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Abstract 

Epigenetic measures of aging derived from DNA methylation are promising biomarkers associated with 

prospective morbidity and mortality, but require validation in real-world medical settings. Using data 

from 2,216 post-9/11 veterans, we examined whether accelerated DunedinPACE aging scores were 

associated with chronic disease morbidity, predicted healthcare costs, and mortality assessed over an 

average of 13.1 years of follow up in VA electronic health records. Veterans with faster DunedinPACE 

aging scores developed more chronic disease and showed larger increases in predicted healthcare costs 

over the subsequent 5, 10, and 15 years. Faster aging was associated with incident myocardial 

infarction, stroke, diabetes, cancer, liver disease, and renal disease, as well greater risk of mortality due 

to all-causes and chronic disease. These findings provide evidence that accelerated epigenetic aging is 

associated with worsening prospective health across multiple chronic diseases and organ systems 

assessed using electronic health records from an integrated healthcare system. 
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EPIGENETIC AGING AND VETERAN HEALTH                      2 

Epigenetic measures of aging derived from DNA methylation (DNAm) developed over the last 

decade can assess biological aging using biological samples collected at a single point in time1-5. This new 

development has the potential to allow for the identification of individuals with accelerated aging who 

could be targeted by geroprotective interventions. If epigenetic measures of aging are associated with 

prospective health, then slowing the rate at which individuals are aging, defined in geroscience theory 

as a common cause of chronic disease morbidity and mortality6-7, would be expected to improve health 

across many chronic disease pathways and organ systems9-11. Aging biomarkers would be invaluable 

surrogate health outcomes randomized control trials testing interventions that aim to slow aging and 

improve health12, as well as observational studies investigating health trajectories13. With additional 

validation and refinement, such measures also have the potential to serve as clinical biomarkers of 

future health for use in clinical settings.  

There is promising evidence that second- and third-generation epigenetic measures of aging are 

associated with future health1-2,14-15, particularly third-generation measures developed using longitudinal 

biomarker data1,15 (e.g., DunedinPACE2). However, realizing the potential clinical and research value of 

epigenetic measures of aging requires evaluating whether these biomarkers are associated with 

prospective chronic disease morbidity and mortality in real-world medical settings. To do so, we 

integrated survey, epigenetic, and electronic health record (EHR) data from 2,216 U.S. military veterans 

who served after September 11, 200116. The cohort was 37.4 years old at enrollment with an average 

follow-up of 13.1 years, which afforded an observation window spanning early adulthood into midlife 

and older age, periods that often include the onset of chronic disease17.  

Methods 

Participants and Study Design 

 Participants were enrolled in the VISN 6 Mid-Atlantic Mental Illness Research, Education, and 

Clinical Center’s (MIRECC’s) Post-Deployment Mental Health Study (PDMH16), a multi-site study of 
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veterans who served in the post-9/11 period. The Durham, Richmond, and Salisbury VA Medical Centers’ 

Institutional Review Boards approved the PDMH study protocol and all participants provided informed 

consent. The study included participants with DNAm and VA EHR data (eFigure 1), resulting in a sample 

of 2,216 veterans followed an average of 13.1 years (SD = 2.8).  

Measures 

Demographics. Participants reported their age, sex, race, ethnicity, years of education, and 

smoking status (coded: never smoker, 0; past smoker, 1; current smoker, 2). Sex, race, and ethnicity self-

reports were confirmed using sex chromosomes and ancestry values derived from genetic data.  

Genomic DNAm data generation and processing. Whole blood was collected during baseline 

assessments and analyzed using the Infinium HumanMethylation450 or MethylationEPIC Beadchip 

(Illumina Inc., San Diego, CA) to derive DNAm data18-19.  Internal replicates were included and checked 

for consistency using single nucleotide polymorphisms on each array. Quality control was performed 

using the minfi20 and ChAMP21 R packages. Probe quality control and data normalization were 

performed within each batch using the R package wateRmelon22. Raw beta values were normalized 

using the dasen approach23 and batch and chip adjustments were completed using ComBat in the R 

package sva24.  

DunedinPACE. Epigenetic aging was assessed by applying the DunedinPACE algorithm to PDMH 

DNAm data20-21. The algorithm25 is derived from reliable CpG probes26 and produces aging scores that 

represent years of biological aging per chronological year. Statistical tests used continuous DunedinPACE 

scores unless otherwise noted (four aging quartiles were created for visualization and interpretation).  

Technical covariates. A dummy variable was created to denote if DNAm data was generated 

using 450k or EPIC V1 chips. Additional covariates were derived using FlowSorted.Blood.450k and 

FlowSorted.Blood.EPIC packages to estimate cell count proportions27 for white blood cells categories (T 

lymphocytes (CD4+ and CD8+), B cells (CD19+), monocytes (CD14+), NK cells (CD56+) and Neutrophils).  
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DNAm smoking. Lifetime exposure to tobacco smoke28 was calculated for participants using a 

DNAm measure29. Methylation smoking scores correlated with self-reported smoking (r = 0.55, p < .001). 

PC-adjusted second-generation epigenetic clocks: PhenoAge and GrimAge. We derived two 

principle components (PC) adjusted second-generation epigenetic clocks, PC-PhenoAge30 and PC-

GrimAge2. The PhenoAge30 algorithm was trained on clinical data from a large training dataset30, 

whereas GrimAge was trained on all-cause mortality data. We derived PC-PhenoAge and PC-GrimAge 

values using established algorithms12 that account for PCs to improve the reliability of clock estimates12. 

Both measures were residualized on chronological age to provide a measure of age acceleration.  

Electronic health record data. Prospective health outcomes and clinical biomarkers were 

derived using the VA EHR. eMethod 1 provides a detailed description of EHR data processing. Veterans 

enrolled in the PDMH from 2005 to 201613, which resulted in follow-up periods ranging from 7.3 to 18.5 

years (88 to 222 months). EHR data coverage (eTable 1) was predominantly based on the timing of 

veterans’ baseline assessment (and resulting length of EHR follow-up; eFigure 2). Year of baseline 

assessment was not associated with DunedinPACE (eFigure 3).  

Charlson comorbidity index. Charlson comorbidity index scores31 (CCI) assessed chronic disease 

burden and were derived using diagnostic ICD-9 and ICD-10 codes32 ascertained from outpatient, 

inpatient, and purchased care data (i.e., community care referrals from VA providers and/or paid by VA 

sources). Baseline values were calculated on the date of enrollment in the PDMH and were updated for 

each follow-up period. CCI scores were used to calculate 10-year CCI-predicted mortality risk. 

