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Abstract

Background: Transcriptomics reveals the existence of transcripts of different coding potential and strand
orientation. Alternative splicing (AS) can yield proteins with altered number and types of functional domains,
suggesting the global occurrence of transcriptional and post-transcriptional events. Many biological processes,
including seed maturation and desiccation, are regulated post-transcriptionally (e.g., by AS), leading to the
production of more than one coding or noncoding sense transcript from a single locus.

Results: We present an integrated computational framework to predict isoform-specific functions of plant
transcripts. This framework includes a novel plant-specific weighted support vector machine classifier called
CodeWise, which predicts the coding potential of transcripts with over 96 % accuracy, and several other tools
enabling global sequence similarity, functional domain, and co-expression network analyses. First, this framework
was applied to all detected transcripts (103,106), out of which 13 % was predicted by CodeWise to be noncoding
RNAs in developing soybean embryos. Second, to investigate the role of AS during soybean embryo development,
a population of 2,938 alternatively spliced and differentially expressed splice variants was analyzed and mined with
respect to timing of expression. Conserved domain analyses revealed that AS resulted in global changes in the
number, types, and extent of truncation of functional domains in protein variants. Isoform-specific co-expression
network analysis using ArrayMining and clustering analyses revealed specific sub-networks and potential
interactions among the components of selected signaling pathways related to seed maturation and the acquisition
of desiccation tolerance. These signaling pathways involved abscisic acid- and FUSCA3-related transcripts, several of
which were classified as noncoding and/or antisense transcripts and were co-expressed with corresponding coding
transcripts. Noncoding and antisense transcripts likely play important regulatory roles in seed maturation- and
desiccation-related signaling in soybean.

Conclusions: This work demonstrates how our integrated framework can be implemented to make experimentally
testable predictions regarding the coding potential, co-expression, co-regulation, and function of transcripts and
proteins related to a biological process of interest.
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Background

Seed maturation and induction of dormancy represent
essential stages in soybean seed development that are
triggered through highly coordinated signaling and
metabolic pathways within the seed maturation and
desiccation programs. LEAFY COTYLEDON (LEC) 1
and transcription factors (TFs) containing the B3
DNA-binding domain, namely LEC2, ABSCISIC ACID
INSENSITIVE (ABI) 3, and FUSCA (FUS) 3, are key
regulators of seed filling, commonly called “the B3
regulatory network” [1, 2]. Their mutual interactions
and interactions with their targets and components of
phytohormone-mediated signaling connect these TFs
within the well-studied B3 regulatory network to develop-
mental and metabolic processes leading to the synthesis
and accumulation of seed storage compounds. During
late seed filling, maturing seeds acquire desiccation
tolerance (DT) and dormancy, as the water content
decreases, primarily through abscisic acid (ABA)-medi-
ated signaling [1, 3-5]. Seed filling-, desiccation-, and
dormancy-related processes are regulated at both the
transcriptional and post-transcriptional levels. To gain
a basic understanding of these regulatory processes, it
is important to identify additional regulatory molecules,
e.g., proteins and RNA, involved in the seed maturation
developmental program, which can be achieved through
transcriptomics in conjunction with bioinformatics
analyses.

High-throughput RNA sequencing (RNA-Seq) reveals
high transcriptional activity in unannotated and anno-
tated regions of genomes in various organisms, resulting
in the discovery of many previously unknown transcripts
[6, 7]. Alternative splicing (AS) is a major source of this
transcript diversity, as a single gene can encode multiple
transcripts. These transcripts can be coding or noncod-
ing, genic or intergenic, and sense or antisense. Coding
transcripts are translated into proteins or regulatory
peptides that can contain, or lack known domains im-
portant for function, regulation, interaction with other
molecules, and subcellular localization [8, 9]. In contrast,
noncoding transcripts, including long noncoding RNAs
(IncRNA) and long intergenic noncoding RNAs (lincRNA)
can act directly as regulators [6, 7, 10, 11]. These
noncoding RNAs (ncRNAs) perform their regulatory
functions through transcriptional interference, sense
and antisense hybridization, interactions with RNA-
binding proteins, and/or serving as precursors for
small regulatory RNAs [7, 11]. Noncoding transcripts
have been reported to be involved in the regulation
of development and in responses to stress in plants
[12-14]. To date, specific plant IncRNAs have been
implicated in the regulation of flowering, response to
cold, root meristem development, and modulation of
AS [15].

Page 2 of 23

High-throughput experimental testing to predict the
functions of newly identified transcripts is not possible. As
a first step towards future experimentation, the functions
of coding and noncoding transcripts can be inferred com-
putationally by integrating several approaches, such as
functional annotation based on sequence similarity, global
functional domain analyses, determining the coding po-
tential of transcripts, co-expression analyses, and the
construction of hypothetical regulatory networks. Because
transcripts can be coding or noncoding, determining their
coding potential is a necessary step towards their func-
tional characterization. Identification of conserved do-
mains within newly identified coding sequences using
well-established tools such as InterPro [16] and Batch
Conserved Domain (CD) Search [17] is important for in
silico function prediction.

Several tools have been developed for predicting the
coding potential of individual transcripts primarily in
animal systems, including Coding Potential Calculator
(CPC) [18], Coding Potential Assessment Tool (CPAT)
[19], PhyloCSF [20], and iSeeRNA [21]. These tools rely
upon sequence similarity and open reading frame (ORF)
length to distinguish between coding and noncoding
transcripts [10, 22]. However sequence similarity and
OREF length alone lack sufficient power to accurately dis-
tinguish between coding and noncoding RNAs (ncRNA).
Additional features, such as the presence of conserved
functional domains, GC content, and the free energy of
RNA secondary structure, are needed to improve the
detection accuracy of ncRNAs [12, 23, 24]. To our
knowledge, there are currently no comparable tools
available to globally characterize coding and ncRNAs
specifically in plants.

Here we present the development and implementation
of a transcriptome-wide computational framework that
combines high-throughput information with bioinfor-
matics tools to predict potential functions and novel
associations among transcripts and inferred proteins.
Co-expression-related guilt-by-associations, timing of
expression, sequence similarity, presence of functional
domains in protein variants, and coding potential of
transcripts were each used to infer possible function.
The framework includes (i) a pipeline for global analysis
of functional domains in proteins, and (ii) CodeWise, an
accurate support vector machine (SVM) classifier that
uses several features to predict the coding potential of
transcripts. This framework was applied to an existing
data set related to seed filling and early desiccation stages
in developing soybean embryos [25, 26]. We mined this
data set extensively in the context of AS events and (i) the
coding potential of transcripts, (ii) the presence or absence
of functional domains, (iii) similarity to Arabidopsis pro-
teins, and (iv) timing and patterns of expression, including
co-expression network analysis, during soybean embryo
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development. Highly connected nodes within the co-
expression network (hubs) connecting the majority of
transcripts expressed during the desiccation phase were
identified. Hypothetical ABA- and FUS3-related signaling
pathways focusing specifically on signaling components
subjected to AS and related to soybean seed filling and
acquisition of DT are also presented and discussed.

Methods
Definition of terms
Common terms used in this study are defined in Table 1.

Analysis of RNA-Seq data and identification of differentially
expressed transcripts

Our RNA-Seq data set (GEO accession number GSE46153)
includes ten time points with three biological repli-
cates per time point, representing the phases of soy-
bean embryo development from the onset of seed filling
to the onset of seed desiccation. Read mapping, transcrip-
tome assembly, and differential expression analyses were
done using Tophat2, Cufflinks, and Cuffdiff2 available in

Table 1 Glossary of common terms that were used in this study
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the Tuxedo Suite [27] RNA-Seq pipeline [25, 26]. The
Glycine max reference genome (version 189) was used to
guide transcriptome assembly, which yielded 39,191
known and 64,005 novel expressed transcripts. A tran-
script was defined as expressed if the sum of its FPKM
(fragments per kilobase of exon per million fragments
mapped) values across the time course was greater than 1.
Based on the Cuffdiff2 results and temporal differential
expression analysis at the isoform level, 17,181 transcripts
were significantly differentially expressed during at least
one time point when compared to the previous time
point (false discovery rate (FDR) < 0.05). Based on fur-
ther categorization, 2,938 out of 17,181 transcripts
were also alternatively spliced and originated from
1,393 genes, meaning that for each of these genes, at
least two differentially expressed splice variants (SVs)
were identified. Nucleotide sequences of newly assembled
transcripts were extracted and assembled using an in-
house Python program to parse the transcriptome refer-
ence output by Cuffmerge (merged.gtf) from the soybean
genome. Class codes used are a set of 12 Cuffcompare

Term Definition

Degree of connectivity

Identification of how well a node is connected in a network. For example, if a network has 10 nodes and a

node is connected to 5 nodes, it's degree of connectivty is 0.5.

Desiccation tolerance (DT) phase

The last phase in developing embryos characterized by loss of water, a sharp increase of desiccation-related

metabolites and transcripts, and acquisition of DT in yellow embryos at day 55.

Differentially expressed transcript
time point (FDR < 0.05).

Domain categorization
domain, and disparate domains.

A transcript that was significantly differentially expressed at at least one time point compared with previous

The domain composition of SV-pairs were compared and categorized into similar domains, no known

Early maturation phase

Expressed transcripts

Hub
Mid-to-late maturation phase
Nearest neighbors

Regulon

Soybean developmental stages

Splice variant (SV)

Sub-network

Super-cluster

SV group

This first phase in seed filling is characterized by an initial decrease in metabolites and cell-division-related
transcript levels and the onset of accumulation of seed storage compounds.

A transcript was defined as expressed if the sum of its FPKM values across the time course was greater than
one.

Highly connected nodes in a network (nodes with the highest degree of connectivity).
This phase in embryo development is characterized by a stable accumulation of seed storage compounds.
Nodes directly connected through individual edges to a single node of interest.

A group of transcripts known to be targets of a common TF. For example, a group of transcripts known to
be targets of ABI3, is called the ABI3 regulon.

Three major developmental stages (early maturation, mid-to-late maturation, and DT) defined in this report
on the basis of changes in the levels of relevant metabolites, seed storage compounds, and transcripts in
developing soybean embryos.

Transcripts that are products of the same precursor mRNA.

A group of nodes and edges that are part of a larger network. For example, a node with all its nearest
neighbors comprising the members of the FUS3 regulon is a sub-network.

Clusters of transcripts with similar expression profiles grouped according to predefined soybean
developmental stages.

A group containing at least two SVs of a gene both of which were significantly differentially expressed
during embryo development. For example, gene X has three SVs (X.1, X.2, X.3), and X.1 and X.3 showed
changes in transcript levels and X.2 was stably expressed in developing embryos. X.1 and X.3 belong to
the same SV group representing gene X.
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transcript codes proposed by [28]. Novel transcripts
appeared as novel SVs of known genes (transcript classes
“”, “0”, and “c”), as well as in intergenic (transcript classes
“-” and “u”) and antisense (transcript classes “x” and “s”
classes. The term “transcript” is used as a general term
and includes all types of detected transcripts as opposed
to SVs that are defined as transcripts produced from the
same premature messenger RNA (pre-mRNA). The no-
menclature for novel SVs was adapted from [25]. For
example, if a gene had two known SVs, two novel SVs
were designated N3 and N4.

Transcriptome-wide computational framework

We devised an extensive framework to obtain isoform-
specific information for all expressed transcripts using
Batch CD-Search [17], Mercator [29], RNAfold [30],
CPC [18], and CodeWise (Additional file 1: Figure S1).
The results obtained from the application of each tool
were mined separately and also in conjunction with the
other tools to enable functional inference for selected
known and novel transcripts. All parameters in the pub-
licly available tools were set to their default values unless
otherwise stated. In the following sections, implementa-
tion details of each tool are described.

Batch translation and Batch-CD Search

First, the in-house Python program BatchTranslator.py
(Additional file 2) was used to find the longest protein
sequence in each nucleotide sequence in batch mode.
This program evaluates all ORFs of a sequence, starting
with the AUG start codon and ending with any of the
three stop codons, returning only the longest protein
sequence. The program produces two separate output
files: (i) FASTA protein sequence and (ii) information on
translation statistics including the length of the 5 un-
translated region (5’-UTR), potential ORF length, poten-
tial ORF ratio (length of potential ORF)/(length of
transcript), 5-UTR ratio (length of 5-UTR)/(length of
transcript), and protein length. The in-house program
accepts a FASTA file and returns the most likely ORF of
a transcript with accuracies of 99 in Arabidopsis thali-
ana, 96 in Medicago truncatula, and 95 % in Glycine
max, (all data were obtained from Phytozome v9).
Second, Batch CD-Search, which accepts up to 100,000
protein sequences at a time, was used to identify con-
served domains [17].

