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Abstract: DNA-dependent protein kinase (DNA-PK) is a serine/threonine protein involved in DNA
damage response (DDR) signaling that may mediate kidney cyst growth in autosomal dominant
polycystic kidney disease (ADPKD) due to its pleiotropic effects on proliferation and survival. To test
this hypothesis, the expression of DNA-PK in human ADPKD and the in vitro effects of DNA-PK
inhibition in a three-dimensional model of Madin-Darby Canine Kidney (MDCK) cyst growth and
human ADPKD cells were assessed. In human ADPKD, the mRNA expression for all three subunits
of the DNA-PK complex was increased, and using immunohistochemistry, the catalytic subunit
(DNA-PKcs) was detected in the cyst lining epithelia of human ADPKD, in a focal manner. In vitro,
NU7441 (a DNA-PK kinase inhibitor) reduced MDCK cyst growth by up to 52% after long-term
treatment over 6–12 days. Although human ADPKD cell lines (WT9-7/WT9-12) did not exhibit
synthetic lethality in response to DNA-PK kinase inhibition compared to normal human kidney cells
(HK-2), the combination of low-dose NU7441 enhanced the anti-proliferative effects of sirolimus in
WT9-7 and WT9-12 cells by 17 ± 10% and 11 ± 7%, respectively. In conclusion, these preliminary data
suggest that DNA-PK mediates kidney cyst growth in vivo without a synthetically lethal interaction,
conferring cell-specificity in human ADPKD cells. NU7441 enhanced the anti-proliferative effects of
rapamycin complex 1 inhibitors, but the effect was modest.

Keywords: DNA-dependent protein kinase; DNA damage signaling; double strand break; kinase
inhibitors; proliferation; kidney cyst

1. Introduction

Autosomal dominant polycystic kidney disease (ADPKD) is due to germ-line vari-
ants, predominantly in either PKD1 (85%) or PKD2 (15%), encoding the polytopic integral
membrane, polycystin-1, and the calcium transient receptor channel, polycystin-2, respec-
tively [1–3]. Both genotype as well as the total dose of ADPKD-causative genes, govern the
total kidney cyst burden and severity of kidney disease [4–6]. The acquisition of somatic
variants in the unaffected PKD allele has been hypothesized to cause a further reduction in
gene dose and explain the focal nature of kidney cyst formation [7,8]. In previous studies,
the genomic instability and DNA damage were increased in human and experimental
models of PKD [9–12], suggesting that the DNA damage response (DDR) pathway is a
potential therapeutic target in ADPKD [13].

Multiple DDR proteins work together, often with redundancy, to maintain genomic
fidelity, despite exposure to numerous endogenous and exogenous genotoxic insults
(~105 lesions each day) [14]. Inefficient repair of lesions by mutated or overexpressed
genes results in DNA double strand breaks (DSBs), chromosomal rearrangement, and
cancerous transformation [14]. In previous studies, pharmacological (but not genomic)

Int. J. Mol. Sci. 2021, 22, 10512. https://doi.org/10.3390/ijms221910512 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-3770-9227
https://orcid.org/0000-0002-2147-0998
https://doi.org/10.3390/ijms221910512
https://doi.org/10.3390/ijms221910512
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms221910512
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms221910512?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 10512 2 of 12

attenuation of ataxia-telangiectasia mutated (ATM) protein kinase attenuated the prolif-
eration of cystic epithelial cells in ADPKD [15,16]. Despite the redundancy of the DDR
pathways in normal health, cancer cells exhibit selective reliance on certain DDR kinases
for DNA repair and exhibit ‘synthetic lethality’ in response to DDR inhibition, and this has
been the focus of some tumor-selective anti-cancer treatments [15,16].