Nosos risk adjustment score. Nosos risk adjustment scores33-34 represent predicted annual 

healthcare costs for VA patients based on the Centers for Medicare and Medicaid Hierarchical Condition 

Categories risk adjustment model. This algorithm was updated to include items specific to the VA, such 

as priority status and computed costs35. Nosos scores are normalized to a mean of 1.0, such that greater 

values represent higher predicted patient costs (e.g., a score of 1.25 equals 25% higher predicted costs).  
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Chronic disease onset. Chronic disease onset for each of the disease categories in the CCI were 

ascertained at baseline, as well as at follow-up to a censor date of 12/31/2023. Combined diagnosis data 

were used to create a measure of time to first chronic disease onset across categories. 

Clinical biomarkers. Clinical biomarkers included body mass, blood pressure (BP), and heart rate 

(HR) assessed during VA clinical encounters. Body mass was calculated using the standard formula via 

height and weight. BP was assessed using systolic BP. HR was assessed using pulse. All measures were 

assessed at baseline using a 2-year lookback period, producing data for over 75% of veterans who had 

clinical encounters with these biomarkers assessed (eTable 1). 

Mortality. Dates of death and all-cause mortality status were ascertained using the VA EHR. 

Months from PDMH baseline to date of death defined time to mortality to a censor date of 1/21/2024. 

In total, 92 deaths were observed over the follow-up. National Death Index (NDI) data included in the VA 

Mortality Data Repository35 (MDR) provided primary cause of death, which was used to classify deaths 

as related to acute causes or chronic disease. A subset of recent deaths did not have cause of death data 

(n = 22), as MDR data is currently censored to 12/31/202134. Further excluding acute mortality events (n 

= 30; due to overdoses, accidents, death by suicide, infection, and homicide) left 40 deaths due to 

chronic diseases, largely cardiovascular diseases (n = 17) and cancer (n = 15). 

Data Analysis 

We tested the association of DunedinPACE epigenetic aging scores with CCI and Nosos scores at 

baseline, then with change to 5-, 10- and 15-year follow-ups. Models of 5-, 10-, and 15-year change in 

CCI and Nosos scores controlled for baseline CCI and Nosos scores, respectively. Analyses of CCI scores 

used zero-inflated Poisson regression models to account for CCI distributions (see eFigure 4) and 

analyses of Nosos scores used linear regression models. We next tested the association between aging 

scores and incident onset of chronic diseases and mortality using Cox proportional-hazard models. 

Finally, we conducted two additional sets of analyses to complement the primary results: 1.) stratifying 
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by sex, then race and ethnicity, and 2.) providing results for two PC-adjusted second-generation 

epigenetic measures of aging. For each set of models, we report estimates controlling for demographic 

(age, sex, race and ethnicity, and years of education) and DNAm technical covariates (chip type, white 

blood cell counts), then results controlling for clinical biomarkers (body mass, BP, HR), and two 

measures of smoking (self-reported smoking and DNAm-derived tobacco smoke exposure). Tables also 

include bivariate associations controlling for age. Poisson regression models used Monte Carlo 

simulation to account for missing data, linear regression models used full maximum likelihood 

estimation (full results excluding any participants with missing data are reported in eTable 2), whereas 

Cox proportional-hazard models included only participants with full data. Inspection of Schoenfeld 

residual plots and estimates of the interaction of time with aging scores suggest survival curves met the 

proportional hazard assumption. All model estimates were scaled to 1 SD DunedinPACE aging score. 

Models were run in MPLUS version 8.336 using two-tailed tests with an a priori significance level of 0.05.  

Results 

 The 2,216 veterans (472 women, 1,744 men) included 1,077 non-Hispanic Black and 1,139 non-

Hispanic White veterans, with a mean age of 37.4 years (SD = 10.1) at baseline.  

Accelerated Aging and Chronic Disease Burden 

 Veterans with faster DunedinPACE aging scores had greater chronic disease burden at baseline 

(β, 0.23; 95% CI, 0.10-0.35; p < .001). Veterans with faster aging scores developed greater chronic 

diseases burden over the subsequent 5 years (β, 0.22; 95% CI, 0.13-0.31; p < .001), 10 years (β, 0.24; 

95% CI, 0.16-0.31; p < .001), and 15 years (β, 0.31; 95% CI, 0.20-0.36; p < .001). These associations 

represented 25% (RR, 1.25; 95% CI, 14-36%), 27% (RR, 1.27; 95% CI, 17-41%), and 36% (RR, 1.36; 95% CI, 

95% CI, 22-52%) greater relative risk, respectively. Results remained when controlling for clinical 

biomarkers and smoking measures (Table 1). The size of the associations increased as follow-up periods 

increased in length. At the 5-, 10-, and 15-year follow-ups, the fastest aging veterans had 0.41, 0.92, and 
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1.84 higher CCI scores than the slowest aging veterans (Figure 1; eFigure 5), corresponding to 5.3, 6.2, 

and 12.0 times greater relative—and 1.3%, 4.7% and 16.5% greater absolute—increase in 10-year CCI-

predicted mortality risk, respectively (eTable 3). 

Accelerated Aging and Predicted Healthcare Costs 

Veterans with faster DunedinPACE aging scores had higher predicted healthcare costs at 

baseline (β, 0.11; 95% CI, 0.06-0.15, p < .001). Veterans with faster aging scores had greater increases in 

predicted costs over the next 5 years (β, 0.08; 95% CI, 0.03-0.13; p < .001), 10 years (β, 0.23; 95% CI, 

0.15-0.31; p < .001), and 15 years (β, 0.21, 95% CI, 0.11-0.30, p < .001). These results largely remained 

when controlling for clinical biomarkers and smoking measures (Table 1). Similar to the CCI, associations 

increased in size as the follow-up periods increased in length. At the 5-, 10-, and 15-year follow-ups, 

fastest aging veterans had 11%, 40%, and 38% greater increases in predicted healthcare costs compared 

to the slowest aging veterans (eTable 3). With estimated annual costs of $14,950 per veteran patient in 

202133, these represent $1,645, $5,980, and $5,681 greater increases in annual healthcare expenditures. 

Accelerated Aging and Chronic Disease Incidence 

 Veterans with faster DunedinPACE aging scores were at increased risk for the onset of any 

chronic disease comprising the CCI (HR, 1.29; 95% CI, 1.21-1.39; p < .001). When testing individual 

chronic diseases individually, faster aging was associated with greater risk for new onset myocardial 

infarction (84%), stroke (38%), peripheral vascular disease (55%), diabetes (56%), chronic pulmonary 

disease (19%), cancer (25%), liver disease (44%), and renal disease (34%; Figure 2). Results remained 

when controlling for clinical biomarkers and smoking (Table 2), with the exception of peripheral vascular 

disease and chronic pulmonary disease. Figure 3 illustrates diabetes onset by DunedinPACE aging scores.  