Mercator

Lohse et al. [29] is a sequence similarity-based functional
annotation tool that uses the Basic Local Alignment
Search Tool (BLAST) algorithm to identify sequences
that resemble the query sequence (above a specified
threshold) from several reference sequence databases.
Collectively, these databases contain information on all
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Arabidopsis proteins, proteins from the SwissProt Plant
Protein Annotation Program (6,000 plant proteins),
57,000 rice proteins, 17,000 Chlamydomonas reinhardtii
protein models, and 2,169 domains from InterPro,
conserved domain database (CDD), and Eukaryotic
Orthologous Groups (KOG) databases. Mercator as-
signs each transcript to a MapMan ontology bin. The
presence of a given transcript in a known MapMan
bin helps to predict functionality of that transcript.
All parameters were utilized in the Mercator web ser-
ver and the BLAST cutoff parameter was set to 50.

RNAfold and CPC

Available in the Vienna package [30], was used to predict
RNA secondary structure and the minimum free energy
of all transcripts by using the command-line version of
RNAfold in batch mode. The CPC web server [18] was
used to assess the coding potential of transcripts. CPC
uses an SVM classifier trained with respect to sequence
similarity (using BLAST) and length (using FrameFinder).
Coding potential is predicted with reference to known
protein sequences in the UniProt database [31].

Development of the CodeWise classifier

We developed the CodeWise classifier for accurate as-
sessment of the coding potential of plant transcripts.
CodeWise integrates the tools described above with add-
itional features that aid in the categorization of coding
versus noncoding transcripts.

Features

CodeWise features include: (i) sequence length, potential
OREF ratio, UTR ratio, and potential protein length, (ii)
sequence content (GC content, and T/A and G/C ra-
tios), (iii) conserved domain information (number of
conserved domains and extent of domain truncation),
(iv) RNAfold-based minimum free energy of RNA sec-
ondary structure, (v) protein sequence similarity and
functional annotation (presence of transcripts within the
MapMan bins), and (vi) CPC scores. The Batch CD-Search
tool was used as described above to identify conserved do-
mains in each amino acid sequence. The extent of domain
truncation is reflected in the “truncation ratio” defined as
(the number of truncated domains)/(total number of
domains).

Training and testing

The features described above were compiled for a total
set of 115,000 unique Arabidopsis thaliana transcripts
from The Arabidopsis Information Resource (TAIR) 10
database [32] and Glycine max (version 189) transcripts
[33], including coding (positive class) and noncoding
transcripts (negative class). The LibSVM package was
used for implementation of the SVM classifier [34]. The
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positive training set included 35,000 Arabidopsis tran-
scripts and 50,000 soybean coding transcripts. The
negative training set included non-redundant known
Arabidopsis noncoding transcripts from 3 resources: (i)
25,000 from the plant long non-coding RNA database
PLncDB [19], (ii) 3,800 from the NONCODE version 4
database [35], and (iii) 278 from TAIR10 [32]. There is
currently no available source for noncoding soybean
transcripts. Due to the low number of available non-
coding transcripts, weighted SVM training (-wi weight
in LibSVM) with a 3 to 1 ratio was used to prevent
unbalanced training. 75 % of the data were randomly
selected for training, and the remainder of the data were
used for testing, keeping the existing 3 to 1 ratio
between the coding and noncoding transcript classes.
The training and testing samples were normalized be-
tween -1 and +1 prior to training using the svm-scale
program available in LibSVM. Several kernels (radial
basis functional (RBF), polynomial, and linear) were used
to select the best model. The linear kernel showed the
best accuracy of 96 %, followed by the RBF kernel
(94 %). Accuracy was determined as the ratio of cor-
rect predictions to the total number of transcripts.
SAS JMP Pro 11 was used for feature assessment in
CodeWise using Linear Discriminant Analysis (LDA)
and Principal Component Analysis (PCA).

Clustering and correlation analyses

GeneCluster 3.0 [36] was used for centering, normaliz-
ing, and clustering of SVs into 5, 10, 15, 25, and 30
clusters based on their FPKM values with 500 iterations
using the k-means algorithm. Distinct expression patterns
within the transcript population were detected in 25
clusters (Additional file 3: Figure S2). Therefore, k =25
was selected for further visualization in Java Tree View
[37] and for data mining. Pearson correlation analysis of
sense and antisense transcripts was calculated using an
in-house Python program. Sense and antisense transcripts
that showed significant correlation of expression over the
time course of soybean embryo development were identi-
fied (p-value < 0.05).

Co-expression network analysis

ArrayMining was used to construct a co-expression
network for the set of 2,938 differentially expressed and
alternatively spliced transcripts. ArrayMining yields a
weighted gene co-expression network of significantly
correlated genes that have similar expression patterns
within a user-defined threshold [38]. The Fruchterman-
Reingold method was used for network visualization, the
edge-adjacency threshold was set to 0.9, and the result-
ing network was visualized using an organic layout in
Cytoscape 3.1 [39]. We define two nodes as nearest
neighbors in a network if there is a direct edge
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connecting those two nodes. If a node (x) is connected
to m nodes and # is the total number of nodes in a
super-cluster sc, the degree of connectivity of x in sc can
be defined as:

Degree of connectivity, ="/,

The degree of connectivity for super-cluster sc did not
follow a normal distribution and median was chosen to
represent this distribution. The degree of connectivity
for a super-cluster sc was defined as:

Degree of connectivity,, = median (Degree of connectivity,, nndes‘sc)

Signaling pathway visualization

The in-house tool Beacon was used for the visualization
of signaling pathways [40]. The Beacon Pathway Editor
consists of a tool designed to draw pathways encoded in
the Systems Biology Graphical Notation Activity Flow
language that is a standard for describing pathways in
terms of perturbations, influences, activities, logical op-
erators, and phenotypes [41].

Quantitative real-time PCR

Quantitative Polymerase Chain Reaction (qPCR) was
performed on selected sense and antisense transcripts,
including LEC1-Like (L1L), two ETHYLENE RESPONSE
FACTOR/APETALA 2 (ERF/AP2) TFs, gibberellin 2
(GA2) oxidase, and phytochrome-interacting basic helix-
loop-helix 5 (PIL5), using samples from several time
points to further validate the changes in transcript levels
obtained from RNA-Seq as described [25]. The validated
transcripts and their specific primers are summarized in
Additional file 4: Table S1. Comparison between expres-
sion results from RNA-Seq and qPCR are shown in
Additional file 5: Figure S3.

Results

Overview of the transcriptome-wide computational
framework

The data used in this study were taken from an exist-
ing transcriptomics data set pertaining to seed filling
and early desiccation stages of soybean embryo devel-
opment [26]. Differential expression analysis of this
dataset yielded 17,181 transcripts (many of which
were previously unidentified) that showed significant
changes in their levels over time (FDR<0.05) [25].
Some of the newly identified transcripts were novel
SVs, intergenic, and/or antisense and of different
coding potentials. These types of transcripts, although
important in regulating various aspects of cell devel-
opment [8-10, 12], have been largely neglected in
analyses of transcriptomics studies to date.
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Our framework (Fig. 1) involves new and existing tools
that were applied (i) globally to all identified known and
novel transcripts and (ii) to a set of 2,938 transcripts origin-
ating from 1,393 genes. Each of these genes was defined as
having at least two significantly differentially expressed SVs
in developing soybean embryos. These 2,938 transcripts do
not include transcripts that showed stable, non-changing
expression levels. While the entire analysis was performed
at the transcriptome-wide level, detailed mining of splicing
events and function predictions was only performed on the
smaller data set of 2,938 transcripts.

The first steps in the analysis included (i) large-scale
functional domain analysis by batch CD-Search [17], (ii)
predictions of RNA secondary structures and their
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minimum free energy by RNAfold [30], and (iii) func-
tional predictions and annotations by Mercator [29].
These tools were used independently and also in con-
junction with the in-house SVM classifier CodeWise to
assess the coding potential of transcripts. Second, add-
itional tools were applied to the set of 2,938 transcripts,
including (i) co-expression network analyses by Array-
Mining [38] and visualization in Cytoscape [39], (ii) the
depiction of inferred signal transduction pathways in the
Beacon Pathway Editor [40] based on prior knowledge
combined with our data, and (iii) Pearson correlation
analysis of sense and antisense transcripts by an in-
house python program, all in the context of AS, and
timing and patterns of transcript expression. In the

Landscape of transcripts in developing soybean embryos

Known SVs Novel SVs

! !

Antisense transcripts

! !

Intergenic transcripts

Transcriptome-wide analyses tools

Co-expression
network

Conseryed RNA secondary structure (RNAfold) Protein
domain R i, Lo
. similarity
analysis search
(Batch CD- Minimum free ener:
Search) )% (Mercator)
CodeWise
Domain / \ MapMan
information Coding Noncoding bins
Domain categorization Coding potential of Functional
and comparison transcripts annotation

Analysis of the subset of 2,938 transcripts

Signal transduction
pathways

Correlation of sense and
antisense transcripts

1 1

;

ArrayMining

Beacon

Correlation analysis

Fig. 1 Computational framework. Transcriptome-wide analysis tools comprised large-scale conserved domain search using Batch CD-Search, RNA
secondary structure prediction using RNAfold, functional annotation by Mercator, and coding potential assessment using CodeWise. These tools,
in conjunction with co-expression network analysis by ArrayMining and signal transduction pathway analysis in Beacon, were used for detailed
data analyses of a set of 2,938 transcripts. This population afforded the opportunity to identify candidate SVs transcribed from the same gene
with potentially distinct functions in different stages of soybean embryo development. Each of the 1,395 genes had more than one transcript
significantly differentially expressed during time-course of soybean embryo development (FDR < 0.05), leading to the detection of 2,938 transcripts.

Tools are shown in black, inputs in blue, and outputs in green
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following sections, different modules of this framework
are explained in detail

Transcriptome-wide domain analysis of protein variants
Detection of the presence or absence of functional do-
mains can aid in predicting interactions and therefore,
functions of protein isoforms. For example, a novel
protein isoform possessing a new domain known to
facilitate interactions with signaling proteins of known
function can be inferred to potentially interact with
these other proteins and function in those signal trans-
duction pathways. Hence, there was a need to obtain
global information concerning the presence, absence,
and/or truncation of functional domains. All known and
novel expressed transcripts were translated in silico to
identify the longest amino acid sequence and then
subjected to Batch CD-Search [17] to identify con-
served domains in the set of protein sequences. This
transcriptome-wide domain analysis led to the extrac-
tion of specific domain information for all expressed
transcripts (Additional file 6: Table S2).

Transcriptome-wide analysis of transcript coding
potentials

CodeWise classifier development

An important and challenging step for functional predic-
tions is determining the coding potential of transcripts,
which is a measure of how likely a transcript is to
encode a protein. Noncoding transcripts can potentially
interfere with, or otherwise affect, gene expression,
which makes them candidates as important transcrip-
tional and post-transcriptional regulators [6, 7, 10, 11].
Integration of as many features as possible improves the
accuracy of coding potential prediction tools. We gath-
ered a large compendium of data related to sequence,
RNA structure, conserved domains, sequence similarity,
and functional annotation of Arabidopsis and soybean
transcripts. We used binary SVM classification, which is
a supervised learning approach known to yield high
accuracy in high dimensional input data such as genom-
ics data [42, 43]. A large spectrum of features was
selected for evaluating the coding potential of each tran-
script in CodeWise to distinguish coding from ncRNAs:
(i) sequence length, (ii) sequence content, (iii) presence
and truncation of conserved domains, (iv) free energy of
RNA secondary structure, (v) protein sequence similar-
ity, and (vi) CPC score.