DNA-dependent protein kinase (DNA-PK) belongs to the phosphatidylinositol-3-
kinase related kinase (PI3KK) family and functions by non-homologous end joining (NHEJ)
of double-strand breaks [15,16]. It is a holoenzyme comprising three subunits: (i) Ku 70
(XRCC5) and (ii) Ku80 (XRCC6), which translocate along DNA, bind to double strand
breaks and recruit (iii) the large catalytic subunit, DNA-PKcs (PRKDC). In addition, DNA-
PK induces centrosome amplification during stalled replication [17] and ciliogenesis follow-
ing genotoxic injury [18], and reduces mitochondrial biogenesis [19]; key cellular processes
associated with ADPKD progression [20–23]. In this regard, previous studies showed
that PIK-75, a dual inhibitor of phosphoinositide 3-kinase (PI3K) and DNA-PK, slowed
cyst growth and integrity in vitro in a high-throughput screening of protein kinases [24].
Furthermore, inhibition of DNA-PK sensitized cells to inhibitors of the mammalian target
of rapamycin complex 1 (mTORC1), which delays the progression of PKD in experimental
models but has adverse effects at clinical doses [25–29].

Therefore, the aim of this preclinical study was to investigate the role of DNA-PK in
the pathogenesis of ADPKD using observational and in vitro studies to determine whether
it could be a potential target in future in vivo studies. The following specific hypotheses
were evaluated: (i) the expression of DNA-PK is increased in human ADPKD; (ii) the
pharmacological inhibition of DNA-PK reduces cyst growth in vitro; (iii) inhibition of
DNA-PK is selectively toxic to ADPKD cells; and (iv) DNA-PK inhibition enhances the
sensitivity of ADPKD cells to sub-therapeutic doses of mTORC1 inhibition.

2. Results
2.1. The Expression of DNA-PK Is Upregulated in Human ADPKD Transcriptome

As shown in Table 1, compared to normal kidney, the expression of genes encoding
the subunits of the DNA-PK complex: DNA-PKcs (PRKDC), Ku70 (XRCC5), and Ku80
(XRCC6) were increased in human ADPKD transcriptome. PRKDC was upregulated by
2.12-fold in ADPKD tissue (95% CI (1.78, 2.53); q < 0.001), increasing from 1.41-fold in
minimally cystic tissue (95% CI (1.13, 1.76); q < 0.05) to 3.18-fold in large cysts (95%CI (1.41,
4.47); q < 0.05). XRCC5 and XRCC6 were also increased by 1.79-fold (95% CI (1.68, 1.90);
q < 0.01) and 1.65-fold (95% CI (1.53, 1.78); q < 0.001), respectively, in ADPKD tissue, and
this was maintained in all cyst sizes (Table 1).

Table 1. Gene expression of DNA-PK subunits in human ADPKD compared to normal kidney
(n = 13), by cyst size. Data are presented as the fold-change ±SD.

Gene Tissue
Fold Change *

Average 95% Confidence
Interval

PRKDC

Normal (n = 13) 1.00 (0.80, 1.25)
ADPKD (n = 18) 2.12 a (1.78, 2.53)

Minimally cystic (n = 5) 1.41 c (1.13, 1.76)
Small cysts (<1 mL; n = 5) 2.04 b (1.41, 2.95)

Medium cysts (10–25 mL; n = 5) 2.61 a (1.17, 3.05)
Large cysts (>50 mL; n = 3) 3.18 a (1.41, 4.47)
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Table 1. Cont.

Gene Tissue
Fold Change *

Average 95% Confidence
Interval

XRCC5

Normal (n = 13) 1.00 (0.84, 1.19)
ADPKD (n = 18) 1.79 b (1.68, 1.90)

Minimally cystic (n = 5) 1.72 b (1.22, 2.10)
Small cysts (<1 mL; n = 5) 1.83 a (1.51, 2.19)

Medium cysts (10–25 mL; n = 5) 1.71 b (1.51, 1.93)
Large cysts (>50 mL; n = 3) 1.97 a (1.75, 2.22)

XRCC6

Normal (n = 13) 1.00 (0.89, 1.12)
ADPKD (n = 18) 1.65 a (1.53, 1.78)

Minimally cystic (n = 5) 1.45 c (1.15, 1.82)
Small cysts (<1 mL; n = 5) 1.63 a (1.48, 1.80)

Medium cysts (10–25 mL; n = 5) 1.81 a (1.53, 2.15)
Large cysts (>50 mL; n = 3) 1.77 a (1.58, 1.98)

* Fold changes are relative to the average expression of normal tissue (n = 13). Mean and 95% confidence intervals
were calculated using log 2 transformed fold change (Log2FC). The p values of all the presented data are <0.01.
p-values adjusted for false discovery rate (FDR) are presented (q); a q < 0.001; b q < 0.01; c q < 0.05, when compared
to normal tissue.