Accelerated Aging and Mortality 

Veterans with faster DunedinPACE aging scores were more likely to die due to all causes (HR, 

1.38; 95% CI 1.12-1.72, p = .016). Notably, when excluding mortality due to acute events, the association 
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between aging scores and mortality was approximately twice as strong (HR, 1.74, 95% CI 1.27-2.39, p < 

.001). DunedinPACE remained associated with mortality due to chronic disease when also controlling for 

clinical covariates and smoking (Table 2). Aging scores were not associated with mortality due to acute 

events (HR, 0.96, 95% CI 0.63-1.33, p = .836).  

Results Stratified by Sex, Race and Ethnicity.  

We examined associations for CCI and Nosos scores when stratifying by sex, then by race and 

ethnicity. Men and women veterans showed largely similar associations of DunedinPACE with CCI and 

Nosos scores at baseline, as well as change over the next 5, 10, and 15 years (eTable 4). Non-Hispanic 

Black veterans and non-Hispanic White veterans also showed similar associations of DunedinPACE with 

CCI and Nosos scores at baseline, as well as change over the next 5, 10, and 15 years (eTable 5).  

Results for PC-adjusted Second-generation Epigenetic Clocks 

We focused on DunedinPACE epigenetic aging scores, as DunedinPACE currently represents the 

most widely used third-generation epigenetic measure trained on longitudinal biomarker data. 

However, we also tested associations for two widely used second-generation epigenetic clocks, adjusted 

for principle components to improve reliability12 (PC-PhenoAge and PC-GrimAge). Consistent with prior 

studies, the three measures of aging were moderately correlated (.33 ≤ r ≤ .52, all ps < .001). When 

accounting for demographic and technical covariates, PC-PhenoAge was not consistently associated with 

prospective health. In contrast, PC-GrimAge was largely associated with CCI and Nosos scores, as well as 

a number of specific chronic diseases, all-cause mortality, and chronic disease mortality. Descriptively, 

the magnitude of most associations for PC-GrimAge were comparable to those for DunedinPACE, though 

DunedinPACE associations were larger in magnitude when assessing longitudinal change in CCI scores, 

particularly over longer periods of follow up. Full results for DunedinPACE, PC-PhenoAge, and PC-

GrimAge are presented in eTable 6. 

Discussion 
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Veterans with faster DunedinPACE aging scores developed more chronic disease, showed larger 

increases in predicted healthcare costs, and were at greater risk of premature mortality, as observed in 

the VA EHR (mean follow-up, 13.1 years). The sizes of these prospective associations appear clinically 

significant. After ten years, veterans with faster aging developed approximately one additional chronic 

disease (0.92 points on the CCI), corresponding to a 4.7% greater increase in 10-year predicted mortality 

risk compared to veterans with slower aging (5.6% versus 0.9% increase, 6.2 times greater relative risk). 

Veterans with faster aging also had a 40% larger increase in predicted healthcare costs over the next 10 

years, representing $5,980 higher annual costs per VA patient compared to veterans with slower aging. 

In terms of specific chronic disease morbidity and mortality, a 1 SD higher DunedinPACE aging score was 

associated with a 32% increased risk of developing any chronic disease—including increased risk for 

incident myocardial infarction (61%), stroke (32%), diabetes (85%), cancer (28%), liver disease (52%), 

and renal disease (46%)—and a 64% increased risk of death due to chronic disease. These associations 

accounted for numerous covariates—including chronological age, demographic and technical covariates, 

clinical biomarkers (body mass, BP, and HR), self-reported smoking, and smoking methylation scores. 

Notably, associations were largely similar for men and women veterans, as well as for non-Hispanic 

Black veterans and non-Hispanic White veterans.  

Our results provide additional support and validation for the use of epigenetic aging measures 

as surrogate health outcomes in observational studies of health13 and randomized control trials12 aiming 

to slow aging. Although prior studies have linked epigenetic aging to a subset of prospective health 

outcomes2-3,38-39, particularly mortality2-5,14-15 using research cohorts, none have used EHR data from an 

integrated healthcare system in a real-world medical setting. By showing that epigenetic aging scores 

were associated with incident morbidity and mortality, our findings highlight the potential applications 

of aging biomarkers, such as DunedinPACE, for research and clinical care. As these algorithms are 

further refined, they can be validated with data from cohorts such as the PDMH with the goal of 
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achieving levels of reliability and validity that could provide predictive utility for patients and clinical 

providers in the future.  

These results have particular relevance to the Veterans Health Administration (VHA). The post-

9/11 cohort (currently over 5 million of the 17.9 million living U.S. veterans39) is a growing proportion of 

patients served by the VHA40, including greater numbers of women veterans and veterans from racial 

and ethnic minority groups41-42. Our findings show epigenetic aging is associated with prospective health 

across these demographic groups, suggesting that future uses for epigenetic aging scores would benefit 

the increasingly diverse patient population utilizing VHA services. Notably, the post-9/11 cohort of 

veterans is approaching midlife and older age42, periods when chronic disease morbidity and mortality 

become more pronounced. This risk is also an opportunity. The VHA is the largest integrated healthcare 

system in U.S., and implementing interventions to address risk factors13,16,43 for accelerated aging—such 

as unhealthy behaviors13 or PTSD19—could delay or prevent the development of ill health for a large 

number of veterans. If successful, efforts to slow aging using behavioral treatments44 or other 

potentially geroprotective interventions could reduce healthcare costs and, most importantly, prolong 

veterans’ independence, health, and wellbeing as they grow older. VA clinical trials could also provide 

data and guidance for implementing interventions in non-VA populations and healthcare systems.  

This study has limitations relevant to interpreting our findings. First, the EHR-derived health 

outcomes can only capture VA clinical encounters or referrals to community care through VA sources. 

Although it is unlikely that aging and chronic disease coding vary systematically by the amount or type of 

community care that veterans access through private insurance, it is possible our data are not 

representative of all veterans’ health. Second, it is not clear to what extent results would generalize to 

non-veteran populations. It will be important to validate these results in other healthcare systems. 

Finally, the length of the EHR follow-up varied based on the year that veterans enrolled in the PDMH 

cohort. Although aging scores were not correlated with enrollment date and results replicated both 
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when accounting for missing data and using listwise deletion, continuing to replicate our findings as the 

lengths of EHR observation increases in duration would provide additional confidence in our findings.    

