form of AKI.

Sepsis is a major cause of AKI in humans but is fiendishly 
difficult to realistically model in rodents. Therefore, knowl-
edge of the cellular pathogenesis remains limited. Neverthe-
less, endotoxin administration to mice has been shown to 
induce mitochondrial swelling in PTs, and an acute suppres-
sion of mitochondrial activity, probably driven by downreg-
ulation of the master regulator PGC1α [113]. More recently, 
single cell sequencing has suggested a major transcriptional 
shift in PTs from solute transport towards immune activa-
tion [47]. Meanwhile, evidence of tubular oxidative stress 
has been reported in a rat peritonitis model, where treatment 
with a mitochondrial targeted anti-oxidant (MitoTEMPO) 
was beneficial both for mitochondrial and overall kidney 
function [3]. Notwithstanding these important observations, 
we are unfortunately still some way from gaining critical 
mechanistic insight in human septic AKI. The launching 
of new large-scale initiatives such as the Kidney Precision 
Medicine Project — which aim to integrate multiple differ-
ent types of orthogonal human-derived data — might in time 
provide the necessary breakthroughs [21], but painstaking 
experimental work will still be required to dissect out causa-
tion from correlation.

Drug toxicity as a cause of acute tubular injury

The PT secretes a number of xenobiotics from the blood 
into the urine, and also endocytoses filtered medicines like 
gentamicin. As such, it is a frequent site of drug induced 
damage, and nephrotoxicity is thought to account for 25% 
of cases of AKI [92]. Despite its prominence in the etiology, 
aside from cisplatin drug toxicity has received relatively lit-
tle attention in AKI research. Accordingly, in most cases, the 
underlying mechanisms remain to be properly elucidated at 
a cellular level, although mitochondria in the PT have long 
been suspected as major targets [44]. With improvements in 
pre-clinical models and cellular analysis techniques, this is 
beginning to change [18].

Using live cell imaging, we (A.M.H.) recently identified a 
mitochondrial mechanism of toxicity from the oral iron che-
lator deferasirox [33], which is associated with PT defects in 
humans [24]. Since other medically used iron chelators are 
not apparently nephrotoxic, this raised the clinical suspicion 

that deferasirox might have an off-target effect, and our find-
ings suggested that this is indeed the case. We observed 
that deferasirox — but not other chelators — induces acute 
swelling of mitochondria and ATP depletion within PT cells, 
probably due to an interaction between the drug and the 
inner mitochondrial membrane, leading to a partial uncou-
pling of the respiratory chain [33] (Fig. 2). Of note, the 
chemical properties of deferasirox (a lipophilic weak acid) 
that are likely responsible for this phenomenon are shared 
by some other nephrotoxins (e.g., non-steroidal anti-inflam-
matories), raising the possibility of a common mechanism 
[84]. In contrast, some other well-established nephrotoxins 
exert quite different effects on mitochondria. For example, 
the anti-viral tenofovir induces mitochondrial hypertrophy, 
rather than swelling, and marked changes in cristae mor-
phology [41], hinting at a quite distinct pathological process. 
Importantly, elucidating toxicity mechanisms can reveal new 
paradigms for prevention. For example, we discovered that 
the harmful effects of deferasirox on mitochondria are medi-
ated by the free form of the drug, and that binding to iron 
or albumin can substantially ameliorate toxicity, at least in 
cells [33]. Extrapolating from this to humans, it is possible 
that iron store levels and blood protein concentration might 
determine baseline susceptibility to toxicity in humans, but 
this remains to be proven.

The preceding examples underscore the principle that 
mechanisms of mitochondrial injury in the PT are likely 
to be insult specific. While the downstream consequences 
might converge on common pathways (like mitophagy, say), 
it seems evident that developing effective treatment strat-
egies will be contingent on a more precise understanding 
of the initial upstream events. By analogy, reducing intra-
glomerular pressure with renin-angiotensin-system block-
ers is broadly beneficial in many different glomerulopathies, 
regardless of the exact cause, but this has not precluded an 
intensive search for disease specific molecular changes that 
might be more precisely targeted in tandem.

Tubular targeted therapies

The PT is armed with an array of cell membrane transport 
mechanisms that can potentially be harnessed, either to 
introduce novel therapies or to block the uptake of toxins. 
For example, PT cells avidly endocytose macromolecules 
filtered from the glomerulus (via the megalin/cubilin sys-
tem), and a recent study showed that this provides a conduit 
to deliver anti-oxidant nanoparticles to the PT, which pro-
vide protection in a model of septic AKI [115]. Conversely, 
inhibition of megalin-mediated myoglobin uptake prevents 
tubular damage in rhabdomyolysis [77]. PT cells in vivo 
have a close structural and functional relationship with sur-
rounding stromal cells [42], and tubulo-interstitial cross-talk 
might also be exploited to enhance metabolic function in 
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damaged PTs. Along this line, injection of human mesenchy-
mal stromal cells into mice seems to stimulate mitochondrial 
biogenesis in the PT and improves mitochondrial function 
in a mouse model of cisplatin AKI, possibly via the activity 
of sirtuin 3 [93].