These features were selected based on the current
state of knowledge about the characteristics of coding
and noncoding transcripts. First, features related to the
nucleotide and protein sequence length were shown to
be necessary, but insufficient, for the separation of
coding from noncoding transcripts [12, 23, 24]. These
features include ORF and 5-UTR ratios and potential
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protein lengths. Second, noncoding transcripts were
shown to have higher GC content and T/A ratio than
protein-coding transcripts [12, 44]. Third, protein-
coding transcripts are likely to have conserved domains.
Truncation of domains in either the C- or the N-terminus
can affect protein function. To obtain information on the
presence, absence, and/or truncation of functional do-
mains, transcripts (including ncRNAs) were subjected to
computational batch translation and batch CD-search. In
the case of ncRNAs, putative start and stop codons and
potential peptides can still be identified computationally.
Fourth, protein-coding transcripts have more stable sec-
ondary RNA structures than noncoding transcripts, which
is reflected in their minimum free energy [44, 45]. This
parameter was predicted by using RNAfold [30] for all
coding and noncoding transcripts. Fifth, protein sequence
similarity and functional annotation can be important to
distinguish coding from noncoding transcripts. Mercator
[29] was used to assign transcripts into MapMan [46]
ontology bins based on protein sequence similarities.
Sixth, CPC is used to assess the coding potential of tran-
scripts [18]. Incorporation of the CPC score as a feature in
CodeWise was evaluated as well. These features were
tested together and in different combinations to assess
their importance for the overall accuracy of CodeWise.

CodeWise performance evaluation

CodeWise classified transcripts into coding and noncod-
ing groups with the area under the receiver operating
characteristic curve (AUC) > 0.98 on an independent test
set, when all features were used for training (Fig. 2a).
For assessing the coding potential of transcripts in
CodeWise, no predetermined cutoff was used for distin-
guishing coding from noncoding transcripts with respect
to protein length and sequence similarity. Instead, the
classifier learned the cutoffs and patterns that exist be-
tween coding and noncoding classes among the training
features. CodeWise assigned both coding and noncoding
probabilities to each transcript. CodeWise outperformed
CPC by a higher number of true predictions and a lower
number of the false predictions (Fig. 2b). Because the
other available tools, specifically iSeeRNA, PhyloCSE,
and CPAT do not include plants as a model system,
evaluating their performance relative to CodeWise was
irrelevant.

We used three methods to assess the contribution of
different features within CodeWise. First, the CodeWise
classifier was trained and tested with all combinations of
six feature groups (127 combinations). Second, principal
component analysis (PCA) was performed to evaluate
how different features contributed to the variance be-
tween coding and noncoding classes (Fig. 2c). PCA re-
sults revealed that sufficient separation (with only a
small proportion of outliers) between the coding and
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Fig. 2 CodeWise performance evaluation. a ROC curve on the test set. b Comparison of CodeWise and CPC prediction power on the same set
of known coding and noncoding transcripts. True positive: a coding transcript correctly predicted to be coding, true negative: a noncoding
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noncoding transcripts was achieved solely through prin-
cipal component 1 (PC1), which accounted for 34.3 % of
the variance. PCA also revealed the positive and nega-
tive correlations among the specific individual features
(depicted as eigenvectors aligning in the same and op-
posite directions, respectively, along the PC1 axis in
the loading plot of Fig. 2c). Third, LDA was used to
find linear combination of features with the highest
covariate scores for separation of coding and noncod-
ing transcripts. LDA resulted in 93.94 % correct classi-
fication of coding and noncoding transcripts with AUC
of 0.9797 for both coding and noncoding classes.
These three evaluation techniques revealed that at least
three specific feature groups are required for separation of
coding from noncoding transcripts: (i) the free energy
associated with RNA secondary structure, (ii) the presence
of conserved domains, and (iii) sequence features (5-UTR
ratio, potential ORF ratio, and protein length). Because
CPC scores are highly correlated with ORF ratio and
protein length, this feature does not affect CodeWise

predictions (Fig. 2b). No significant differences were ob-
served in the nucleotide content, specifically between the
GC content or the T/A ratio, of coding transcripts and
noncoding transcripts (Fig. 2b).

Noncoding transcripts had significantly higher mini-
mum free energy of RNA secondary structure and
tended to be shorter, with higher 5-UTR ratio, lower po-
tential ORF ratio, shorter predicted protein lengths, no
conserved domains, and lower CPC scores than coding
transcripts (Fig. 3). The average minimum free energy of
RNA secondary structure of coding and noncoding
sequences was —371 and —134 cal mol™', respectively
(Fig. 3f).

Transcriptome-wide analysis of coding and noncoding
transcripts in developing soybean embryos using CodeWise
Transcriptomics analysis revealed the expression of
39,101 known and 64,005 novel transcripts in developing
soybean embryos (Table 2). The transcript population
included transcripts from genic and intergenic regions.
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Based on the Cuffdiff2 analysis, 17,181 out of 103,106
transcripts showed significant differential expression. On
average, a soybean gene produced three transcripts and,
for the most part, the previously known SVs showed
significantly higher expression than the novel tran-
scripts (p <0.0001, t-test). Known transcripts had sig-
nificantly higher average FPKM values than antisense,
intergenic, novel genic sense, and overlapped transcripts
(p<0.0001, t-test). Using the CodeWise classifier, we

Table 2 Transcript distribution among different classes of
significantly changed transcripts

Transcript classes Transcript number Significantly changed
Known (=) 39,101 13,398

Novel splice junction (j) 57,376 2,840

Overlapped (o) 1,689 252

Antisense exon (x) 2,266 242

Antisense intron (s) 599 30

Intergenic 2,075 419

Total 103,106 17,181

Cuffdiff2 was used for time-course differential expression analysis at isoform
level. Transcripts that were differentially expressed at least at one time point
compared with previous time point with FDR < 0.05 were defined as significantly
differentially expressed. Out of 103,106 transcripts detected in developing
soybean embryos, 17,181 transcripts were significantly changed

identified 13,652 IncRNAs, including 10,023 genic IncRNA,
1,064 lincRNAs, and 2,295 noncoding antisense transcripts
(Additional file 7). Based on CodeWise test results on
coding and known noncoding plant transcripts compiled
from existing databases [19, 32, 33, 35], we estimated that
about 96 % (AUC > 0.98) of these IncRNAs were correctly
rejected as coding (true negatives). Long noncoding tran-
scripts showed significantly lower expression than coding
transcripts (p < 0.0001, t-test), which is consistent with
other studies [23, 47, 48].

Bioinformatics analyses of AS events

Identification of alternatively spliced and significantly
differentially expressed transcripts

We previously identified 1,393 genes, each with more
than one significantly differentially expressed transcript,
resulting in a population of 2,938 known and novel SVs
and antisense transcripts [25]. This population afforded
the opportunity to identify candidate SVs transcribed
from the same gene with potentially distinct functions
in different stages of soybean embryo development.
Transcriptome-wide analysis of this relatively small
subset revealed several interesting phenomena in the
context of embryo development. For example, this
dataset includes (i) SVs with different splicing patterns
covering major developmental stages of developing
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soybean embryos, (ii) coding and noncoding transcripts
such as IncRNAs and antisense transcripts, (iii) SVs with
different number and types of conserved domains with
the same and/or different expression profiles.

To illustrate the use of our framework for biological
data mining and function inference, this set of transcripts
was further analyzed in several ways. The k-means cluster-
ing algorithm was used to group these 2,938 transcripts
into 25 clusters (Additional file 3: Figure S2) that repre-
sented major trends in seed filling and early desiccation-
related processes. Transcripts belonging to the individual
clusters are presented in Additional file 8: Table S3. Some
of the clusters displayed similar trends and were therefore
merged into six super-clusters (Fig. 4a), based on prior
knowledge obtained from the same dataset concerning the
timing of metabolite and metabolism-related transcript ac-
cumulation [26]. Three basic trends reflecting changes in
metabolite and transcript levels (Fig. 4b) included: (i) early
maturation - initial decrease until day 15 — 20, followed
by stable low levels (green trend), (ii) mid-to-late matur-
ation - initial increase, followed by stable high levels (blue
trend), and (iii) desiccation (DT) - appearance of metabo-
lites and transcripts in yellow embryos at day 55 (red
trend). Overall, the transcripts were not evenly distributed
among the six super-clusters. The majority of AS events
were observed in the DT super-cluster, followed by the
early and mid-to-late super-clusters (Additional file 9:
Figure S4). Known and novel splice junction SVs domi-
nated all super-clusters, but a small number of transcripts
belonging to other classes (exon skipping and antisense)
were also observed in nearly all super-clusters (Additional
file 9: Figure S4).

The three temporal patterns provided the basis for
further mining of the population of 2,938 SVs, which
included (i) expression patterns, (ii) presence or ab-
sence of conserved domains, (iii) functional annota-
tion based on protein similarity by Mercator, (iv)
CPC- and CodeWise-derived coding potential predic-
tions (Additional file 8: Table S3), (v) potential ORF
ratio and 5-UTR length, and (vi) GC content. Classi-
fication of 2,605 transcripts was consistent between
CodeWise and CPC, while 333 transcripts were reclassi-
fied by CodeWise. Based on the testing results presented
above, 96 % of these predictions are estimated to be
correct.

Conserved domain analysis of potential protein variants

We define an “SV group” as those isoforms in the popu-
lation of 2,938 transcripts that were spliced from the
same pre-mRNA. Members of each SV group were di-
vided into three categories in terms of differences in
their conserved domains. This categorization was done
by performing pairwise domain comparisons of isoforms
within each SV group on Batch-CD Search results
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Fig. 4 Assembly of super-clusters. a Normalized FPKM values of the
set of 2,938 transcripts were clustered into 25 groups using the k-means
algorithm. Clusters with similar expression profiles across developmental
stages were grouped into six super-clusters. Three major developmental
stages (early maturation (green), mid-to-late maturation (blue),
and desiccation (red)) containing 94.5 % of the transcript population
were identified. b Trends involving changes in metabolites and
transcript levels [28] were grouped by developmental stages and

color coded as corresponding three major super-clusters

(Fig. 5), with the focus on (i) disparate domains, defined
as SVs differing in at least one conserved domain, (ii)
similar domains, defined as SVs having the same types of
domains, but the number of domains can be different,
and (iii) no known domains, defined as at least one of
the SVs lacked any conserved domains. This domain
categorization allowed the exploration of differences
among SVs with respect both to their functional do-
mains and timing of expression, which can facilitate pre-
diction of possible functional roles of different SV pairs.
SVs having different expression profiles (reflected in
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their presence in different super-clusters) with different
number and types of conserved domains may play dis-
tinct roles in developing embryos. Domain comparisons
among SVs present within the same super-cluster were
also performed to obtain information about SVs that had
similar expression profiles.

Interestingly, the majority of SVs (80 %) originating
from the same gene co-expressed and belonged to the
same super-cluster. Others were expressed at different
times (different super-clusters, e.g., “DT, early matur-
ation”). The majority of SV groups either had similar
domains (48 %) or one of the SVs in the group lacked
any known domain, regardless of super-cluster com-
parisons (37 %) (Fig. 5). The group of SVs with no do-
mains included both sense IncRNAs (12 %) and
transcripts encoding peptides or proteins with no
known domains (14 %). For example, 777 SV pairs
were up-regulated at the DT stage (both SVs belonged
to the DT super-cluster). Among these SV pairs, the
majority had similar domains (399 SV pairs), while
only 72 SV pairs had disparate domains. The remain-
der of the SV pairs contained one partner SV with no
known domain. Eighty SV pairs belonged to the mid-
to-late and early maturation super-clusters. While
these SV pairs had completely different expression
profiles, 38 and 42 SVs had similar and different, re-
spectively, conserved domains.

Sense and antisense transcript pair analysis

Emerging studies provide evidence that natural antisense
transcripts play an important role in regulating gene
expression [49, 50]. RNA-Seq analysis enabled the iden-
tification of 167 novel sense and antisense transcript
pairs that showed changes in expression during soybean
embryo development. A plausible hypothesis is that if a
corresponding sense and antisense transcript pair shows
positively or negatively correlating expression patterns,
then the stability of the sense transcript will be affected
by the antisense transcript. For sense and antisense tran-
script pairs, potential correlations were investigated
using Pearson correlation analysis. The majority of
sense-antisense pairs (155 out of 167 pairs) had signifi-
cantly correlated expression profiles during soybean em-
bryo development (Additional file 10: Table S4). Specific
examples of potential antisense regulation will be dis-
cussed in detail in section 4.4. in relation to ABA and/or
FUS3 action and timing of their expression.