Conclusions 

Epigenetic aging scores were associated with increased risk for chronic disease morbidity and 

mortality, as observed in VA medical records for 2,216 U.S veterans12 who served after September 11, 

2001. Consistent with geroscience theory, faster aging was associated with poorer prospective health 

across multiple chronic disease categories and organ systems. Epigenetic measures of aging, such as 

DunedinPACE, might be useful surrogate outcomes for clinical trials and observational cohort studies. 

With refinement and validation, epigenetic measures of aging might also serve as clinical biomarkers of 

future health risk that can identify individuals who might be candidates for geroprotective interventions.   
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Table 1. Association of DunedinPACE and prospective health among post-9/11 veterans 

 

 

 

 

 

 

Association with 
DunedinPACE 

Age-adjusted  
bivariate association  

Adding demographic and 
technical covariates 

Adding clinical  
biomarkers 

Adding self-reported and 
methylation smoking 

N = 2,216 β 95% CI β 95% CI β 95% CI β 95% CI 

Chronic disease burden (Charlson comorbidity index score) 
Baseline CCI score    0.25** [0.14, 0.36]    0.23** [0.10, 0.35]    0.20** [0.07, 0.33]  0.19* [0.01, 0.36] 
5-year change in CCI     0.20** [0.13, 0.28]    0.22** [0.13, 0.31]    0.17** [0.07, 0.26]    0.14** [0.04, 0.25] 
10-year change in CCI     0.19** [0.12, 0.26]    0.24** [0.16, 0.31]    0.19** [0.11, 0.27]    0.18** [0.10, 0.26] 
15-year change in CCI     0.29** [0.19, 0.38]    0.31** [0.20, 0.42]    0.27** [0.16, 0.38]    0.30** [0.18, 0.42] 

Predicted annual VA healthcare costs (Nosos risk adjustment score) 
Baseline Nosos score    0.09** [0.04, 0.12]    0.11** [0.06, 0.15]    0.11** [0.03, 0.10] 0.04 [-0.01, 0.09] 
5-year change in Nosos     0.09** [0.05, 0.14]    0.08** [0.03, 0.13]    0.07** [0.01, 0.12] 0.03 [-0.03, 0.10] 
10-year change in Nosos     0.24** [0.17, 0.31]    0.23** [0.15, 0.31]    0.23** [0.14, 0.31]     0.22** [0.12, 0.31] 
15-year change in Nosos     0.22** [0.13, 0.31]    0.21** [0.11, 0.30]    0.19** [0.09, 0.29]     0.15** [0.04, 0.26] 

Note: Each model adds covariates to the model, first demographics (sex, race and ethnicity, and education) and technical 
covariates (chip type, cell proportions), then clinical biomarkers (body mass, blood pressure, and heart rate), and then self-
reported smoking and smoking methylation scores. CCI outcomes were estimated with Poisson regression using Monte Carlo 
simulation to account for missing data; Nosos outcomes were estimated with linear regression using full information maximum 
likelihood. CI = confidence interval.  
* p < .05. ** p < .01.   

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 23, 2024. ; https://doi.org/10.1101/2024.10.23.24315691doi: medRxiv preprint 

https://doi.org/10.1101/2024.10.23.24315691
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 
 

 Table 2. Association of DunedinPACE, chronic disease incidence, and mortality among post-9/11 veterans 

Association with 
DunedinPACE 

Chronic disease at 
baseline and follow-up 

Age-adjusted  
bivariate association  

Adding demographics  
and technical covariates 

Adding clinical  
biomarkers 

Adding self-reported and 
methylation smoking 

 Baseline Dx Dx Onset  HR 95% CI HR 95% CI HR 95% CI HR 95% CI 

Any chronic disease category 
Chronic disease onset n = 364 n = 789   1.29** [1.21, 1.39]   1.28** [1.19, 1.39] 1.24** [1.13, 1.37] 1.32** [1.21, 1.45] 

Chronic disease categories 
Myocardial infarction n = 5 n = 56   1.64** [1.32, 2.04]   1.84** [1.44, 2.35] 1.73** [1.26, 2.37] 1.61** [1.17, 2.22] 
Stroke n = 21 n = 109   1.30* [1.06, 1.61]   1.38** [1.09, 1.73] 1.47** [1.15, 1.88] 1.32* [1.04, 1.68] 
Heart failure n = 13 n = 53   1.38* [1.07, 1.78]   1.20 [0.90, 1.59] 1.05 [0.76, 1.44] 1.07 [0.77, 1.49] 
Peripheral vascular disease n = 17 n = 41   1.56** [1.16, 2.08]   1.55** [1.11, 2.17] 1.56* [1.06, 2.31] 1.29 [0.87, 1.90] 
Diabetes n = 7 n = 482   1.54** [1.41, 1.67]   1.56** [1.42, 1.71] 1.40** [1.25, 1.57] 1.85** [1.66, 2.06] 
Dementia n = 12 n = 29   1.39 [0.99, 1.97]   1.32 [0.88, 1.97] 1.50 [0.94, 2.39] 1.22 [0.77, 1.94] 
Peptic ulcer disease n = 17 n = 36   1.29 [0.94, 1.77] 1.20 [0.84, 1.71] 1.09 [0.73, 1.62] 1.14 [0.76, 1.72] 
Rheumatic disease n = 14 n = 43   1.07 [0.79, 1.45]   1.02 [0.73, 1.44]   1.18 [0.80, 1.74]   0.93 [0.63, 1.38] 
Chronic pulmonary disease n = 234 n = 325   1.20** [1.07, 1.34]   1.19** [1.06, 1.34]   1.25** [1.08, 1.44]   1.08 [0.94, 1.24] 
Cancer n = 42 n = 111   1.21* [1.00, 1.45]   1.25* [1.02, 1.54]   1.35* [1.07, 1.71]   1.28* [1.01, 1.63] 
Liver disease n = 24 n = 206   1.35** [1.18, 1.55]   1.44** [1.24, 1.66]   1.34** [1.13, 1.58]   1.52** [1.27, 1.81] 
Renal disease n = 26 n = 153   1.30** [1.11, 1.51]   1.34** [1.13, 1.60]   1.36** [1.11, 1.67]   1.46** [1.20, 1.78] 

Mortality 
All-cause mortality — n = 92   1.28* [1.02, 1.59]   1.38** [1.12, 1.72] 1.25 [0.97, 1.62] 1.06 [0.82, 1.38] 
Chronic disease mortality — n = 40   1.55** [1.16, 2.06]   1.74** [1.27, 2.39] 1.59* [1.10, 2.32] 1.63** [1.13, 2.36] 