2.2. Focal Increase of DNA-PKcs in Cyst Lining Epithelial Cells of Human ADPKD

In the normal kidney, immunostaining for DNA-PKcs was weak with cytosolic staining
(with negative nuclei) in the proximal tubular epithelial cells (Figure 1A). In ADPKD,
DNA-PKcs were absent in minimally cystic regions in either nuclei or cytosol (Figure 1B).
In contrast, focal and random immuno-positive nuclei were detected in the cyst lining
epithelia (Figure 1C). Stronger immunostaining for DNAPKcs was detected in the cytosol
and apical membrane of epithelial cell lining dilated tubules and small cysts (50–200 µm)
(Figure 1D). The specificity of staining for DNA-PKcs was confirmed on antibody-negative
controls (data not shown).
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Figure 1. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is expressed focally 
in cyst lining epithelia. (A) Weak cytosolic expression in the normal renal cortex. (B) Non-cystic 
tissue in end-stage human autosomal dominant polycystic kidney disease (ADPKD) is negative for 
DNA-PKcs. (C) DNA-PKcs immunostaining of focal nuclei in cyst-lining epithelial cells (arrows). 
(D) Increased cytosolic and membranous staining in cyst lining epithelia in smaller cysts (100–200 
µm). Representative photomicrographs taken at 40× magnification. Scale bars represent 50 µm. 
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Figure 1. The catalytic subunit of DNA-dependent protein kinase (DNA-PKcs) is expressed focally
in cyst lining epithelia. (A) Weak cytosolic expression in the normal renal cortex. (B) Non-cystic
tissue in end-stage human autosomal dominant polycystic kidney disease (ADPKD) is negative
for DNA-PKcs. (C) DNA-PKcs immunostaining of focal nuclei in cyst-lining epithelial cells (ar-
rows). (D) Increased cytosolic and membranous staining in cyst lining epithelia in smaller cysts
(100–200 µm). Representative photomicrographs taken at 40× magnification. Scale bars represent
50 µm.
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2.3. Pharmacological Inhibition of DNA-PK MDCK Cyst Growth In Vitro

Before assessing the in vitro effects of NU7441 on MDCK cyst growth, the effect on
the number of viable cells was first assessed using an MTT assay. As shown in Figure 2,
the number of viable cells was reduced at all time points following NU7441 treatment at
10 µM, whereas lower doses were similar to the vehicle.
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Figure 2. MTT assay assessing Madin-Darby canine kidney (MDCK) cell viability at 24, 48, and
96 h after exposure to NU7441 at various concentrations. Sample absorbances were normalized to
vehicle control. Significance determined by non-parametric Kruskal–Wallis and Dunn–Bonferroni
with control post hoc for MTT assay *** p < 0.001, # p < 0.0001 versus vehicle control at the same
time point.

Therefore, studies in MDCK cysts were performed using low (0.625 µM) and moderate
(2.5 µM) doses. As shown in Figure 3, in forskolin-induced MDCK cysts, NU7441 reduced
mean cyst diameter by 27% and 52% at 0.625 and 2.5 µM concentrations, respectively, on
day 6 of treatment compared to the vehicle. This effect was sustained for 12 days of culture
(Figure 3). No cyst formation when cells were treated with sirolimus (50 nM) or 10 µM
NU7441 (data not shown).

2.4. DNA-PK Inhibition Does Not Cause Synthetic Lethality of Human ADPKD Cells

To evaluate whether the inhibition of DNA-PK caused synthetic lethality in human
ADPKD cells, the anti-proliferative of NU7441 was compared to normal human kidney
cells. As shown in Figure 4, the number of viable cells at various concentrations of NU7441
(0.04, 0.156, 0.625, 2.5, and 10 µM) in human ADPKD cell lines (WT9-7, WT9-12) was
similar to a normal human kidney cell line (HK-2). Cell viability decreased with prolonged
exposure and had less than 75% viability by 96 h at doses greater than 0.625 µM.