AS events related to ABA and/or FUS3 action

FUS3 plays a key role in the regulation of seed develop-
ment [51], as does the phytohormone ABA [1]. It was
therefore of great interest to understand the relationship
of RNA splicing and antisense regulation to ABA- and
FUS3-related events in developing soybean embryos and
to search for possible clues to as yet unknown and/or
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partially understood regulatory mechanisms. Therefore,
we mined the set of the 2,938 transcripts for potential
ABA- and FUS3-related targets. ABA-related Arabidop-
sis genes were extracted from [1] and included proteins
involved in ABA metabolism and signaling, as well as
those associated with interactions of ABA with other
hormone-mediated pathways. Similarly, the identity of
the genes in the FUS3 regulon in Arabidopsis was ob-
tained from [51]. The Arabidopsis gene IDs associated
with the corresponding soybean genes encoding these
2,938 differentially expressed transcripts were cross-
referenced with the Arabidopsis ABA-related and FUS3-
regulated genes to obtain ABA-related and FUS3-
regulated potential homologs in soybean. This mining
led to the detection of 318 transcripts (Additional file
11: Table S5A). These transcripts were carefully exam-
ined with respect to conserved domains, coding poten-
tial, and functional annotation. The majority of ABA-
related transcripts were expressed during the mid-to-late
and DT phases of soybean embryo development (89 %).
FUS3 is encoded by two genes in soybean, each producing
one transcript (Glymal6g05480.2 and Glymal9g27336.1)
in developing embryos, both genes showing similar and
stable expression until day 55 when their levels dropped
significantly [26]. The FUS3 regulon [51] contained 181
transcripts, some of which are also related to ABA signal-
ing, showed differential expression during soybean em-
bryo development.

AS events related to ABA and/or FUS3 action during early
maturation

The early super-cluster is relevant to young, fully differ-
entiated, green embryos that expressed genes associated
with various aspects of cell division but already had
started to accumulate seed storage compounds [26]. The
FUS3-related SVs belonging to the early super-cluster in-
cluded: (i) L1L, (ii) receptor protein kinase barely any
meristem (BAM) 2 and calcium-dependent protein kin-
ase (CPK) 11, and (iii) a component of 26S proteasome-
mediated protein degradation radiation sensitive (RAD)
23. A number of Auxin response factors (ARFs) and
regulatory proteins involved in flower development-
related cell division and differentiation, some of which
are connected to regulating seed development [52-54],
were also identified.

Some soybean SVs that were expressed during the
mid-to-late phase showed differences with respect to
their respective functional domains (ARF2 and 6, CPK11,
and RAD23). For example, a novel CPK11 SV was missing
the EF-hand (EFh) domain present in the canonical SV
(Fig. 6). The novel RAD23 SV lacked a ubiquitin (UBQ)
superfamily domain. AS can also change the protein
sequence, so that the SVs resemble different, but re-
lated proteins, which was observed for ARF6 and 8
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(Glyma02g45100.N2 and 1). Interestingly, the novel
ARF6 SV also lacked two domains, but had a new
PB1 superfamily domain found in dimer-forming pro-
tein kinases [55-57].

AS events related to ABA and/or FUS3 action during
mid-to-late maturation

The mid-to-late super-clusters included SVs that showed
increased transcript levels during the stages of steady-
state seed storage compound accumulation [26]. Only
three alternatively spliced FUS3 targets connected to the
B3 network, belonging to the mid-to-late super-cluster
were identified: (i) the transcriptional regulators HAP2A
nuclear factor YA (NF-YA) 1 and bZIP66 (ABA-respon-
sive element binding protein AREB3) and (ii) the E3
UBQ ligase DREB2A-interacting protein (DRIP) 2. While
the HAP2A protein was not affected by AS, bZIP66
Glyma03g00580.N2 had ten additional amino acid resi-
dues at the C terminus and an extended 5-UTR. The
DRIP2 SV Glyma02g15980.N2 lacked the C3HC4-type
Really Interesting Gene (RING) finger domain important
for protein-protein interactions of UBQ ligases [58] and
belonged to the early super-cluster.

AS events related to ABA and/or FUS3 action during DT
The DT super-cluster contains predominantly ABA-
related SVs that showed basal transcript levels during all
seed filling phases and high expression in yellow em-
bryos at day 55 [26] (Additional file 12: Figure S5A).
ABA-related SVs included transcripts encoding proteins
similar to: (i) the epigenetic regulator histone deacetylase
(HDAC) 6 associated with chromatin remodeling, (ii)
two regulatory components of ABA- and G-protein re-
lated receptors REGULATORY COMPONENTS OF ABA
RECEPTOR 3 (RCAR3) and G-PROTEIN COUPLED RE-
CEPTOR 1 (GCR1), respectively, (iii) the transcriptional
regulators of ABA signaling no apical meristem (NAM)
TF (ATAF1) and ABI5-binding proteins (AFPs), (iv)
sucrose nonfermenting related kinase protein (SnRK2.6),
and (v) signaling-related phospholipase D delta (PLDdelta).
ATAF1 was also identified in the FUS3 regulon. The only
other FUS3-regulated SVs related to seed maturation and
expressed in DT were those encoding saposin-like Asp
proteases.

Differences with respect to protein length, number of
domains (e.g., PLD delta, ATAF1, saposin-like Asp pro-
teases), the absence of any known domains, (AFP4), and
length of either the 5" or the 3 UTR (GCR1) occurred
among different SV pairs. Variants of the same protein
that showed similarity to different, but related, Arabi-
dopsis proteins were also identified. While the SV
Glyma04g38560.1 was similar to ATAF1 (Atlg01720),
Glyma04g38560.N2 was more related to At5g63790, a
NAM domain-containing protein (NAC) 102, than to
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ATAF1. Similarly, Glymal7g01500.1 was similar to the
saposin-like Asp protease At1g62290, but N3 resembled
a different vacuolar protease (Atlgl1910). Interestingly,
AS did not affect the structure of the G protein-coupled
receptor domain in the novel, slightly shorter GCR1 pro-
tein, instead, the two SVs differed with respect to their
3’-UTRs. Differential expression was also observed in
other SV pairs. The novel PLDdelta and HDAC6 SVs
belonged to the early super-cluster, and the novel GCR1
SV to the mid-to-late super-cluster.

Antisense events related to ABA and/or FUS3 action

SV groups of ABA- and FUS3-related genes that were
co-expressed during the same developmental phase
showed multiple differences. AS lead to the production
of IncRNAs and/or differences in protein sequence,
number and types of functional domains, in 5- and 3'-
UTR length and sequence, and expression patterns.
While these changes were detected in all phases of soy-
bean embryo development, the occurrence of antisense
transcripts among the ABA- and/or FUS3-related tran-
scripts was confined to the early and DT phases. Anti-
sense transcripts expressed at the early phase include
those associated with genes encoding ABA glucosylase,
L1L, BAM2, and genome-uncoupled (GUNS5) (a putative
ABA receptor at the chloroplast envelope) [59, 60]. The
only exception was an antisense transcript associated
with a putative cytokinin transporter PUPI gene. This

antisense transcript co-expressed with its sense tran-
script during the mid-to-late phases.

Several antisense transcripts were also detected at day
55 of embryo development (DT) and appear to be con-
nected to processes involving interactions of ABA with
other phytohormones. Overall, 23 transcript pairs, re-
gardless of any relation to ABA signaling, in which one
member of each pair was antisense, together with seven
single antisense transcripts without an accompanying
sense transcript were detected at day 55 (Additional
file 11: Table S5B). Among this population, several
transcripts encoding proteins related to GA or ethylene
signaling were present in both antisense and sense orien-
tations and included GA2 oxidase, several ERFs, and PIL5
protein.

Generation and analysis of co-expression network

Co-expression networks have been used to infer poten-
tial gene interactions and functions [61, 62]. However,
the majority of these networks have been limited to
genes due to lack of isoform-specific transcript informa-
tion. Here, ArrayMining [38] was used to obtain an
isoform-specific co-expression network for the set of
2,938 transcripts (Fig. 7a). In the resulting network, each
node represents a transcript and is colored according to
its respective super-cluster. To reveal possible specific
relationships among transcripts belonging to ABA- and
FUS3-related events, the 318 transcripts (see AS events
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connectivity among super-clusters. The majority of ABA- and FUS3-related transcripts (310) were located in the three major super-clusters

related to ABA and/or FUS3 action section) were identi-
fied within the co-expression network (Additional file
11: Table S5A). These ABA- and/or FUS3-related tran-
scripts were used to generate a sub-network, reflecting
temporal expression in the context of six super-clusters
(Fig. 7b). Of the 318 total transcripts encoded by target
genes associated with FUS3- and/or ABA-related func-
tion, 311 transcripts were located within the three super-
clusters corresponding to the three major phases of
soybean embryo development.

Identification of the hubs

Although the co-expression network separates different
super-clusters, interpretation of connections among the
nodes remained intractable due to the large size of this
network. To address this problem, we identified the
most highly connected nodes (hubs) within each super-
cluster. Hubs are the key network properties that reduce
network complexity to the major connectors. In all
cases, only one transcript derived from the same soy-
bean gene was found to be a hub. Available functional
information for hubs is presented in Fig. 8. Approxi-
mately 50, 13, and 86 % of transcripts were significantly
connected to the hubs represented by transcripts of
diverse functions in the early, mid-to-late, and DT
super-clusters, respectively. Five hubs with a large num-
ber of associated nodes were identified in the case of
DT. Among the DT-associated hubs were transcripts
encoding soybean proteins similar to Arabidopsis per-
oxin 19 targeted to the peroxisome [63], PATATIN-like

protein 6 involved in lipid and auxin signaling [64],
redox-related GST PH9 protein implicated in JA signal-
ing [58], an F-box protein associated with an E3 UBQ
ligase complex [65], and a IncRNA transcribed from a
homolog of At1g60940, SnRK 2.10 involved in ABA sig-
naling [66].

Identification of the nearest neighbors of GCR1 and CPK11
GCR1 and CPK11 are two putative regulators of seed
development belonging to the group of 318 ABA- and/
or FUS3-related transcripts. GCRI and CPKII pre-
mRNAs were alternatively spliced in developing soybean
embryos and the resulting SVs were present in different
super-clusters. The domain composition of each GCR1
and CPK11 SVs was confirmed by using the InterPro
database [16]. In Arabidopsis, GCR1 (At1g48270) is an
ABA-responsive, G-protein-related receptor component
distinct from the well-studied RCAR group of receptors
[67]. CPK11 (Atlg35670) is a protein kinase acting as a
positive regulator of ABA/FUS3-mediated responses
during seed filling [68]. Guilt-by-association of GCR1
and CPK11 SVs with transcripts of known functions can
yield improved understanding of their regulation and
function.

To further elucidate isoform-specific functions of these
two important regulators, the nearest neighbors of
GCR1 and CPK11 were identified in the corresponding
sub-networks (Fig. 9, Additional file 13: Table S6) origin-
ating from the ABA/FUS3-related co-expression net-
work (Fig. 7b). The two GCR1 SVs were expressed at the
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DT and mid-to-late stages, respectively, and were associ-
ated with two distinct groups of transcripts. The nearest
neighbor group comprising 38 nodes representing
SVs expressed during DT was associated with Gly-
mal7g33480.1-encoded GCRI1 (Additional file 13: Table
S6A). Transcripts associated with Glymal7g33480.N3
were differentially expressed during the early and mid-to-
late phases of embryo development (Additional file 13:
Table S6B).

The nearest neighbors belonging to the DT-based sub-
network were primarily related to signaling or defense.
Three coding and one noncoding ATAF1 transcripts
were also among the nearest neighbors of GCR1, as were
IncRNAs of heat shock protein (Hsp40) and BT2/ BT3.
Only two IncRNAs of unknown function were identified
as the nearest neighbors of the novel GCR1. A number
of coding transcripts were also identified as strongly

co-expressing with either the known or novel GCR1
SV. These transcripts encoded enzymes involved in
seed filling or germination-related metabolism, includ-
ing glucose/ribitol dehydrogenase, saposin-like Asp
proteases, thiamine biosynthesis protein C (THIC),
plastidic glyceraldehyde-3-phosphate dehydrogenase A
(GAPDH), and sucrose-phosphate synthase. Homologs
of regulatory proteins, including a histone deacetylase
(HDAC), Hsp40, and several SVs encoding cystathio-
nine beta-synthase (CBS)-domain-containing proteins
that are associated with SnRK1 and energy sensing
[69, 70] were also identified. Thioredoxin, rubredoxin,
and nicotinamide adenine dinucleotide phosphate (NADPH
oxidase, RBOF5) represented the redox-related proteins. It
is notable that many SVs present in the sub-networks with
the centered GCR1 SVs were “singletons”, that is to say that
only one member of a given SV group was present as a
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node in the sub-network. Interestingly, counterparts of
some of these singletons associated with the known CPK11
SV and also belonged to the FUS3 regulon (GAPDH, THIC,
saposin-like Asp proteases, and AP2/B3-like TF).