Note: Each disease specific model excluded participants with the disease at baseline from the cohort N of 2,216. Models assessing the inclusion of clinical 
biomarkers and smoking measures were run with those sets of covariates separately to reduce missing data for the models that included smoking measures. 
Demographic and technical covariates models also excluded 21 participants who were missing data, clinical biomarker models excluded 561 participants 
with missing biomarker and education data, and models including self-reported smoking excluded 29 participants missing self-reported smoking or 
education data. Demographic variables included age, sex, race and ethnicity, education, and technical covariates included chip type and white blood cell 
proportions. CI = confidence interval; Dx = diagnosis, HR = hazard ratio. 
* p < .05. ** p < .01.   
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Figure 1. Panel A presents mean CCI scores over time grouped by DunedinPACE aging scores. Four groups were 

created by standardizing DunedinPACE scores and creating cutoffs at the mean and 0.75 SD above and below 

the mean, corresponding to DunedinPACE values of “slowest aging” ≤ 0.98 (n = 517, 23.3%), “slow aging” 

between 0.98 to 1.07 (n = 656, 29.6%), “fast aging” between 1.07 to 1.15 (n = 561, 25.3%), and 1.15 ≤ for 

“fastest aging” (n = 482, 21.8%). Groups were created using a priori SD cutoffs to roughly approximate quartlies 

for illustrative purposes—all model estimates used full DunedinPACE aging scores. Panel B presents the study 

sample by baseline year of enrollment in the PDMH and years of follow-up to the censor date. Baseline PDMH 

enrollment included the blood draw used to derive DNA methylation data from whole blood.   
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Figure 2. Visualization of the HRs for each of the CCI chronic disease categories over the follow-up period. Effects represent HRs per 1 SD 

difference in DunedinPACE. All estimates include demographic and technical DNAm covariates. Number of cases and excluded participants for 

each estimate are presented in Table 2. Error bars represent 95% confidence intervals. 
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Figure 3. Visualization of diabetes onset (1 – survival) across the follow-up period, as an illustrative 

example of chronic disease incidence. The model included demographic and technical covariates and 

excluded 28 veterans with a baseline diagnosis of diabetes or missing covariate data. The four groups 

were created by standardizing DunedinPACE aging scores and creating cutoffs, as with Figure 1. No. at 

risk represents veterans at risk of diabetes onset at each period on the x-axis. Over the follow up, 45 of 

511 (8.8%) slowest aging veterans, 110 of 651 (16.9%) slow aging veterans, 145 of 556 (26.1%) fast aging 

veterans, and 179 of 470 (38.1%) of fastest aging veterans developed diabetes. Compared to the slowest 

aging veterans, all other groups were more likely to develop diabetes; slow aging HR, 1.90 (95% CI, 1.33-

2.70), fast aging HR, 3.21 (95% CI, 2.27-4.56), fastest aging HR, 5.13 (95% CI, 3.57-7.38, all ps < .001). 
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eFigure 1. CONSORT-style diagram showing the selection of the final analysis cohort from the original 

PDMH repository for the current study.  

 

 

 

 

 

PDMH Repository 

N = 3,876 

VINCI Cohort (unique SSNs and ICNs) 

N = 3,807 

Analysis Cohort 

N = 2,216 

Exclusions: 

No SSN/ICN match from VA EHR 

N = 69  

Exclusions: 

DNAm data not available: N = 1,495 

VA EHR data not available: N = 96 
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eMethod 1 

Detailed description of VA EHR data generation. As described in the main text, prospective health 

outcomes and clinical biomarkers were derived from data in the VA EHR. Veterans were enrolled in the 

Post-Deployment Mental Health (PDMH1) study with a baseline that ranged from 2005 to 2016, which 

resulted in follow-up periods that ranged from 7.3 to 18.5 years (88 to 222 months; eFigure 2). After 

project approval through the Durham VA Research & Development committee and VA Data Access 

Request Tracker (DART), data linkage was completed in the VA Informatics and Computing Infrastructure 

(VINCI) system using social security numbers (SSNs) from the PDMH linked to VA patient’s SSN and 

internal control number (ICN). Data for the relevant health outcomes were then called from VA 

Corporate Data Warehouse (CDW) tables using SQL coding. Chronic disease and biomarker data were 

generated from outpatient, inpatient, and purchased care data (e.g., community care that is delivered to 

veterans following referral from the VA and/or paid by VA sources). Data cleaning processes are 

reported in the following sections. EHR data coverage and missingness based on length of follow-up is 

provided in eTable 1. Data pulls were completed during early 2024, with a final refresh of CDW data for 

the current study on 5/15/2024. 

Charlson comorbidity index. Charlson comorbidity index scores were derived using diagnostic 

ICD-9 and ICD-10 codes2, matching the tables crated by Glasheen and colleagues. Baseline values used 

ICD codes at the date of enrollment in the PDMH and were updated for each subsequent year. Chronic 

diseases diagnoses were carried forward to subsequent years. Scores were coded as missing for any year 

past the end of the veteran’s follow-up observation period, as well as if there was insufficient evidence 

of a patient utilizing VA healthcare and no diagnoses were present. 

Nosos risk adjustment score. Nosos risk adjustment scores3 are automatically calculated in the 

VA CDW. Missing scores were due to either the length of follow-up or the missingness in the VA CDW. 

Nosos scores reflected values for the algorithm that did not account for pharmacy costs.  
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Chronic disease diagnoses. As described in the main text, chronic disease diagnostic statuses 

were ascertained by presence of ICD codes in veterans’ EHR at baseline, as well at follow-up to a censor 

date of 12/31/2023. As with the CCI, ICD-9 and ICD-10 codes were drawn directly from tables outlined 

by Glasheen and colleagues1. For disease categories with multiple severities (diabetes, liver disease, 

renal disease, and cancer), we used earliest onset of any severity. HIV/AIDS and hemiplegia were not 

investigated individually due to low incidence over the follow-up (n < 20), but remained in overall CCI 

scores.  

Clinic-assessed biomarkers. Clinical biomarkers assessed in VA encounters included body mass, 

blood pressure (BP), and heart rate (HR). Body mass was calculated using the standard formula utilizing 

height and weight. All measures were assessed at baseline using an average of the three valid scores 

closest to the PDMH baseline up to a 2-year lookback period. Any height measurements lower than 

61cm and higher than 305 cm, or more than 25 cm from a veteran’s mean, were excluded. Any weight 

measurements less than 4.5 kg and more than 454 kg were excluded. Weight changes defined by a 

criteria of percent change relative to nearest neighbor relative to overall mean, and time from nearest 

neighbor (i.e., change greater than 10% and more than 1 SD from the mean in one week) were 

excluded4. BP was assessed using systolic BP. Systolic BP measurements less than 50 mmHg were 

excluded. HR was assessed using pulse. HR measurements below 30 and more than 200 beats/minute 

were excluded. 