2.5. DNA-PK Inhibition Enhances the Anti-Proliferative Effects of Sirolimus in Both Human
ADPKD and Normal Kidney Cells

We next evaluated whether a non-toxic dose of NU7441 (0.04 µM; Figure 4) could
enhance the anti-proliferative effects of TORC1 inhibition at sub-therapeutic doses (2.5
to 50 nM sirolimus) on ADPKD cells compared to normal kidney cells. As shown in
Figure 5A, sirolimus alone, at the lowest dose (2.5 nM), reduced the number of viable
cells by 31 ± 2% and 35 ± 3% in WT9-7 and WT9-12 cells, respectively (p < 0.05), and,
interestingly, this level of suppression was similar at higher doses. In contrast, in HK-2
cells the number of viable cells was only reduced at 25nM of sirolimus (19% reduction in
the number of viable cells; p < 0.05 compared to vehicle). There was a greater reduction in
the number of viable cells in WT9-7/WT9-12 cells compared to HK-2 cells, suggesting that
ADPKD cells are more sensitive to the anti-proliferative effects of sirolimus (Figure 5A).
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Figure 3. DNA-dependent protein kinase (DNA-PK) inhibitor NU7441 reduces cyst growth in a dose dependent manner.
(A) Representative images of cysts (100× magnification) at days 6 and 12 with low (0.625 µM) and moderate (2.5 µM) doses
of NU7441. (B) Cyst diameter measured at days 6 and 12 of prolonged exposure to NU7441, showing a dose-dependent
decrease in cyst diameter. Results are presented as mean ± standard deviation (n = 180 for vehicle and 0.625 µM, and
n = 120 for 2.5 µM NU7441 for each time point). Significance was determined by one-way analysis of variance (ANOVA)
and post hoc Tukey honestly significant difference (HSD) test. * p < 0.01 versus vehicle control at the same time point.
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Figure 4. DNA-dependent protein kinase (DNA-PK) inhibition does not confer susceptibility to autosomal dominant
polycystic kidney disease (ADPKD) cells. Percentage cell viability after (A) 24 h, (B) 48 h, and (C) 96 h of exposure to
NU7441 treatment in normal kidney (HK-2) cells and ADPKD (WT9-7 and WT9-12) cell lines. Results are presented as mean
± standard deviation (n = 12 for each time point) after normalization to vehicle control. Significance was determined by
Kruskal–Wallis followed by post hoc Dunn–Bonferroni test. * p < 0.01 versus vehicle control of the same cell line at the same
time point (color of asterisk symbol represents line color of respective cell lines).
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Figure 5. DNA-dependent protein kinase (DNA-PK) inhibition sensitizes autosomal dominant polycystic kidney disease
(ADPKD) cells to mammalian target of rapamycin complex 1 (mTORC1) inhibition. Over 96 h, serial dilutions of sirolimus
were tested as a single agent (A) in normal (HK-2) and ADPKD (WT9-7 and WT9-12) human cell lines. Cell viability (%)
at all doses was analyzed compared to vehicle control of the same cell line. Results are presented as mean ± standard
deviation (n = 12) after normalization to vehicle control. Significance was determined by Kruskal–Wallis followed by post
hoc Dunn–Bonferroni test. One-way analysis of variance (ANOVA) and a post hoc Tukey honestly significant difference
(HSD) test were carried out between cell lines. * p < 0.05 versus vehicle control of the same cell line; § p < 0.05 versus HK-2
cell line of the same dose and treatment. The color of symbols represent the line color of respective cell lines. In the same
normal and ADPKD cell lines, sirolimus (10 nM) was tested in combination with low-dose NU7441 (40 nM) (B–D). Similarly,
results are presented as mean cell viability (%) ± standard deviation (n = 12) after normalization to vehicle control and
additional normalization to single therapy with 10nM sirolimus for comparison. Significance between treatments was tested
by independent t-test for each cell line. ** p < 0.01, *** p < 0.001, **** p < 0.0001 between combined 10nM sirolimus and
40 nM NU7441 and 10 nM sirolimus treatment alone.

To determine whether DNA-PK inhibition enhanced the anti-proliferative effects of
TORC1 inhibition, we compared the effects of NU7441+sirolimus with sirolimus alone
in the cell lines. As shown in Figure 5, NU7441+sirolimus further reduced the number
of viable cells by 17 ± 10% (p < 0.05) and 11 ± 7% (p < 0.05) in WT9-7 and WT9-12
cells, respectively, compared to sirolimus alone (Figure 5C,D). Similarly, in HK-2 cells, the
combined treatment reduced the number of viable cells by 13 ± 9% compared to sirolimus
alone (p < 0.05).