The full length CPK11 (Glyma06g16920.1) strongly
co-expressed with several ABI3- and/or FUS3-regulated
genes encoding alternatively spliced regulatory proteins
(L1L, GUNS5) (Fig. 7b). Both BAM2 SVs and a Ser
carboxypeptidase-like protease (SCPL17) were identified
as the nearest neighbors of CPK11 that also belonged to
the FUS3 regulon. The novel SVs of S-adenosyl-L-me-
thionine methyltransferase (SAM MT), pyruvate kinase,
and SPEECHLESS (SPCH) were also identified as the
nearest CPK11 neighbors and reclassified by CodeWise
as IncRNAs with high probabilities (84, 99, and nearly
100 %). For metabolism-related processes, the corre-
sponding SVs encoded enzymes involved in fatty acid/oil
biosynthesis or storage (fatty acid synthase KASI),
amino acid metabolism (Asp/2-oxoglutarate aminotrans-
ferase PAT), and ascorbate biosynthesis (guanosine
diphosphate (GDP)-mannose-3,5-epimerase 2 GME1)
(Additional file 13: Table S6C). The CPK11l SV Gly-
ma06g16920.N2 had only four nearest neighbors, two of
which were connected to the B3 network (AFP2 and
DRIP2) and the novel AFP2 SV was predicted to be
IncRNA with a 95 % probability (Additional file 13:
Table S6D).

Discussion

Current high-throughput transcriptomics data reveal a
global occurrence of diverse types of transcriptional and
post-transcriptional events, leading to the formation of
transcripts of different coding potential and strand
orientation. Knowing the coding potential and other
characteristics of transcripts, including sequence similar-
ity and presence of functional domains in resulting pro-
teins, represents a first step towards discovering novel
functionalities. We developed an integrated computa-
tional framework involving (i) a transcriptome-wide ana-
lysis of functional domains in proteins and an in-house
SVM classifier, CodeWise, that categorizes transcripts as
coding and noncoding and (ii) a relatively small-scale
network analysis of 2,938 transcripts focusing on tem-
porally driven co-expression and co-regulation.

Integrating various features improved accuracy of
CodeWise predictions

Domain analysis yielded predictions regarding transcript
and protein functions that can be experimentally vali-
dated. CodeWise enabled classification of known tran-
scripts into coding and noncoding categories with AUC
over 0.98 when trained and tested with a comprehensive
list of features. In most cases, the decision regarding
noncoding classification was straightforward (e.g., tran-
scripts with short putative ORFs, long 5'- and 3’- regions,
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no conserved domains, and high free energy of RNA sec-
ondary structure). The free energy of RNA secondary
structure represents an intrinsic feature related to struc-
tural stability of transcripts [71] and its inclusion im-
proved classifier performance. Predicting the coding
potential of transcripts was challenging only in cases of
conflicting results obtained from different features, specif-
ically, concomitant presence of features characteristic for
coding and noncoding transcripts. Such transcripts can be
identified based on their low coding and noncoding prob-
abilities (e.g., 0.45 and 0.55, respectively). CodeWise had
low false positive and negative rates and outperformed
CPC in accuracy due to the additional features used.

Landscape of transcripts in developing soybean embryos
CodeWise was used to classify all transcripts detected in
developing soybean embryos and, in combination with
other tools, to analyze a set of 2,938 differentially
expressed and alternatively spliced transcripts in terms
of coding potential, expression timing, and changes in
number and types of domains. The time period in seed
development examined in this study extended from early
maturation through the acquisition of dormancy and
DT. Our analyses demonstrated the existence of a chan-
ging population of multiple types of transcripts over this
part of soybean embryo development.

Interestingly, a relatively high proportion of coding
and noncoding transcripts with no known domains were
detected overall (27 % of total), especially during DT.
Many coding transcripts were predicted to encode small
proteins lacking known domains (<120 amino acids;
encoded by small ORFs). Considerable conservation of
small ORFs across five leguminous species (including
soybean) and Arabidopsis has been demonstrated [72],
suggesting that these are bona-fide proteins that prob-
ably act through conserved mechanisms. Known path-
ways, including sucrose signaling, in which small ORFs
participate as “peptoswitches”, were identified in plants
[73]. We have identified instances of transcripts that
were classified as coding with no known domains that
are associated with ABA signaling (Additional file 11:
Table S5A), but their potential function as peptoswitches
remains to be investigated.

Long noncoding and antisense transcripts have also
been implicated in regulating development and signaling
in plants [15, 71, 74]. With respect to coding/long non-
coding or sense/antisense transcript pairs, a starting
hypothesis is that their co-expression leads to either chro-
matin modification and/or degradation or stabilization of
the sense mRNA [7, 11, 50]. The majority of SVs (80 %)
derived from the same gene (SV group) belonged to the
same super-cluster, including long noncoding and anti-
sense transcripts and their respective coding partners.
The overall significance of these co-expression results
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is not yet clear, but it could be reflecting important
conserved transcriptional and/or post-transcriptional
regulatory mechanisms.

ABA- and FUS3-related transcripts were highly connected

within the co-expression network of developing soybean

embryos

ArrayMining [38] was used to generate an isoform-
specific co-expression regulatory network for the set of
2,938 transcripts (Fig. 7a). The resulting co-expression
network showed three different kinds of strong associa-
tions among the transcripts present in the different
super-clusters (Fig. 7b). First, transcripts from ABA- and
FUS3-related regulons were identified within the overall
network, revealing a specific sub-network. Transcripts
within this sub-network were tightly clustered primarily
around the three major super-clusters (early maturation,
mid-to-late maturation, and DT). This clustering vali-
dated the original arrangement of the data into these
temporally-based super-clusters. Second, GCR1 and
CPK11 SVs expressed at different phases were found to
have mostly distinct nearest neighbors, though some SVs
were shared between the GCR1 and CPK11 sub-
networks, providing a link between AS-related regula-
tion of ABA- and FUS3-mediated signaling. In the case
of the canonical GCR1 SV, the nature of its nearest
neighbors may correspond to a specific coordinated
regulatory mechanism involving AS, chromatin remodel-
ing, redox-related processes, and signaling during DT.
The presence of several IncRNAs among the nearest
neighbors of GCR1 suggests that AS events involving
the production of these IncRNAs are part of a distinct
regulatory mechanism related to GCR1 action. Third,
five hubs (including a IncRNA transcribed from a homo-
log of At1g60940, SnRK 2.10) with a large number of
associated nodes were identified computationally in the
case of DT, providing a connection between AS, redox
regulation, and signaling pathways.

Evidence for post-transcriptional events leading to
coordinated pre-mRNA splicing

Transcripts of some of the best-studied TFs and ABA
biosynthetic genes that are known to regulate seed de-
velopment (ABI3, FUS3, and 9-cis-epoxycarotenoid
dioxygenases (NCED) 1, 4, and 5 [1]) were present at
relatively high and stable levels throughout soybean em-
bryo maturation. Activities of ABI3 and FUS3 are also
regulated through protein phosphorylation [75, 76] and
proteosomal degradation [77, 78]. ABA-mediated signal-
ing leads to the induction of specific SnRK kinases acti-
vating FUS3 and ABI3 [75, 79, 80]. Phosphorylation of
FUS3 increases the stability of these short-lived proteins
[76]. However, SnRK1.1 (represented by Glyma08g26180
and Glyma08g26191) transcript levels remained stable
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during soybean embryo development [26], suggesting
that any differential regulation mediated by this kinase
would have to be at its translational and/or posttransla-
tional levels.

While FUS3 transcript levels and, possibly, protein ac-
tivity remained stable in developing soybean embryos,
many SV pairs of ABA-related and FUS3-regulated
genes were differentially expressed and did not co-
express with FUS3. Differential expression of SVs origin-
ating from the same pre-RNAs suggests the occurrence
of post-transcriptional events, which can globally influ-
ence transcript levels and stability. This is consistent
with the observation that many ABA-related and FUS3-
regulated transcripts that originated from different, but
functionally related genes were co-expressed in the data
set. It appears that specific splicing components can
regulate differential splicing of groups of pre-mRNAs
during specific stages of embryo development, leading to
differential temporal expression of these SVs. It is
tempting to hypothesize that this coordinated splicing
“co-splicing”) may be a common regulatory mechan-
ism employed in signaling processes within the em-
bryo developmental programs. AS was proposed as a
global regulatory mechanism in seed dormancy [81],
and it also could be the case in developmental transi-
tions within embryo maturation.

Potential roles for alternate pathways and antisense
regulation in phytohormone interactions during late seed
maturation and germination
The majority of ABA-related SVs corresponded to
Arabidopsis genes already documented to participate in
dormancy or, in some cases, germination. It is also inter-
esting to note that a SV of a homolog of RCAR3/ PYRA-
BACTIN RESISTANCE 1-LIKE (PYL 8) implicated in
ABA signaling that promotes dormancy [82] was differ-
entially expressed during DT, whereas an SV corre-
sponding to PYL6 was expressed during the mid-to-late
phase. Given the differences in the population of SVs
that are ABA-related and were expressed during one or
other of the two phases, it is possible that distinct ABA
signaling pathways are in operation during the two
developmental phases (Additional file 12: Figure S5A).
Transcripts of putative soybean homologs of Arabi-
dopsis genes known to be associated either with ABA-
related events (including, but not restricted to signaling),
and/or to be targets of FUS3 were associated with spe-
cific AS events or antisense expression. AS resulted in
altered numbers or types of domains and production of
coding and noncoding transcripts, which has conse-
quences for molecular interactions, epigenetic events,
regulation of protein activity, and subsequently function.
This information was incorporated into proposed signal-
ing pathways using the Beacon editor (Fig. 10, Additional
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file 12: Figure S5), with extensive use of published infor-
mation from genetic or biochemical studies regarding ob-
served mutant phenotypes or biochemical characteristics
of the proteins involved.

The occurrence and expression changes of ERFs, PIL5,
and GA2 oxidase antisense transcripts were validated by
qPCR (Additional file 5: Figure S3). The occurrence of
these antisense transcripts during DT can reflect the
well-documented antagonism of ABA with ethylene [83].
The presence of antisense transcripts corresponding to
PIL5 and the GA degrading enzyme GA2 oxidase that is
activated by PIL5 [84] is not readily explicable as an ex-
pected repressive effect on GA metabolism during dor-
mancy (Fig. 10). There are conflicting reports on
whether PIL5 acts to trigger release from dormancy or
inhibit germination [81, 84]. It is possible that this is an
instance of a positive regulatory effect of an antisense
transcript on RNA stability [49] or that these antisense
transcripts are stored for germination to suppress PIL5
and GA2 oxidase to release dormancy.

Inferring transcript and protein functions in the context of
regulation of seed filling
In Arabidopsis, seed maturation starts with the ex-
pression of LEC1, which induces transcription of L1L,
LEC2, FUS3, and ABI3 [1, 85]. LEC1 and L1L represent
HAP3-type subunits of heterotrimeric CCAAT-box bind-
ing factors [86—88], which activate transcription of genes
involved in the synthesis and accumulation of seed storage
compounds [89-91]. ABI3 and FUS3 are positive regula-
tors of the ABI5 family of TFs, including bZIP66, promot-
ing accumulation of seed storage compounds [1, 92]. L1L,
HAP2A, and bZIP66 are components of the B3 network
that were alternatively spliced (Additional file 5: Figure
S5B). The novel soybean L1L variant is a noncoding anti-
sense transcript confirmed by qPCR to be expressed in
the early maturation phase (Additional file 5: Figure S3).
Because the L1L transcripts showed negatively correlated
expression profiles, it is possible that the antisense tran-
script negatively regulates levels of the sense transcript in
soybean. LEC1-mediated transient activation of L1L [91]
could be inhibited post-transcriptionally through this anti-
sense transcript to confine the L1L presence to the early
phases of seed filling. Although the L1L and HAP2A pro-
teins physically interact [88, 93, 94], their transcripts were
present at different times during soybean embryo develop-
ment, which makes concurrent protein-protein interac-
tions and transcriptional regulation unlikely. Genetic
evidence in Arabidopsis supports the co-regulation of
HAP2A and LEC1/ L1L transcription in early seed filling
[95]. These two HAP2A isoforms are probably not the
bona-fide L1L interacting partners in soybean.