Mortality. All-cause mortality status was ascertained using dates of death pulled from the VA 

CDW’s death ascertainment file and confirmed with National Death Index (NDI) through the VA 

Mortality Data Repository5 (MDR). VA CDW data were censored to a date of 1/21/2024, whereas MDR 

data are currently available until 12/31/20214. Acute versus chronic disease mortality was assessed 

using the primary ICD code associated with the mortality event. 
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eTable 1. Coverage for study variables  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overall sample N = 2,216 Total n % of total N 

Charlson comorbidity index scores 
Baseline CCI score 2,216 100% 
5-year change in CCI  2,216 100% 
10-year change in CCI  1,889 85.2% 
15-year change in CCI  624 28.2% 

Nosos scores 
Baseline Nosos score 1,827 82.4% 
5-year change in Nosos  1,641 74.1% 
10-year change in Nosos  1,284 57.9% 
15-year change in Nosos  315 14.2% 

Clinical biomarkers 
Body mass 1,676 75.6% 
Blood pressure 1,756 79.2% 
Heart rate 1,753 79.1% 

Demographic characteristics 
Age 2,216 100% 
Sex 2,216 100% 
Race and ethnicity 2,216 100% 
Education 2,195 99.1% 
Self-reported smoking 2,206 99.5% 

Note: All measures derived from DNA methylation (aging scores, 
technical covariates, and methylation smoking scores) had full data 
for all participants.  
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eFigure 2. Illustration of cohort enrollment and follow-up timelines by year of baseline PDMH participation. Follow-ups represent veteran data 

used for models testing associations for change in CCI and Nosos scores to the 5-, 10-, and 15-year follow-ups. Models testing associations of 

DunedinPACE with chronic disease incidence and mortality used all follow-up data.  
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eFigure 3. DunedinPACE scores (residualized for age, demographic covariates, and technical covariates) organized by year of baseline 

assessment in the PDMH. There was not a significant association between year of enrollment (which accounted for years of follow-up) and 

DunedinPACE aging scores (r, .02; 95% CI, -.02-.07; p = .256). 
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eFigure 4. Distributions of CCI scores at baseline and the 5-, 10-, and 15-year follow-up. Total Ns reflect overall observation periods due to 

differences in baseline year of assessment (Baseline n, 2,216; 5-year n, 2,216; 10-year n, 1,889; 15-year n, 624).  
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eTable 2. Study results from models with CCI and Nosos scores excluding participants with missing data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Association with 
DunedinPACE 

Age-adjusted  
bivariate association  

Adding demographic and 
technical covariates 

Adding clinical  
biomarkers 

Adding self-reported and 
methylation smoking 

 β 95% CI β 95% CI β 95% CI β 95% CI 

Chronic disease burden (Charlson comorbidity index score) 
Baseline CCI score    0.25** [0.14, 0.36]    0.22** [0.09, 0.34]    0.20** [0.07, 0.34]    0.23** [0.08, 0.38] 
5-year change in CCI     0.20** [0.12, 0.28]    0.21** [0.12, 0.30]    0.16** [0.06, 0.25]  0.12* [0.01, 0.22] 
10-year change in CCI     0.19** [0.12, 0.26]    0.24** [0.16, 0.31]    0.19** [0.11, 0.27]    0.17** [0.08, 0.25] 
15-year change in CCI     0.29** [0.18, 0.37]    0.31** [0.20, 0.42]    0.24** [0.13, 0.36]    0.29** [0.17, 0.41] 

Predicted annual VA healthcare costs (Nosos risk adjustment score) 
Baseline Nosos score    0.10** [0.05, 0.14]    0.12** [0.07, 0.17]     0.12** [0.07, 0.19] 0.05 [-0.02, 0.12] 
5-year change in Nosos     0.08** [0.03, 0.13]  0.07* [0.01, 0.13]       0.06 [-0.00, 0.12] 0.02 [-0.05, 0.09] 
10-year change in Nosos     0.18** [0.12, 0.22]    0.17** [0.10, 0.22]    0.18** [0.10, 0.24]     0.15** [0.07, 0.23] 
15-year change in Nosos     0.23** [0.10, 0.30]    0.20** [0.06, 0.29]  0.18* [0.03, 0.28]   0.16* [0.00, 0.28] 

Note: All models exclude participants with missing data. Each model adds more covariates to the model, first demographics (sex, 
race and ethnicity, and education) and technical covariates (chip type, cell proportions), then clinical biomarkers (body mass, blood 
pressure, and heart rate), and then self-reported smoking and smoking methylation scores. CCI outcomes were estimated with 
Poisson regression, Nosos outcomes were estimated with linear regression. CI = confidence interval.  
* p < .05. ** p < .01.   
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eFigure 5. CCI scores over time grouped by DunedinPACE scores that were residualized for age. Four groups were created by standardizing 

DunedinPACE aging scores residualized for age and creating cutoffs at the mean and 0.75 SD above and below the mean, “slowest aging” (n = 

504, 22.7%), “slow aging” (n = 681, 30.7%), “fast aging” (n = 551, 24.9%), and “fastest aging” (n = 480, 21.7%). 
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eTable 3. 10-year CCI-predicted mortality by DunedinPACE aging groups at baseline, and 5-, 10-, and 15-year follow-ups 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

     Baseline     5-year follow-up 10-year follow-up      15-year follow-up 

10-year predicted 
mortality risk 

Mortality  
risk 

Mortality  
risk 

Change 
in risk 

Mortality  
risk 

Change 
in risk 

Mortality  
risk 

Change 
in risk 

Slowest aging 1.9% 2.2% 0.3% 2.8% 0.9% 3.4% 1.5% 
Slow aging 2.0% 2.5% 0.5% 3.3% 1.4% 5.5% 3.5% 
Fast aging 2.2% 3.1% 0.9% 4.7% 2.4% 8.4% 6.2% 
Fastest aging 3.4% 4.1% 1.6% 8.1% 5.6% 20.5% 18.0% 

 