3. Discussion

In this study, the hypothesis that DNA-PK expression is increased in human ADPKD
and that inhibition of this DNA repair kinase reduces cyst growth in vitro was evaluated.
The key findings were the following: (i) the expression of genes of all three subunits of the
DNA-PK complex was increased in human ADPKD transcriptome, as well as localized
to cyst lining epithelial cells in human ADPKD; (ii) long-term inhibition of the catalytic
activity using specific small molecule inhibitor NU7441 in MDCK 3D cysts reduced MDCK
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growth by up to 52%; (iii) human ADPKD cells do not exhibit synthetic lethality to DNA-PK
inhibition by NU7441; and (iv) finally, the increased sensitivity of human ADPKD cells to
TORC1 inhibition was enhanced by combination treatment with NU7441.

On analysis of public transcriptome datasets from ADPKD patients compared to
the normal renal cortex, we found that the catalytic subunit of DNA-PK, essential for its
function as a kinase and in NHEJ, is increased in a manner that is positively correlated
to increased cyst size. Interestingly, the expression of catalytic subunits in the nuclei by
immunohistochemistry was sporadic and did not affect all cysts in human ADPKD. The
discrepancy between these findings could be due to the differences in technique used
to evaluate DNA-PK, as well as our immunohistochemistry being limited to only one
protein epitope.

To further evaluate the potential function of DNA-PK in ADPKD, the effects of a
specific inhibitor, NU7741, were examined. In vitro, NU7441 reduced cyst diameter in a
dose-dependent manner at doses that did not reduce the number of viable cells. Using
an MTT assay, we determined that although the reduction in cyst size at 2.5 µM could
be due to a reduction in cell numbers, the slower cyst growth at 0.625 µM could not be
explained by this mechanism, and alternate mechanisms, such as apoptosis or alterations
in intra-cystic fluid accumulation, are possible. Consistent with the results of the present
study, PIK-75 (a dual inhibitor of DNA-PK and phosphoinositide 3-kinase (PI3K)), reduced
cyst growth in a murine IMCD3 forskolin-induced cyst model [24]. However, this was
characterized by a low viable cell count and not further examined. In contrast, the same
study tested NU7441 in the IMCD3 cysts but did not identify any change in cyst size in the
dose range tested in the MDCK cyst model in the current study [24], suggesting possible
species and/or disease-specific effects. Unraveling the additional mechanisms by which
DNA-PK inhibition influences MDCK cyst growth warrants further investigation.

Contrary to the main hypothesis, we did not find evidence that DNA-PK inhibition
induces synthetic lethality in human ADPKD cells, as the number of viable cells on exposure
to NU7441 was similar to normal kidney cells. Previous literature indicated variability in
the toxicity of NU7441, where normal human fibroblasts tolerated up to 1 µM [30], whereas
treatment of normal renal HK-2 cells with NU7441 and NU7026 did not demonstrate
toxicity at doses of up to 5 µM [31]. In contrast, we found that concentrations above
0.156 µM affected both human ADPKD cell lines, WT9-7 and WT9-12, and normal renal
HK-2 cells to a similar extent. These findings suggest that long-term use of NU7441 may
have off-target toxicity to normal parenchyma if used continuously and may require a
pulsed treatment approach. Further in vivo studies are needed to test this hypothesis.

Finally, we evaluated the effect of a combined treatment of sirolimus with NU7441 on
the viability of human ADPKD and normal kidney cell lines. As NU7441 did not affect
the number of viable cells at a concentration of 0.04 µM of NU7441 in any cell line, we
postulated that this dose, combined with an equivalent sub-therapeutic dose of sirolimus,
might be efficacious and potentially be a strategy to overcome the toxicity of using TORC1
inhibitors alone in human ADPKD [28,29]. Similar strategies have been harnessed for
the treatment of various malignancies where DNA-PK inhibition renders malignant cells
susceptible to chemo- and radio-therapies [32–35]. In addition, dual DNA-PK and TORC1
inhibition is under investigation in cancer but has not been evaluated as a potential therapy
in ADPKD. Our results showed that low-dose NU7441 sensitized the anti-proliferative
effects of sirolimus in human ADPKD cells, but the effect was modest. As these results
suggest dual DNA-PK and TORC1 inhibition might reduce kidney cyst growth in vivo,
further studies using a genetic ortholog of ADPKD would be an important next step.