The B3 network contains transcriptional regulators.
Activities of these TFs are also regulated at the post-
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transcriptional level. Several ABA-related and/or FUS3-
regulated genes encoding protein kinases (BAM2, CPK11)
and components of the 26S proteasome (DRIP2 and
RAD23) were alternatively spliced and, in some cases,
could be associated with specific TFs (Additional file 12:
Figure S5B). Arabidopsis Ca®*-dependent protein kinase
CPK11 acts in parallel with SnRK2 kinases to phosphoryl-
ate and activate specific bZIP TFs (ABFs, ABI3, and ABI5)
involved in promoting dormancy [68, 75, 96, 97]. The full-
length CPK11 (Glyma06g16920.1) strongly co-expressed
with L1L and several FUS3-regulated metabolic genes.
Both BAM2 transcripts, SCPL17, and AP2/B3 TF were
also identified as the nearest neighbors of CPK11 regu-
lated by FUS3. While SCPL17 and AP2/B3 are function-
ally uncharacterized, BAM2 is involved in flower and fruit
development [98, 99]. Association of these transcripts with
CPK11 and FUS3 implicates their potential involvement
in early seed filling signaling.

Interestingly, the novel CPK11 SV was expressed dur-
ing mid-to-late seed filling and lacked both EFh domains
present in the canonical SV. The EFh domains occur as
pairs and are responsible for changing protein conform-
ation upon Ca®* binding to modulate protein activity
[100]. The novel CPK11 variant could phosphorylate its
targets during mid-to-late seed filling independently of
Ca**-mediated signaling. Its direct co-expressers AFP2
and DRIP2 are associated with the B3 network through
ABA/ABI3/ABI5 and FUS3 signaling, respectively. DRIP2
ubiquitinates the positive regulator of ABA-independent

drought responses DREB2A [101-103]. Protein-protein
interactions of the novel DRIP2 SV are likely compro-
mised due to the absence of the C3HC4-type RING-finger
domain and functions of this SV in the B3 network and
early seed filling phases remain to be elucidated.

RAD23 proteins are similar to UBQ and are involved
in transporting ubiquitinated proteins to the 26S prote-
asome for degradation [104, 105]. RAD23 transcription
was suppressed in response to ABA and in the protein
phosphatase 2C abil mutant [106]. In addition, RAD23
was identified as an interacting partner of a rice ABI3
homolog [107], placing it downstream of FUS3, SnRKs,
and CPK11 in the B3 network as a negative regulator of
ABI3 activity. The known RAD23B SV belonged to the
early super-cluster and could be involved in delivering
ABI3 for degradation to the 26S proteasome in devel-
oping soybean embryos. It is not clear whether the
novel SV was active as it lacked a UBQ superfamily
domain [108].

Conclusions

This report demonstrates the usefulness of our inte-
grated computational framework for the analysis of tran-
scriptomics data, leading to prediction of experimentally
testable and specific hypotheses concerning the func-
tions of expressed transcripts. The behavior of many of
the coding transcripts identified here has not been stud-
ied previously in seeds or at all in the case of long non-
coding and antisense RNAs. Taken together, a common
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functional theme integrates the hubs related to DT in
regulation, stress responses, and phytohormone signaling
and suggests the existence of distinct ABA-related path-
ways, specific to different phases of soybean seed devel-
opment. Several components of the B3 regulatory seed
filling network were subjected to AS, potentially leading
to differential expression and regulation as well as novel
functionalities. Our computational approaches facilitated
identification of other regulators possibly involved in
seed filling and desiccation and dormancy induction
phases of soybean embryo development.

Availability of supporting data

The raw data and differential expression results are
available at GEO (GSE46153). All other high-throughput

data are available in Additional files.

Additional files
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Additional file 1: Figure S1. RNA-Seq data and other computational
analysis pipelines. The tools are shown in red, classifier specific tools
are in green, transcript classes are in yellow, and outputs are in
white. (PPTX 101 kb)

Additional file 2: “BatchTranslator.py” program. (PY 6 kb)

Additional file 3: Figure S2. Changes in transcript levels in developing
soybean embryos. The set of 2,938 transcripts were clustered using k-means
algorithm into 25 clusters based on the changes in their expression within
10 developmental time points (5, 10, 15, 20, 15, 30, 35, 40, 45, and 55 days
after marking and each time point corresponds to each column; rows are
individual transcripts). The numbers in the parentheses indicate the number
of transcripts present in each cluster. Red color indicates high expression
and green color low or no expression. (PPTX 277 kb)

Additional file 4: Table S1. Sense and antisense transcripts and primers
chosen for validation of RNA-Seg-based expression level changes. Sense
and antisense transcripts are shown with the corresponding annotation,
primer pairs used for gPCR, time points of differential expression, and notes
on the presence of additional melt curve peaks. (PPTX 39 kb)

Additional file 5: Figure S3. Quantitative (QPCR) results for selected
sense and antisense transcript pairs. gPCR was performed using specific
primers (Additional file 4: Table S1) for each transcript as described [25].
With the exception of L1L sense, which showed expression at day 45
based on gPCR, but not RNA-Seq results, all tested transcripts showed a
good agreement in transcript changes between these two methods. L1L
is known to be expressed only during early seed filling stages [85] and
absent in desiccating embryos, suggesting that the gPCR signal at day 45
came from an unknown template. In the case of PIL5, only antisense
transcript could be validated, as there were several known and novel
sense PIL5 transcripts detected by RNA-Seq with no unique sequences to
distinguish them by gPCR. (PPTX 71 kb)

Additional file 6: Table S2. Domains in all expressed transcripts. Batch
CD-Search was used for large-scale conserved domain search of all expressed
transcripts during soybean embryo development. (XLSX 22764 kb)

Additional file 7: The “noncoding.fa” file. This FASTA file contains all
INcRNA transcripts and their sequences identified in developing soybean
embryos. (FA 32275 kb)

Additional file 8: Table S3. Summary of all information relevant to
2,938 transcripts. This file contains the following information: gene and
transcript IDs, k-means and super-cluster assignments, various transcript
features related to sequence length, conserved domains, CPC and CodeWise
results related to coding potential, and Mercator-based annotation. Most
information in other supplemental Tables is derived from this file to facilitate
further data mining. (XLSX 1589 kb)

Additional file 9: Figure S4. Distribution of 2,938 transcripts among
the super-clusters. The graph shows the distribution of known and novel
transcripts belonging to different Cuffcompare classes among six
super-clusters. (PPTX 367 kb)

Additional file 10: Table S4. Pearson correlations between sense and
antisense transcript pairs. (A) All identified sense and antisense transcript
pairs. (B) Correlations between known sense (class “=") and antisense
(classes “x" and “s") transcripts. (XLSX 199 kb)

Additional file 11: Table S5. Transcripts belonging to ABA-related
genes and FUS3 regulon. Arabidopsis genes were obtained from [1, 51].
Mercator output for soybean transcripts was parsed to obtain potential
Arabidopsis homologs. (A) These two datasets were cross-referenced to
identify transcripts that were related to at least one of these regulators.
(B) ABA-related transcripts; color-coding corresponds to standard
assigned super-cluster colors. (XLSX 271 kb)

Additional file 12: Figure S5. The participation of transcripts in
proposed signaling pathways involved in ABA- and FUS3-related responses.
(A) ABA responsive SVs unique to DT with associated functions. NCEDS
probably synthesizes ABA during DT. RCAR3 is a well-studied component of
ABA receptor complex leading to signaling mediated by several ABA-related
components subjected to AS, although their relationships and interactions
are not clear (red arrows). GCR1 is an ABA responsive G protein-coupled
receptor that was connected to 38 transcripts, some of which are already
known to be associated with ABA signaling leading to dormancy (Fig. 9a
and b). Possible interactions between the two receptors are not established
as yet. (B) FUS3 regulon of transcripts related to the inferred B3 network in
developing soybean embryos. These signaling pathways were drawn in the
Beacon editor. Signaling components subjected to AS are shown in black
boxes accompanying the relevant activities. (PPTX 303 kb)

Additional file 13: Table S6. GCR1 and CPK11 sub-networks. The
nearest neighbors of the known and novel GCR1 and CPK11 SVs were
visualized in Cytoscape from the ArrayMining network. The following
sub-networks are presented: (A) Known GCR1 SV. (B) Novel GCR1 SV.
(C) Known CPK11 SV. (D) Novel CPK11 SV. (XLSX 77 kb)

Abbreviations

ABA: Abscisic acid; ABI: ABSCISIC ACID INSENSITIVE; AREB: ABA-responsive
element binding; AFP: ABI5-binding protein; AP: APETALA; ARF: Auxin
response factor; AS: Alternative splicing; AUC: Area under the receiver
operating characteristic curve; BAM: Barely any meristem; BLAST: Basic Local
Alignment Search Tool; CBS: Cystathionine beta-synthase; CDD: Conserved
domain database; CPAT: Coding Potential Assessment Tool; CPC: Coding
Potential Calculator; CPK: Calcium-dependent protein kinase; DRIP: DREB2A-
interacting protein; DT: Desiccation tolerance; EFh: EF-hand; ERF: Ethylene
response factor; FDR: False discovery rate; FPKM: Fragments per kilobase of
exon per million fragments mapped; FUS: FUSCA; GA: Gibberellin;

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; GCR: G-PROTEIN
COUPLED RECEPTOR; GDP: Guanosine diphosphate; GME: GDP-mannose-3,5-
epimerase; GUN: Genome-uncoupled; HDAC: Histone deacetylase; Hsp: Heat
shock protein; KOG: Eukaryotic Orthologous Groups; L1L: LECT-LIKE;

LEC: LEAFY COTYLEDON; lincRNA: Long intergenic noncoding RNA;

IncRNA: Long noncoding RNA; NADPH: Reduced nicotinamide adenine
dinucleotide phosphate; NCED: 9-cis-epoxycarotenoid dioxygenase;

ncRNA: Noncoding RNA; NF: Nuclear factor; NAC: NAM domain-containing;
NAM: No apical meristem; ORF: Open reading frame; PC: Principal
component; PCA: Principal component analysis; PIL: Phytochrome-interacting
basic helix-loop-helix; PLD: Phospholipase D; pre-mRNA: Premature
messenger RNA; PYL: PYRABACTIN RESISTANCE 1-LIKE; gPCR: Quantitative
Polymerase Chain Reaction; RAD: Radiation sensitive; RBF: Radial basis
functional; RCAR: REGULATORY COMPONENTS OF ABA RECEPTOR,;

RING: Really Interesting Gene; RNA-Seq: RNA sequencing; SAM MT: S-adenosyl-
L-methionine methyltransferase; SCPL: Ser carboxypeptidase-like; SnRK: sucrose
nonfermenting-related kinase; SPCH: SPEECHLESS; SV: Splice variant;

SVM: Support vector machine; TAIR: The Arabidopsis Information Resource;

TF: Transcription factor; THIC: Thiamine biosynthesis protein C; UBQ: Ubiquitin;
UTR: Untranslated region.

Competing interests
The authors declare that they have no competing interests.


dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x
dx.doi.org/10.1186/s12864-015-2108-x

Aghamirzaie et al. BMC Genomics (2015) 16:928

Authors’ contributions

DA designed and performed all computational analyses and wrote all in
house scripts, including the development, testing, and use of CodeWise. DB
consulted in CodeWise development. DA’s work was overseen by LSH AS.
designed and performed the gPCR experiments. EC and RG contributed
equally to this manuscript, designed the study, and performed all
biologically relevant data mining and interpretations. EC, RG, and DA wrote
the manuscript and all authors contributed to final editing and approved the
final manuscript.

Authors’ information

The authors responsible for distribution of materials integral to the findings
presented in this article in accordance with the policy described in the
Instructions for Authors are: Eva Collakova (collakov@vt.edu) and Delasa
Aghamirzaie (delasa@vt.edu).

Acknowledgements

This work was supported by NSF-MCB-1052145, NSF-ABI-1062472, USDA-
CSREES-09-3101-06, and NIFA-HATCH funds. We would like to thank Dr. Song
Li for critical review of the manuscript.

Author details

'Genetics, Bioinformatics and Computational Biology Program, Virginia Tech,
Blacksburg, VA 24061, USA. “Bradley Department of Electrical and Computer
Engineering, Virginia Tech, Blacksburg, VA 24061, USA. 3Department of
Computer Science, Virginia Tech, Blacksburg, VA 24061, USA. *Department of
Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA
24061, USA.