Annual predicted  
VA healthcare costs 

Nosos  
score 

Nosos  
score 

Change 
in score 

Nosos  
score 

Change 
in score 

Nosos 
score 

Change 
in score 

Slowest aging 0.73 0.80 7% 0.77 4% 0.84 11% 
Slow aging 0.80 0.87 7% 0.89 9% 0.75 -5% 
Fast aging 0.91 0.95 4% 0.98 7% 1.02 11% 
Fastest aging 0.92 1.10 18% 1.36 44% 1.42 49% 

Note: All results represent means generated for each group from raw values for the participants with data at that 
occasion. 10-year CCI-predicted mortality risk values were calculated using the standard calculations for the CCI 
risk index [Percent mortality risk = 100*(1-(0.983^(eCCI)*0.9))] applied to the mean values for each group. Change 
in score columns represent changes from baseline values to each follow-up. Participant Ns match those reported 
for the CCI and Nosos scores at each time point in eTable 1; CCI at baseline n, 2,216; 5-year n, 2,216; 10-year n, 
1,889; 15-year n, 624;  Nosos n, 1,827; 5-year n, 1,641; 10-year n, 1,284; 15-year n, 315.  Groups were created by 
standardizing DunedinPACE scores and dividing veterans into four groups with cutoffs at the mean, as well as SD = 
0.75 above and below the mean. “Slowest aging” represented values more than -0.75 SD below the mean, “slow 
aging” represented values from -0.75 to 0, “fast aging” represented values from 0 to +0.75 SD, and “fastest aging” 
represented values more than +0.75 SD above the mean. These goups were created using a priori cutoffs for 
illustrative purposes only—all model estimates for CCI and Nosos scores reported in the paper were conducted 
using continuous outcomes. 
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eTable 4. Association of DunedinPACE and health stratified by sex  
 

Association with 
DunedinPACE 

Age-adjusted  
bivariate association  

Adding demographic and 
technical covariates 

Adding clinical  
biomarkers 

Adding self-reported and 
methylation smoking 

N = 2,216 β 95% CI β 95% CI β 95% CI β 95% CI 

Baseline CCI score 
Men veterans     0.24** [0.10, 0.38]    0.22** [0.07, 0.37] 0.17 [0.00, 0.34]  0.13 [-0.10, 0.37] 
Women veterans    0.15* [0.01, 0.29]         0.14 [-0.02, 0.29]       0.16 [-0.01, 0.32]    0.22* [0.03, 0.41] 

5-year change in CCI score 
Men veterans     0.19** [0.10, 0.28]    0.18** [0.08, 0.29]     0.13* [0.02, 0.24]  0.11  [-0.00, 0.24] 
Women veterans    0.14 [-0.01, 0.29]  0.20* [0.04, 0.36]  0.16 [-0.07, 0.39]  0.14 [-0.04, 0.31] 

10-year change in CCI score 
Men veterans     0.18** [0.11, 0.26]    0.24** [0.15, 0.33]     0.21** [0.12, 0.30]     0.20** [0.10, 0.30] 
Women veterans    0.19* [0.03, 0.34]    0.22** [0.06, 0.39] 0.14 [-0.09, 0.55] 0.16 [-0.07, 0.39] 

15-year change in CCI score 
Men veterans     0.26** [0.18, 0.34]    0.30** [0.17, 0.43]    0.27** [0.14, 0.40]    0.30** [0.16, 0.43] 
Women veterans    0.38** [0.17, 0.60]    0.39** [0.11, 0.67]  0.38* [0.08, 0.68] 0.37* [0.05, 0.69] 
         

Baseline Nosos score 
Men veterans     0.09** [0.04, 0.14]      0.11** [0.06, 0.17]    0.11** [0.06, 0.17] 0.05 [-0.01, 0.11] 
Women veterans    0.07 [-0.01, 0.14]    0.09* [0.01, 0.17]       0.09* [0.00, 0.18] 0.04 [-0.05, 0.14] 

5-year change in Nosos score 
Men veterans     0.10** [0.05, 0.16]    0.09** [0.02, 0.15]    0.08* [0.01, 0.14] 0.04 [-0.03, 0.12] 
Women veterans    0.08* [0.00, 0.15] 0.06 [-0.02, 0.14]  0.04 [-0.04, 0.13] 0.01 [-0.08, 0.10] 

10-year change in Nosos score 
Men veterans     0.21** [0.14, 0.28]    0.21** [0.13, 0.29]    0.20** [0.11, 0.28]    0.17** [0.07, 0.26] 
Women veterans    0.32** [0.13, 0.52]  0.26* [0.05, 0.48]   0.30* [0.07, 0.53]  0.31* [0.06, 0.56] 

15-year change in Nosos score 
Men veterans     0.24** [0.14, 0.35]    0.24** [0.12, 0.35]    0.20** [0.09, 0.32] 0.12 [-0.01, 0.25] 
Women veterans    0.17* [0.01, 0.34]  0.10 [-0.04, 0.24] 0.13 [-0.03, 0.28]      0.16 [-0.00, 0.33] 

Note: Each model adds more covariates to the model, first demographics (race and ethnicity, and education) and technical covariates 
(chip type, cell proportions), then clinical biomarkers (body mass, blood pressure, and heart rate), and then self-reported smoking and 
smoking methylation scores. CCI outcomes were estimated with Poisson regression using Monte Carlo simulation to account for missing 
data; Nosos outcomes were estimated with linear regression using full information maximum likelihood. CI = confidence interval.  
* p < .05. ** p < .01.   
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eTable 5. Association of DunedinPACE and health stratified by race and ethnicity 
 

Association with 
DunedinPACE 

Age-adjusted  
bivariate association  

Adding demographic and 
technical covariates 

Adding clinical  
biomarkers 

Adding self-reported and 
methylation smoking 

N = 2,216 β 95% CI β 95% CI β 95% CI β 95% CI 

Baseline CCI score 
Non-Hispanic Black veterans     0.21* [0.05, 0.37]    0.17* [0.01, 0.34]   0.17* [0.01, 0.34]   0.21* [0.02, 0.40] 
Non-Hispanic White veterans    0.27** [0.05, 0.17]      0.29** [0.09, 0.48]  0.22 [-0.01, 0.45]  0.12 [0.20, 0.44] 

5-year change in CCI score 
Non-Hispanic Black veterans     0.20** [0.09, 0.30]    0.20** [0.07, 0.32]     0.13* [0.01, 0.26]  0.14* [0.01, 0.26] 
Non-Hispanic White veterans    0.18** [0.06, 0.31]    0.24** [0.11, 0.36]     0.18* [0.04, 0.33]  0.22* [0.03, 0.40] 