In conclusion, the results of this study show, for the first time, that the expression of
DNA-PK is increased in human ADPKD. However, our data indicate that monotherapy
with DNA-PK inhibitors may not be suitable for long-term treatment of attenuating cyst
growth in vivo, given that there is no evidence of the synthetic lethality of this pathway.
On the other hand, it is possible that there may be an opportunity for combining DNA-
PK inhibitors with TORC1 inhibitors to minimize the off-target and toxic effects of the
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latter through dose reduction. Further preclinical studies, testing the pharmacological
inhibition in vivo, are warranted to fully evaluate this possibility and the potential of
DNA-PK inhibition as a disease-modifying therapy in ADPKD.

4. Materials and Methods
4.1. Expression of DNA-PK in Human ADPKD Transcriptome

The gene expression values of proteins encoding DNA-PKcs, Ku 70, and Ku 80
(PRKDC, XRCC5, and XRCC6, respectively) were filtered from published data of DDR
genes in ADPKD [11]. Briefly, the samples consisted of human ADPKD cysts of varying
sizes (GSE7869; n = 18) [36] and normal kidney (GSE7869; n = 3, GSE9493; n = 10) [37,38].
Comparisons were performed between ADPKD and normal kidney, and between cyst sizes
in ADPKD tissue (minimally cystic tissue (n = 5), small (<1 mL; n = 5), medium (10–25 mL;
n = 5) and large (>50 mL; n = 3) cysts).

4.2. Immunohistochemistry for DNA-PK in Human ADPKD

Paraffin-embedded kidney tissue from ADPKD patients (n = 6) and non-cancerous
portions of renal tissue (n = 2) were obtained from archival samples from a previously
published study [11]. Written informed consent was provided by all patients, and the
study was approved by the Human Research Ethics Committee at Westmead Hospital
(HREC/09/WMEAD/305; SSA/12/WMEAD/327). Coronal sections of human end-stage
and normal kidneys were incubated overnight in primary antibodies; either anti-p-DNA-
PKcs (S2056) (1:400, ab18192; Abcam) or anti-DNA-PKcs total protein (1:500; ab32566;
Abcam), followed by secondary antibody; either HRP-conjugated goat anti-rabbit (1:200;
Sigma-Aldrich, St Louis, MO, USA) or biotinylated goat anti-rabbit (1:200; Sigma-Aldrich,
St Louis, MO, USA). All antibodies were diluted in DaVinci Green diluent (PD900; BioCare
Medical, Concord, CA, USA). For biotinylated samples, the signal was amplified using
Vectastain R.T.U. ABC reagent (Vector Laboratories, Burlingame, CA, USA) for 20 min.
Slides were stained with chromogen 3,3’-Diaminobenzidine (DAB) solution (Dako Agilent
Technologies, Santa Clara, CA, USA) and counterstained with methyl green (Sigma-Aldrich,
St Louis, MO, USA). Digital image acquisition was performed using a NanoZoomer slide
scanner (v1, Hamamatsu Photonics, Hamamatsu City, Shizuoka, Japan) and analyzed using
Aperio ImageScope (v11.2.0.780, Leica Biosystems, Wetzlar, Germany).

4.3. Cell Lines

Immortalized cell lines from healthy human kidney (HK-2; CRL-2190, Lot no. 61218770),
human ADPKD (WT9-7; CRL-2830, Lot no. 58737172 and WT9-12; CRL-2833, Lot no.
60336584) [39], and Madin-Darby canine kidney (MDCK) epithelial cells were obtained
from the American Type Culture Collection (ATCC, Manassas, VA, USA), as previously
described [11]. Short tandem repeat (STR) DNA profiling was performed for authentication
of human cell lines. WT9-7 and WT9-12 cells were cultured in Dulbecco’s minimum
essential Mmedium (DMEM)(GIBCO, Thermo Fisher Scientific, Waltham, MA, USA), and
HK-2 and MDCK cells were cultured in a 1:1 ratio of DMEM and Ham’s F12 (GIBCO,
Thermo Fisher Scientific, Waltham, MA, USA). The media were supplemented with 10%
fetal bovine serum (FBS) and the cultures were maintained at 37 ◦C, 5% CO2.