Received: 9 April 2015 Accepted: 16 October 2015
Published online: 14 November 2015

References

1. Finkelstein R. Abscisic acid synthesis and response. Arabidopsis Book.
2013;11, e0166.

2. Santos-Mendoza M, Dubreucq B, Baud S, Parcy F, Caboche M, Lepiniec L.
Deciphering gene regulatory networks that control seed development and
maturation in Arabidopsis. Plant J. 2008;54:608-20.

3. Angelovici R, Galili G, Fernie AR, Fait A. Seed desiccation: a bridge between
maturation and germination. Trends Plant Sci. 2010;15:211-8.

4. Finkelstein R, Reeves W, Ariizumi T, Steber C. Molecular aspects of seed
dormancy. Annu Rev Plant Biol. 2008;59:387-415.

5. Gutierrez L, Van Wuytswinkel O, Castelain M, Bellini C. Combined networks
regulating seed maturation. Trends Plant Sci. 2007;12:294-300.

6. Ponjavic J, Ponting CP, Lunter G. Functionality or transcriptional noise?
Evidence for selection within long noncoding RNAs. Genome Res.
2007;17:556-65.

7. Yang L, Froberg JE, Lee JT. Long noncoding RNAs: fresh perspectives into
the RNA world. Trends Biochem Sci. 2014;39:35-43.

8. Andrews SJ, Rothnagel JA. Emerging evidence for functional peptides
encoded by short open reading frames. Nat Rev Genet. 2014;15:193-204.

9. Lindsey K, Casson S, Chilley P. Peptides: new signalling molecules in plants.
Trends Plant Sci. 2002;7:78-83.

10.  Guttman M, Russell P, Ingolia NT, Weissman JS, Lander ES. Ribosome
profiling provides evidence that large noncoding RNAs do not encode
proteins. Cell. 2013;154:240-51.

11, Wilusz JE, Sunwoo H, Spector DL. Long noncoding RNAs: functional
surprises from the RNA world. Genes Dev. 2009;23:1494-504.

12. Amor BB, Wirth S, Merchan F, Laporte P, d’Aubenton-Carafa Y, Hirsch J, et al.
Novel long non-protein coding RNAs involved in Arabidopsis differentiation
and stress responses. Genome Res. 2009;19:57-69.

13. Zhang W, Han Z, Guo Q, Liu Y, Zheng Y, Wu F, et al. Identification of maize
long non-coding RNAs responsive to drought stress. PLoS One. 20149,
€98958.

14.  Boerner S, McGinnis KM. Computational identification and functional
predictions of long noncoding RNA in Zea mays. PLoS One. 2012;7, €43047.

15. Bardou F, Ariel F, Simpson CG, Romero-Barrios N, Laporte P, Balzergue S,
et al. Long noncoding RNA modulates alternative splicing regulators in
Arabidopsis. Dev Cell. 2014;30:166-76.

20.

21,

22.

23.

24.

25.

26.

27.

28.

29.

30.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Page 21 of 23

Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, et al. The
InterPro database, an integrated documentation resource for protein
families, domains and functional sites. Nucleic Acids Res. 2001:29:37-40.
Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-
Scott C, et al. CDD: a Conserved Domain Database for the functional
annotation of proteins. Nucleic Acids Res. 2011;39:D225-D9.

Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the
protein-coding potential of transcripts using sequence features and support
vector machine. Nucleic Acids Res. 2007;35:W345-W9.

Jin J, Liu J, Wang H, Wong L, Chua N-H. PLncDB: plant long non-coding
RNA database. Bioinformatics. 2013;29:1068-71.

Lin MF, Jungreis |, Kellis M. PhyloCSF: a comparative genomics method to
distinguish protein coding and non-coding regions. Bioinformatics.
2011,27:275-i82.

Sun K, Chen X, Jiang P, Song X, Wang H, Sun H. iSeeRNA: identification of
long intergenic non-coding RNA transcripts from transcriptome sequencing
data. BMC Genomics. 2013;14:57.

Chew G-L, Pauli A, Rinn JL, Regev A, Schier AF, Valen E. Ribosome profiling
reveals resemblance between long non-coding RNAs and 5' leaders of
coding RNAs. Development. 2013;140:2828-34.

Lu ZJ, Yip KY, Wang G, Shou C, Hillier LW, Khurana E, et al. Prediction and
characterization of noncoding RNAs in C. efegans by integrating
conservation, secondary structure, and high-throughput sequencing and
array data. Genome Res. 2011;21:276-85.

Torarinsson E, Sawera M, Havgaard JH, Fredholm M, Gorodkin J. Thousands
of corresponding human and mouse genomic regions unalignable in
primary sequence contain common RNA structure. Genome Res.
2006;16:885-9.

Aghamirzaie D, Nabiyouni M, Fang Y, Klumas C, Heath LS, Grene R, et al.
Changes in RNA splicing in developing soybean (Glycine max) embryos.
Biology. 2013;2:1311-37.

Collakova E, Aghamirzaie D, Fang Y, Klumas C, Tabataba F, Kakumanu A,

et al. Metabolic and transcriptional reprogramming in developing soybean
(Glycine max) embryos. Metabolites. 2013,3:347-72.

Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, et al. Differential
gene and transcript expression analysis of RNA-seq experiments with
TopHat and Cufflinks. Nat Protoc. 2012;7:562-78.

Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al.
Transcript assembly and quantification by RNA-Seq reveals unannotated
transcripts and isoform switching during cell differentiation. Nat Biotechnol.
2010;28:511-5.

Lohse M, Nagel A, Herter T, May P, Schroda M, Zrenner R, et al. Mercator: a
fast and simple web server for genome scale functional annotation of plant
sequence data. Plant Cell Environ. 2014;37:1250-8.

Hofacker IL. Vienna RNA, secondary structure server. Nucleic Acids Res.
2003;31:3429-31.

UniProt C. UniProt: a hub for protein information. Nucleic Acids Res.
2015;43:D204-12.

Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, et al. The
Arabidopsis Information Resource (TAIR): improved gene annotation and
new tools. Nucleic Acids Res. 2012;40:D1202-D10.

Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al.
Phytozome: a comparative platform for green plant genomics. Nucleic
Acids Res. 2012;40:D1178-D86.

Chang C-C, Lin C-J. LIBSVM: a library for support vector machines. ACM
Trans Intell Syst Technol. 2011,2:27.

Xie C, Yuan J, Li H, Li M, Zhao G, Bu D, et al. NONCODEv4: exploring the
world of long non-coding RNA genes. Nucleic Acids Res. 2014;42:D98-D103.
de Hoon MJL, Imoto S, Nolan J, Miyano S. Open source clustering software.
Bioinformatics. 2004;20:1453-4.

Saldanha AJ. Java Treeview - extensible visualization of microarray data.
Bioinformatics. 2004;20:3246-8.

Glaab E, Garibaldi JM, Krasnogor N. ArrayMining: a modular web-application
for microarray analysis combining ensemble and consensus methods with
cross-study normalization. BMC Bioinf. 2009;10:358.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al.
Cytoscape: a software environment for integrated models of biomolecular
interaction networks. Genome Res. 2003;13:2498-504.

Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E,
et al. Effects of drought on gene expression in maize reproductive and leaf
meristem tissue revealed by RNA-Seq. Plant Physiol. 2012;160:846-67.



Aghamirzaie et al. BMC Genomics (2015) 16:928

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

Le Novere N, Hucka M, Mi H, Moodie S, Schreiber F, Sorokin A, et al. The
systems biology graphical notation. Nat Biotechnol. 2009;27:735-41.
Zhang X, Lu X, Shi Q, Xu XQ, Leung HC, Harris LN, et al. Recursive SYM
feature selection and sample classification for mass-spectrometry and
microarray data. BMC Bioinformatics. 2006;7:197.

Bhasin M, Raghava GP. ESLpred: SVM-based method for subcellular
localization of eukaryotic proteins using dipeptide composition and
PSI-BLAST. Nucleic Acids Res. 2004;32:W414-9.

Crawford BC, Yanofsky MF. HALF FILLED promotes reproductive tract
development and fertilization efficiency in Arabidopsis thaliana.
Development. 2011;138:2999-3009.

Béanfai B, Jia H, Khatun J, Wood E, Risk B, Gundling WE, et al. Long
noncoding RNAs are rarely translated in two human cell lines. Genome Res.
2012;22:1646-57.

Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kriger P, et al. Mapman: a
user-driven tool to display genomics data sets onto diagrams of metabolic
pathways and other biological processes. Plant J. 2004;37:914-39.

Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The
GENCODE v7 catalog of human long noncoding RNAs: analysis of their
gene structure, evolution, and expression. Genome Res. 2012;22:1775-89.
Kung JT, Colognori D, Lee JT. Long noncoding RNAs: past, present, and
future. Genetics. 2013;193:651-69.

Jabnoune M, Secco D, Lecampion C, Robaglia C, Shu Q, Poirier Y. A rice
cis-natural antisense RNA acts as a translational enhancer for its cognate
mMRNA and contributes to phosphate homeostasis and plant fitness. Plant
Cell. 2013;25:4166-82.

Wang H, Chung PJ, Liu J, Jang IC, Kean MJ, Xu J, et al. Genome-wide
identification of long noncoding natural antisense transcripts and their
responses to light in Arabidopsis. Genome Res. 2014;24:444-53.

Wang F, Perry SE. Identification of direct targets of FUSCA3, a key
regulator of Arabidopsis seed development. Plant Physiol.
2013;161:1251-64.

Pillitteri LJ, Bemis SM, Shpak ED, Torii KU. Haploinsufficiency after successive
loss of signaling reveals a role for ERECTA-family genes in Arabidopsis ovule
development. Development. 2007;134:3099-109.

Wang L, Hua D, He J, Duan Y, Chen Z, Hong X, et al. Auxin
Response Factor2 (ARF2) and its regulated homeodomain gene
HB33 mediate abscisic acid response in Arabidopsis. PLoS Genet.
2011;7, €1002172.

Wu MF, Tian Q, Reed JW. Arabidopsis microRNA167 controls patterns of
ARF6 and ARF8 expression, and regulates both female and male
reproduction. Development. 2006;133:4211-8.

Diaz-Meco MT, Moscat J. MEKS, a new target of the atypical protein kinase
Cisoforms in mitogenic signaling. Mol Cell Biol. 2001;21:1218-27.

[to T, Matsui Y, Ago T, Ota K, Sumimoto H. Novel modular domain PB1
recognizes PC motif to mediate functional protein-protein interactions.
EMBO J. 2001,20:3938-46.

Terasawa H, Noda Y, Ito T, Hatanaka H, Ichikawa S, Ogura K; et al. Structure
and ligand recognition of the PB1 domain: a novel protein module binding
to the PC motif. EMBO J. 2001;20:3947-56.

Metzger MB, Hristova VA, Weissman AM. HECT and RING finger families of
E3 ubiquitin ligases at a glance. J Cell Sci. 2012;125:531-7.

Du SY, Zhang XF, Lu Z, Xin Q, Wu Z, Jiang T, et al. Roles of the different
components of magnesium chelatase in abscisic acid signal transduction.
Plant Mol Biol. 2012;80:519-37.

Mochizuki N, Brusslan JA, Larkin R, Nagatani A, Chory J. Arabidopsis
genomes uncoupled 5 (GUN5) mutant reveals the involvement of
Mg-chelatase H subunit in plastid-to-nucleus signal transduction. Proc Natl
Acad Sci U S A. 2001,98:2053-8.

Wang YX, Huang H. Review on statistical methods for gene network
reconstruction using expression data. J Theor Biol. 2014;362:53-61.

Zhang S, Jin G, Zhang XS, Chen L. Discovering functions and revealing
mechanisms at molecular level from biological networks. Proteomics.
2007;7:2856-69.

Hadden DA, Phillipson BA, Johnston KA, Brown LA, Manfield IW, EI-Shami M,
et al. Arabidopsis PEX19 is a dimeric protein that binds the peroxin PEX10.
Mol Membr Biol. 2006;23:325-36.

Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GF. Patterns and
timing in expression of early auxin-induced genes imply involvement of
phospholipases A (pPLAs) in the regulation of auxin responses. Mol Plant.
2013;6:1473-86.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

82.

83.

84.

85.

86.

87.

Page 22 of 23

Kuroda H, Yanagawa Y, Takahashi N, Horii Y, Matsui M. A comprehensive
analysis of interaction and localization of Arabidopsis SKP1-like (ASK) and
F-box (FBX) proteins. PLoS One. 2012;7, €50009.