Precision diagnosis with biomarkers

Accurate diagnosis and targeting of different types of AKI 
in humans will be massively enhanced by the development 
of specific blood or urinary biomarkers, and this has been 
an area of intense research interest in the last few years. 
Some urine biomarkers arise predominantly from defined 
tubular regions (e.g., kidney injury molecule 1 from the PT, 
uromodulin from the thick ascending limb of Henle) and can 
thus indicate regions of damage along the nephron [120]. 
Moreover, older studies suggested that alkaline phosphatase 
might denote damage in S3 in humans [87]. However, we 
still remain some way from being able to use biomarkers to 
localize injury to sub-segments of the PT or to denote activa-
tion of insult specific cell damage pathways. Nevertheless, 
they do provide the opportunity to detect tubular injury well 
before rises in blood creatinine, and thus to predict AKI 
progression in settings such as cardiac surgery [120].

Integration of acute kidney injury 
with whole body homeostasis

More than any other organ, the kidney maintains the milieu 
intérieur, upon which complex organisms are utterly depend-
ent, by regulating processes such as osmolarity, bone and 
mineral homeostasis, hemoglobin concentration, and acid-
base status. It therefore follows that acute loss of renal 
function has widespread consequences for patients, which 
in turn might explain the prominence of AKI in critical ill-
ness. However, the exact homeostatic disturbances that drive 
poor patient outcomes in AKI have remained opaque, which 
generates substantial equipoise in patient management. For 
example, arguments are still raging as to whether early cor-
rection of dyselectrolytemia with renal replacement therapy 
is beneficial or not [48].

Glucose homeostasis in acute kidney injury

Glucose is a vital fuel for various organs, including mus-
cle and brain, and the kidney contributes up to 40% of sys-
temic gluconeogenesis in the fasted healthy state, mainly via 
the metabolism of lactate in the PT [29]. In a recent study, 
one of the authors (S.d.S.) demonstrated that this essential 
metabolic function of the kidney is dramatically altered 
during AKI [61]. In both experimental models of ischemia-
reperfusion and biopsies from kidney allograft patients 

during the reperfusion phase, striking downregulation of 
the whole gluconeogenetic pathway was observed. This was 
coherent with a reduced ability to clear lactate and produce 
glucose in the experiment setting, and with lower glucose 
and higher lactate serum levels in patients with AKI. Cru-
cially, these metabolic alterations were themselves associ-
ated with increased mortality risk. Thus, AKI not only alters 
lipid metabolism but also has a profound effect on glucose 
homeostasis (Fig. 3), which provides at least one plausible 
link between tubular cell fitness and patient survival.

The importance of the kidney in glucose metabolism has 
also been highlighted by the widespread usage of sodium-
glucose transporter 2 (SGLT2) inhibitors. While protective 
against progression of CKD, there have been concerns that 
these drugs might cause AKI in some patients, possibly due 
to natriuresis and volume depletion [36]. However, more 
recent meta-analysis of multiple studies actually suggests 
a protective effect [79], perhaps due to redistribution of the 
solute transport load along vulnerable tubules. Experiments 
in mice have also suggested direct benefits of SGLT2 inhibi-
tors on PT cell metabolism in diabetes, including preventing 
suppression of sirtuin 3 and aberrant glycolysis [63], and 
possibly also promotion of ketone body metabolism [112]. 
Of note — and relevant to the earlier discussions on tubu-
lar physiology — the sodium-glucose transporters SGLT1 
and 2 display striking axial patterns in expression in the PT 
[116]. Moreover, evidence suggests that SGLT2 expression 
and activity is downregulated in rodent PTs in response to 
ischemia-reperfusion injury [116], and loss of tubular glu-
cose reabsorption might further contribute to disturbances 
of systemic blood glucose that occur in human AKI.

Organic solute excretion in acute kidney injury

As mentioned previously, a major function of the PT is to 
secrete organic solutes into the urine that are poorly filtered 
by the glomerulus (e.g., due to albumin binding). A num-
ber of organic anions — including indoxyl sulfate, indoxyl 
acetate, kynurenine, kynurenic acid, and p-cresyl sulfate 
— are putative uremic toxins, which are generated by the 
gut microbiome and normally removed from the blood by 
basolateral OATs expressed in the PT [117]. Loss of renal 
function therefore causes a build-up of these substances in 
the blood, and this might contribute to the high burden of 
cardiovascular disease in patients with CKD [99].

Since a number of substances transported by the OAT 
system are potential fuels (including FAs) [35], and mito-
chondria within the PT can both metabolize and generate 
uremic toxins [95], this represents another important inter-
section between tubular metabolism and whole-body home-
ostasis. The clinical relevance of this was highlighted by a 
recent study demonstrating association of impaired tubular 
organic solute secretion with worsening of a combined renal 
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end point (including death) in patients with critical illness 
[6]. Moreover, tubular secretion is also a vital elimination 
pathway for many drugs (e.g., antibiotics and antivirals) that 
are widely used on intensive care units. Improving under-
standing of how this system is altered in AKI could lead to 
more accurate drug dosing, thus reducing iatrogenic harm 
and further improving patient outcomes.