4.4. Effect of NU7441 Treatment on Viability of ADPKD Cells

Cell viability was assayed using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide) assay, as per manufacturer protocol (11465007001, Roche Di-
agnostics, Mannheim, Germany). Briefly, MDCK, HK-2, WT9-7, and WT9-12 cells were
seeded at 2 × 103 cells/well in 100 µL media in a 96-well plate and treated with NU7441,
either alone at varying concentrations [31,40,41] or combined with sirolimus at concen-
trations below therapeutic blood levels (2.5–50 nM) [42–45]. NU7441 is a highly selective
and potent ATP-competitive DNA-PK inhibitor, with an IC50 of 14 nM [41]. NU7441 was
added at four-fold serial dilutions from 0 to10 µM, with the 0 µM vehicle control containing
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dimethyl sulfoxide (DMSO) at a volume equal to the highest dose. Cells were incubated
with the drug for 24, 48, and 96 h. To test sirolimus +/− NU7441, sirolimus doses were
tested, including, and below, therapeutic blood plasma levels (2.5–50 nM) of the drug in
combination with a non-toxic dose of NU7441 (40 nM) (media were changed every two
days). The assay (Roche Diagnostics, Mannheim, Germany) was performed according to
the manufacturer’s specifications. Following drug treatment, MTT solution (0.5 mg/mL)
was added to each well and incubated for 4 h to allow the development of formazan
crystals by normal metabolic activity. Solubilization solution was then added followed by
overnight incubation. Absorbance was measured the following day at 570 nm (720 nm ref-
erence). Percentage viability was calculated for each sample as 100 * (absorbance/average
absorbance of vehicle control). Measurements were taken for n = 4 replicates per treatment
group over three repeat experiments (total n = 12) at each time point.

4.5. Effect of NU7441 Treatment on Three-Dimensional (3D) MDCK Cyst Model

Three-dimensional cysts of MDCK cells was grown, as previously described [46].
Briefly, MDCK cells in collagen were incubated in the continuous presence of 10 µM
forskolin to induce cyst growth and treated with either vehicle (DMSO), 0.625 µM, 2.5 µM,
or 10 µM of DNA-PK inhibitors; NU7441 (IC50 of 14 nM), LTURM34 (IC50 of 34 nM), and
NU7026 (IC50 of 230 nM), or 0.05 µM sirolimus (positive control). All drugs were obtained
from Selleck Chemicals (Houston, TX, USA). Media with treatment were refreshed every
two days, and images were obtained at days 6 and 12. Cyst diameter was determined for
60 randomly selected cysts per treatment (20 cysts/well × triplicates) at each time point
using Image J (v1.52a, U.S. National Institutes of Health, Bethesda, MD, USA). Experiments
were repeated thrice for a total of n = 180 for vehicle and 0.625 µM, and twice for a total of
n = 120 for 2.5 µM NU7441 at each time point.

4.6. Statistical Analyses

For statistical analysis of gene expression data, fold changes were transformed to a
linear scale by log 2 transformation. All data were analyzed using the JMP® Pro statistical
software package (v14.2.0, SAS Institute, Cary, NC, USA) and graphed using GraphPad
Prism (v8.2.1, San Diego, CA, USA). A Shapiro–Wilks test was performed to determine
the normality of distribution of data. Variance of data was assessed by Bartlett’s test for
normally distributed data and Levene test for data that did not follow a normal distribution.
An independent T-test was used to compare two normally distributed datasets. For
multiple groups, Kruskal–Wallis and Dunn–Bonferroni post hoc analysis or one-way
analysis of variance (ANOVA) and post hoc analysis by Tukey Kramer honestly significant
difference (HSD) tests were carried out, depending on the distribution of data. p-values
less than 0.05 was defined as statistically significant. For gene expression data, p-values
were adjusted for false discovery rate (FDR) and presented as q-values.
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