Umezawa T, Sugiyama N, Takahashi F, Anderson JC, Ishihama Y, Peck SC,
et al. Genetics and phosphoproteomics reveal a protein phosphorylation
network in the abscisic acid signaling pathway in Arabidopsis thaliana. Sci
Signal. 2013,6:rs8.

Warpeha KM, Upadhyay S, Yeh J, Adamiak J, Hawkins SI, Lapik YR, et al. The
GCR1, GPAT, PRN1, NF-Y signal chain mediates both blue light and abscisic
acid responses in Arabidopsis. Plant Physiol. 2007;143:1590-600.

Zhu SY, Yu XC, Wang XJ, Zhao R, Li Y, Fan RC, et al. Two calcium-dependent
protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction
in Arabidopsis. Plant Cell. 2007;19:3019-36.

Fang L, Hou X, Lee LY, Liu L, Yan X, Yu H. AtPV42a and AtPV42b
redundantly regulate reproductive development in Arabidopsis thaliana.
PLoS One. 2011;6, €19033.

Gissot L, Polge C, Jossier M, Girin T, Bouly JP, Kreis M, et al. AKINbetagamma
contributes to SnRK1 heterotrimeric complexes and interacts with two
proteins implicated in plant pathogen resistance through its KIS/GBD
sequence. Plant Physiol. 2006;142:931-44.

Di G, Yuan J, Wu Y, Li J, Lin H, Hu L, et al. Characterization of stress-responsive
IncRNAs in Arabidopsis thaliana by integrating expression, epigenetic and
structural features. Plant J. 2014;80:848-61.

Guillen G, Diaz-Camino C, Loyola-Torres CA, Aparicio-Fabre R, Hernandez-Lopez
A, Diaz-Sanchez M, et al. Detailed analysis of putative genes encoding small
proteins in legume genomes. Front Plant Sci. 2013;4:208.

Jorgensen RA, Dorantes-Acosta AE. Conserved peptide upstream open
reading frames are associated with regulatory genes in angiosperms. Front
Plant Sci. 2012;3:191.

James AB, Syed NH, Bordage S, Marshall J, Nimmo GA, Jenkins G, et al.
Alternative splicing mediates responses of the Arabidopsis circadian clock
to temperature changes. Plant Cell. 2012,24:961-81.

Lynch T, Erickson BJ, Finkelstein RR. Direct interactions of ABA-
insensitive(ABI)-clade protein phosphatase(PP)2Cs with calcium-dependent
protein kinases and ABA response element-binding bZIPs may contribute to
turning off ABA response. Plant Mol Biol. 2012,80:647-58.

Tsai AY, Gazzarrini S. AKIN10 and FUSCA3 interact to control lateral organ
development and phase transitions in Arabidopsis. Plant J. 2012,69:809-21.
Lu QS, Paz JD, Pathmanathan A, Chiu RS, Tsai AY, Gazzarrini S. The C-terminal
domain of FUSCA3 negatively regulates mRNA and protein levels, and
mediates sensitivity to the hormones abscisic acid and gibberellic acid in
Arabidopsis. Plant J. 2010,64:100-13.

Stone SL. The role of ubiquitin and the 265 proteasome in plant abiotic
stress signaling. Front Plant Sci. 2014;5:135.

Bhaskara GB, Nguyen TT, Verslues PE. Unique drought resistance functions
of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol.
2012;160:379-95.

Schweighofer A, Hirt H, Meskiene I. Plant PP2C phosphatases: emerging
functions in stress signaling. Trends Plant Sci. 2004;9:236-43.

Graeber K, Nakabayashi K, Miatton E, Leubner-Metzger G, Soppe WJ.
Molecular mechanisms of seed dormancy. Plant Cell Environ.
2012,35:1769-86.

Saavedra X, Modrego A, Rodriguez D, Gonzalez-Garcia MP, Sanz L, Nicolas G,
et al. The nuclear interactor PYL8/RCAR3 of Fagus sylvatica FsPP2C1 is a
positive regulator of abscisic acid signaling in seeds and stress. Plant
Physiol. 2010;152:133-50.

Holdsworth MJ, Bentsink L, Soppe WJ. Molecular networks regulating
Arabidopsis seed maturation, after-ripening, dormancy and germination.
New Phytol. 2008;179:33-54.

Oh E, Yamaguchi S, Kamiya Y, Bae G, Chung WI, Choi G. Light activates the
degradation of PIL5 protein to promote seed germination through
gibberellin in Arabidopsis. Plant J. 2006;47:124-39.

Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, et al. LEAFY
COTYLEDONI1-LIKE defines a class of regulators essential for embryo
development. Plant Cell. 2003;15:5-18.

Calvenzani V, Testoni B, Gusmaroli G, Lorenzo M, Gnesutta N, Petroni K,

et al. Interactions and CCAAT-binding of Arabidopsis thaliana NF-Y subunits.
PLoS One. 2012;7, €42902.

Lee H, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis LEAFY COTYLEDON1
represents a functionally specialized subunit of the CCAAT binding
transcription factor. Proc Natl Acad Sci U S A. 2003;100:2152-6.



Aghamirzaie et al. BMC Genomics (2015) 16:928

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

99.

102.

105.

106.

107.

108.

Yazawa K, Kamada H. Identification and characterization of carrot HAP
factors that form a complex with the embryo-specific transcription factor
C-LECT. J Exp Bot. 2007;58:3819-2388.

Braybrook SA, Harada JJ. LECs go crazy in embryo development. Trends
Plant Sci. 2008;13:624-30.

Kagaya Y, Okuda R, Ban A, Toyoshima R, Tsutsumida K, Usui H, et al. Indirect
ABA-dependent regulation of seed storage protein genes by FUSCA3
transcription factor in Arabidopsis. Plant Cell Physiol. 2005;46:300-11.
Mendes A, Kelly AA, van Erp H, Shaw E, Powers SJ, Kurup S, et al. bZIP67
regulates the omega-3 fatty acid content of Arabidopsis seed oil by
activating fatty acid desaturase3. Plant Cell. 2013;25:3104-16.

Bensmihen S, Giraudat J, Parcy F. Characterization of three homologous
basic leucine zipper transcription factors (bZIP) of the ABI5 family during
Arabidopsis thaliana embryo maturation. J Exp Bot. 2005;56:597-603.
Mostafavi S, Ray D, Warde-Farley D, Grouios C, Morris Q. GeneMANIA: a
real-time multiple association network integration algorithm for
predicting gene function. Genome Biol. 2008,9 Suppl 1:54.

Zuberi K, Franz M, Rodriguez H, Montojo J, Lopes CT, Bader GD, et al.
GeneMANIA prediction server 2013 update. Nucleic Acids Res.
2013;41:W115-W22.

Mu J, Tan H, Hong S, Liang Y, Zuo J. Arabidopsis transcription factor genes
NF-YAT1, 5, 6, and 9 play redundant roles in male gametogenesis,
embryogenesis, and seed development. Mol Plant. 2013;6:188-201.

Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K.
Arabidopsis basic leucine zipper transcription factors involved in an abscisic
acid-dependent signal transduction pathway under drought and high-salinity
conditions. Proc Natl Acad Sci U S A. 2000,97:11632-1167.

Yoshida T, Fujita Y, Maruyama K, Mogami J, Todaka D, Shinozaki K; et al.
Four Arabidopsis AREB/ABF transcription factors function predominantly in
gene expression downstream of SnRK2 kinases in abscisic acid signalling in
response to osmotic stress. Plant Cell Environ. 2015;38:35-49.

DeYoung BJ, Bickle KL, Schrage KJ, Muskett P, Patel K, Clark SE. The
CLAVATAT-related BAM1, BAM2 and BAMS3 receptor kinase-like proteins are
required for meristem function in Arabidopsis. Plant J. 2006;45:1-16.
Durbak AR, Tax FE. CLAVATA signaling pathway receptors of Arabidopsis
regulate cell proliferation in fruit organ formation as well as in meristems.
Genetics. 2011;189:177-94.

. Grabarek Z. Structural basis for diversity of the EF-hand calcium-binding

proteins. J Mol Biol. 2006;359:509-25.

. Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K; et al.

Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA
binding domain separate two cellular signal transduction pathways in
drought- and low-temperature-responsive gene expression, respectively,
in Arabidopsis. Plant Cell. 1998;10:1391-406.

Mizoi J, Ohori T, Moriwaki T, Kidokoro S, Todaka D, Maruyama K; et al.
GmMDREB2A;2, a canonical DEHYDRATION-RESPONSIVE ELEMENT-BINDING
PROTEIN2-type transcription factor in soybean, is posttranslationally
regulated and mediates dehydration-responsive element-dependent gene
expression. Plant Physiol. 2013;161:346-61.

. Qin F, Sakuma Y, Tran LS, Maruyama K, Kidokoro S, Fuijita Y, et al.

Arabidopsis DREB2A-interacting proteins function as RING E3 ligases and
negatively regulate plant drought stress-responsive gene expression. Plant
Cell. 2008;20:1693-707.

. Farmer LM, Book AJ, Lee KH, Lin YL, Fu H, Vierstra RD. The RAD23 family

provides an essential connection between the 26S proteasome and
ubiquitylated proteins in Arabidopsis. Plant Cell. 2010,22:124-42.

Page 23 of 23

Fatimababy AS, Lin YL, Usharani R, Radjacommare R, Wang HT, Tsai HL, et al. (
Cross-species divergence of the major recognition pathways of
ubiquitylated substrates for ubiquitin/265 proteasome-mediated proteolysis.
FEBS J. 2010,277:796-816.

Hoth S, Morgante M, Sanchez JP, Hanafey MK, Tingey SV, Chua NH.
Genome-wide gene expression profiling in Arabidopsis thaliana reveals new
targets of abscisic acid and largely impaired gene regulation in the abil-1
mutant. J Cell Sci. 2002;115:4891-900.

Schultz TF, Quatrano RS. Characterization and expression of a rice RAD23
gene. Plant Mol Biol. 1997,34:557-62.

Watkins JF, Sung P, Prakash L, Prakash S. The Saccharomyces cerevisiae DNA
repair gene RAD23 encodes a nuclear protein containing a ubiquitin-like
domain required for biological function. Mol Cell Biol. 1993;13:7757-65.

~
Submit your next manuscript to BioMed Central
and take full advantage of:
¢ Convenient online submission
¢ Thorough peer review
* No space constraints or color figure charges
¢ Immediate publication on acceptance
¢ Inclusion in PubMed, CAS, Scopus and Google Scholar
* Research which is freely available for redistribution
Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central
J




	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Definition of terms
	Analysis of RNA-Seq data and identification of differentially expressed transcripts
	Transcriptome-wide computational framework
	Batch translation and Batch-CD Search
	Mercator
	RNAfold and CPC

	Development of the CodeWise classifier
	Features
	Training and testing

	Clustering and correlation analyses
	Co-expression network analysis
	Signaling pathway visualization
	Quantitative real-time PCR

	Results
	Overview of the transcriptome-wide computational framework
	Transcriptome-wide domain analysis of protein variants
	Transcriptome-wide analysis of transcript coding potentials
	CodeWise classifier development
	CodeWise performance evaluation
	Transcriptome-wide analysis of coding and noncoding transcripts in developing soybean embryos using CodeWise


	Bioinformatics analyses of AS events
	Identification of alternatively spliced and significantly differentially expressed transcripts
	Conserved domain analysis of potential protein variants
	Sense and antisense transcript pair analysis
	AS events related to ABA and/or FUS3 action
	AS events related to ABA and/or FUS3 action during early maturation
	AS events related to ABA and/or FUS3 action during �mid-to-late maturation
	AS events related to ABA and/or FUS3 action during DT
	Antisense events related to ABA and/or FUS3 action

	Generation and analysis of co-expression network
	Identification of the hubs
	Identification of the nearest neighbors of GCR1 and CPK11


	Discussion
	Integrating various features improved accuracy of CodeWise predictions
	Landscape of transcripts in developing soybean embryos
	ABA- and FUS3-related transcripts were highly connected within the co-expression network of developing soybean embryos
	Evidence for post-transcriptional events leading to �coordinated pre-mRNA splicing
	Potential roles for alternate pathways and antisense regulation in phytohormone interactions during late seed maturation and germination
	Inferring transcript and protein functions in the context of regulation of seed filling


	Conclusions
	Availability of supporting data
	Additional files
	Abbreviations
	Competing interests
	Authors’ contributions
	Authors’ information
	Acknowledgements
	Author details
	References