Acidosis as a driver of tubular injury

Loss of renal function undoubtedly disturbs body homeo-
stasis, but the high prevalence of AKI in intensive care 
units also raises the possibility that the reverse may be true, 
i.e., that some perturbations in normal blood consistency 
might themselves be harmful for the kidney. As an example 
of this concept, a recent clinical study suggested that cor-
recting metabolic acidosis in patients with critical illness 
substantially improves renal outcomes [45], which is line 
with numerous studies suggesting a benefit in CKD [83], and 
suggests that acidosis is somehow injurious to the kidney.

To explore the cellular events underlying this intrigu-
ing observation, the group of one of the authors (A.M.H.) 
recently performed live cell imaging studies in mouse kid-
ney cortex and found that acidosis induces acute metabolic 

changes in PTs, including in mitochondrial NAD redox 
state, respiratory chain function, and intracellular lipids [12] 
(Fig. 2). Importantly, these phenomena were associated with 
tubular damage characteristic of AKI, and functional defects 
in filtered solute transport could be substantially ameliorated 
by bicarbonate therapy or NAD supplementation. Thus, this 
provides yet another example that integrating clinical knowl-
edge (i.e., what actually triggers AKI in patients) with mech-
anistic insight from basic research studies can ultimately 
generate new treatment strategies that are viable in humans.

Conclusions and future directions

AKI is most frequently caused by damage to the PT and is 
associated with substantial morbidity and mortality. Much 
has been learnt about the metabolic changes that take place 
in PT cells, and numerous potential therapeutic targets have 
been identified. However, despite a long history of promis-
ing pre-clinical studies in AKI, something always seems to 
get lost in translation, and treatment options for patients have 
remained limited (to put it mildly). There are a number of 
possible reasons for this, some of which are rather generic 
and equally germane to other organ systems and diseases, 

Fig. 3  Alterations in systemic 
glucose homeostasis in acute 
kidney injury. Under normal 
physiological settings, the 
kidney contributes up to 40% 
of body gluconeogenesis after 
fasting, by converting lactate to 
glucose in the proximal tubule. 
During acute kidney injury, this 
process is dramatically down-
regulated, leading to decreased 
lactate clearance and increased 
risk of hypoglycemia
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not least the often underappreciated conceptual differences 
between exploratory and confirmatory research [1]. Nev-
ertheless, in this article, we have highlighted three specific 
areas that we believe deserve renewed consideration in the 
AKI field.

First, delineating more precisely the heterogeneity of cel-
lular function along the PT will enhance understanding of 
baseline vulnerability — and prediction of response — to 
metabolic insults in the different segments and will prob-
ably also shed new light on the nature of adaptive remod-
eling post injury. Importantly, it remains to be established 
to what extent the striking functional topography of the PT 
in experimental rodents is replicated in humans. Second, 
elucidating exact cellular mechanisms in specific types of 
AKI could facilitate more targeted therapeutic approaches to 
limit damage, which might even be combined with broader 
interventions like manipulating mitophagy or mitochondrial 
biogenesis to speed recovery. Lastly, metabolic changes 
occurring within tubules during AKI should be integrated 
with alterations in whole-body homeostasis (e.g., regulation 
of glucose, organic solutes, and acid-base status) to improve 
patient outcomes, a concept nicely embodied by the full title 
of the NCCR network: “Kidney Control of Homeostasis.”

Moving forward, a more personalized era could be envis-
aged, whereby patients with AKI would undergo detailed 
assessment to establish the 6 “W”s of their tubular injury: 
Which insult is predominantly causing the injury? Where 
along the tubule is the damage? When did it start? Why is it 
occurring in this specific patient? What are the systemic con-
sequences? Will the tubules adapt and/or recover? Realiza-
tion of this ambitious aim will obviously require rather more 
sophisticated measurements than blood creatinine and urine 
output. Some of the knowledge gap could be filled by exist-
ing methodologies like functional MRI [105] and urinary 
biomarkers [78], but, realistically, newer technologies will 
be required to obtain the requisite game-changing insights 
[86]. The design and development of these will be guided 
by deepening pre-clinical understanding of the precise cell 
and molecular events that occur in different types of AKI. 
This in turn will most likely necessitate multi-disciplinary 
working with specialists currently outside the kidney field, 
the generation of more sophisticated in vitro models, and 
the integration of various different data sets (gene expres-
sion, metabolomics/proteomics, intravital imaging, etc.) 
[20]. Meanwhile, an increased usage of larger animals in 
the research pipeline might help to bridge the species gap 
between rodents and humans [89]. Finally, because more 
than one metabolic pathway can be perturbed in AKI, multi-
target drugs might ultimately be more effective than single 
silver bullets [43].

Analogies are often drawn between difficult-to-crack 
diseases and military conflicts (the “war on cancer,” etc.). 
Historical study of the latter suggests that to break any 

longstanding stalemate new fronts have to be opened up. 
Understanding how metabolism changes along PTs in an 
insult specific manner — and the consequences of this for 
the topography of damage and remodeling, the genesis of 
biomarkers, and whole-body homeostasis — represents one 
promising line of inquiry in AKI research.
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