10-year change in CCI score 
Non-Hispanic Black veterans     0.22** [0.11, 0.32]    0.27** [0.15, 0.37]    0.19** [0.08, 0.29]     0.20** [0.09, 0.31] 
Non-Hispanic White veterans    0.17** [0.07, 0.28]    0.25** [0.14, 0.37]    0.17** [0.04, 0.30] 0.14 [-0.01, 0.29] 

15-year change in CCI score 
Non-Hispanic Black veterans     0.27** [0.12, 0.42]    0.27** [0.09, 0.46]    0.24** [0.07, 0.41]    0.32** [0.15, 0.48] 
Non-Hispanic White veterans    0.30** [0.16, 0.43]    0.37** [0.23, 0.52]    0.32** [0.18, 0.47]    0.32** [0.14, 0.50] 
         

Baseline Nosos score 
Non-Hispanic Black veterans     0.09** [0.02, 0.11]    0.09** [0.03, 0.14]    0.08** [0.04, 0.19] 0.03 [-0.03, 0.09] 
Non-Hispanic White veterans    0.11** [0.03, 0.16]    0.13** [0.06, 0.20]    0.13** [0.06, 0.20] 0.06 [-0.03, 0.15] 

5-year change in Nosos score 
Non-Hispanic Black veterans     0.06* [0.00, 0.12] 0.05 [-0.02, 0.11]  0.03 [-0.04, 0.09] 0.02 [-0.06, 0.09] 
Non-Hispanic White veterans    0.13** [0.05, 0.20]    0.11** [0.03, 0.19]    0.11* [0.03, 0.20] 0.06 [-0.04, 0.16] 

10-year change in Nosos score 
Non-Hispanic Black veterans     0.32** [0.21, 0.44]    0.32** [0.20, 0.45]    0.32** [0.19, 0.45]    0.33** [0.18, 0.47] 
Non-Hispanic White veterans    0.14** [0.06, 0.22]    0.14** [0.06, 0.22]    0.12** [0.04, 0.22] 0.07 [-0.04, 0.17] 

15-year change in Nosos score 
Non-Hispanic Black veterans     0.19** [0.06, 0.32]    0.16* [0.01, 0.31]  0.12 [-0.04, 0.27] 0.05 [-0.11, 0.22] 
Non-Hispanic White veterans    0.20** [0.10, 0.35]    0.16* [0.03, 0.29]    0.14* [0.00, 0.28] 0.10 [-0.05, 0.25] 

Note: Each model adds more covariates to the model, first demographics (sex and education) and technical covariates (chip type, cell 
proportions), then clinical biomarkers (body mass, blood pressure, and heart rate), and then self-reported smoking and smoking 
methylation scores. CI = confidence interval.  
* p < .05. ** p < .01.   
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eTable 6. Association of PC-adjusted second-generation epigenetic clocks and veteran health  

 
 

 
Associations with 

DunedinPACE 
Associations with 

PC-GrimAge 
Associations with 

PC-PhenoAge 

N = 2,216 β 95% CI β 95% CI β 95% CI 

Chronic disease burden (Charlson comorbidity index score) 
Baseline CCI score    0.23** [0.10, 0.35]     0.22** [0.08, 0.36]   0.02 [-0.02, 0.08] 
5-year change in CCI     0.22** [0.13, 0.31]     0.15** [0.06, 0.25]   0.02 [-0.07, 0.11] 
10-year change in CCI     0.24** [0.16, 0.31]     0.16** [0.08, 0.24]   0.03 [-0.06, 0.12] 
15-year change in CCI     0.31** [0.20, 0.42] 0.10 [-0.01, 0.21]  -0.09 [-0.22, 0.03] 

Predicted annual VA healthcare costs (Nosos risk adjustment score) 
Baseline Nosos score    0.11** [0.06, 0.15]     0.16** [0.11, 0.21]   0.00 [-0.04, 0.05] 
5-year change in Nosos     0.08** [0.03, 0.13]     0.10** [0.04, 0.15]  -0.01 [-0.07, 0.05] 
10-year change in Nosos     0.23** [0.15, 0.31]     0.19** [0.10, 0.27]     0.09* [0.01, 0.17] 
15-year change in Nosos     0.21** [0.11, 0.30]     0.18** [0.08, 0.28]   0.06 [-0.05, 0.16] 

Any chronic disease category 
Chronic disease onset   1.28** [1.19, 1.39]     1.18** [1.08, 1.28]      1.12** [1.03, 1.21] 

Chronic disease categories 
Myocardial infarction   1.84** [1.44, 2.35]      1.75** [1.36, 2.27]   1.17 [0.87, 1.57] 
Stroke   1.38** [1.09, 1.73]      1.50** [1.23, 1.85]   1.03 [0.74, 1.42] 
Heart failure   1.20 [0.90, 1.59]  1.24 [0.92, 1.67]   1.14 [0.91, 1.42] 
Peripheral vascular disease   1.55** [1.11, 2.17]      1.77** [1.30, 2.41]   1.20 [0.84, 1.70] 
Diabetes   1.56** [1.42, 1.71]    1.14* [1.03, 1.26]       1.16** [1.05, 1.29] 
Dementia   1.32 [0.88, 1.97]  1.28 [0.86, 1.92]   0.90 [0.58, 1.38] 
Peptic ulcer disease   1.20 [0.84, 1.71]  1.13 [0.77, 1.64]   0.97 [0.68, 1.38] 
Rheumatic disease   1.02 [0.73, 1.44]  1.10 [0.77, 1.59]   1.02 [0.73, 1.44] 
Chronic pulmonary disease   1.19** [1.06, 1.34]      1.27** [1.13, 1.43]   1.06 [0.92, 1.20] 
Cancer   1.25* [1.02, 1.54]  1.23 [0.99, 1.52]   0.91 [0.73, 1.13] 
Liver disease   1.44** [1.24, 1.66]    1.21* [1.04, 1.41]   1.16 [0.99, 1.36] 
Renal disease   1.34** [1.13, 1.60]  1.05 [0.87, 1.27]   1.06 [0.87, 1.28] 

Mortality 
All-cause mortality    1.38** [1.12, 1.72]      1.53** [1.26, 1.86]   1.16 [0.92, 1.46] 
Chronic disease mortality    1.74** [1.27, 2.39]      1.69** [1.26, 2.27]   1.36 [0.98, 1.88] 

Note: All models included demographic (sex, race and ethnicity, and education) and technical covariates 
(chip type, cell proportions). CCI outcomes were estimated with Poisson regression, Nosos outcomes were 
estimated with linear regression, chronic disease and mortality outcomes used Cox proportional-hazards 
models. CI = confidence interval.  
* p < .05. ** p < .01.   
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