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Abstract
The novel corona virus SARS-CoV-2 (COVID-19) has exposed the world to
challenges never before seen in fast diagnostics, monitoring, and prevention of
the outbreak. As a result, different approaches for fast diagnostic and screening
are made and yet to find the ideal way. The current mini-review provides and
examines evidence-based innovative and rapid chemical sensing and related
biodiagnostic solutions to deal with infectious disease and related pandemic
emergencies, which could offer the best possible care for the general population
and improve the approachability of the pandemic information, insights, and
surrounding contexts. The review discusses how integration of sensing devices
with big data analysis, artificial Intelligence or machine learning, and clinical
decision support system, could improve the accuracy of the recorded patterns
of the disease conditions within an ocean of information. At the end, the
mini-review provides a prospective on the requirements to improve our coping
of the pandemic-related biodiagnostics as well as future opportunities.
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1 INTRODUCTION

The outbreak of the novel corona virus SARS-CoV-2
(COVID-19) originated in Wuhan China during December
2019 and has spread globally, resulting with ∼70 million
infections and 1.5 million deaths to date and rising.[1,2] As
of now, it is clear that early-stage diagnosis of COVID-19,
as well as other pandemic-related diseases, leads to
higher survival rates and prevention of the spread of
disease.[3] So far, the diagnosis of COVID-19 follows
molecular testing for the presence of the disease. Despite
high accuracy, in the early stages of infection when no
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symptoms are present, it is possible that the virus will
go undetected.[4] By regular monitoring of individuals,
it would be possible to identify those progressing toward
high-risk conditions. This would allow target manage-
ment of only those patients who otherwise would progress
to infection. In addition, for severe cases, monitoring of
the recovery/treatment results would allow evaluation
of the efficacy of the scheduled treatment.[5] The above
should result in higher survival rates, slower spread of a
pandemic, and create savings for the healthcare organiza-
tions due to early detection of life-threatening conditions,
as well as reducing unnecessary procedures.
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Experience of the COVID-19 pandemics teaches that
there is no way to know for sure if or when another infec-
tious or viral diseases will come, or what it might be
like, making it important to be prepared. The world needs
quickly to start analyzing the lessons from the present
COVID-19 crisis, in particular its impact on health and
socioeconomic aspects, and propose recommendations for
being better prepared in the future if confronted with
similar events.[6] In parallel, there is a need to develop
and deploy effective diagnostic tests that are noninvasive,
rapid, inexpensive, and easy-to-use tools for diagnosing or
ruling out infection at earlier stages, even before symptoms
of infection become manifest to decrease the transmission
and mortality rates.[4,7]
Thanks to advanced functional (bio)materials as well

as micro- and nanotechnology, state-of-the-art sensing
approaches contain enough hard-wired intelligence and
robustness to deliver a multitude of data/analysis to the
practitioner.[8–13] Furthermore, the use of nanoelectron-
ics has the potential to improve the sensitivity of the
sensors.[8,10,12,14–16] New advances in microfluidic and
printed electronics technologies have great potential to
realize a fully integrated device that directly delivers
complete data for a medical screening from a single
sample.[8,10,12,14–16] As such, the impact of these biodiag-
nostic technologies is not only early detection, but rather
in directing targeted therapy, as well as success of the
monitoring. Precise diagnosis leads to more efficient ther-
apy and avoids unnecessary treatment and inefficient
therapy.[4,7,17] The applicability and user-friendliness are
at the core of these biodiagnostic technologies.
A key player in the success of these approaches at the

global level is the utilization of advanced decision-support
tools that merge deep analysis with powerful predic-
tion capabilities. The healthcare community is pushing
toward digital solutions and advanced technologies with
diagnostics as the main focal point of action.[18] This
could be achieved by using innovative artificial intelli-
gence (AI) and personalized clinical decision support
system (CDSS)[19–21] for integrating a wide spectrum of
retrospective and prospective data from many sources,
such as medical records, omics, medical imaging, and
wearable diagnostics. Such data can be used to predict
and detect specific diseases, differentiate subcategories
and genetic features of the disease, and monitor disease
progression and treatment. The resulting platform should
be offered as a patient- and healthcare-centric solution
that meets their specific needs.[19–21]
In this mini-review, we will discuss biodiagnostic

approaches to allow for continuous, real-time, and
minimally- or noninvasive detection and monitoring of
infection status and other related diseases, to aid control
of the epidemic. We will show how design of sensing

materials and devices can be used to make an initial
decision, and furthermore warn the user and recommend
either follow-up testing or treatment, and to allow local
and remote monitoring of the infected individual with
minimal risk for the staff. Finally, we will discuss how
state-of-the-art biodiagnostic sensing technologies can
enable not only adequate patient diagnosis, treatment, and
follow-up, but also a continual screening of at-risk popu-
lations and real-time monitoring of epidemics, providing
population-wide and location-based anonymized data for
statistical analysis and data mining, thereby facilitating
the in-depth epidemiological study.

2 CONSIDERATION OF
TRANSMISSION ROUTE IN A
DIAGNOSTIC APPROACH

Pathogens can be directly transmitted to humans, as
with sexually transmitted or respiratory viral infections,
whereas others—such as vector-borne disease—can be
transmitted indirectly.[22] Froma clinical aspect, infectious
disease starts with an incubation phase (from exposure
to first symptoms), followed by clinical illness (from first
to last symptoms), and transmission starts with the latent
phase (silence, preinfectious) to the infectious phase, in
which a person can transmit the infecting agent.[22] These
phases and time periods differ among the diseases; in
many cases, the latent period is parallel to the incuba-
tion stage (eg, Ebola). However, some diseases behave dif-
ferently (eg, chicken pox). An individual is considered
a carrier if infected but is not showing clinical symp-
toms of the disease (asymptomatic).[22] These cases are of
most importance for biodiagnostic work as carriers could
unknowingly facilitate the distribution of an infectious
agent throughout a population.
For any infectious disease, the chain of infection (or

chain of transmission) includes the outbreak of the infec-
tious agent from its source via an exit portal and transmits
to an entry portal of a susceptible host.[22] Therefore,
novel strategies should aim at any of the links in the chain
of transmission for an improved solution. An example of
this can be demonstrated with the recent SARS-COV-2
pandemic. In SARS-COV-2, the transmission of the virus
from one individual to the other is via direct/indirect
contact and airborne particle routes.[23] The atomization
of viruses by humans is due to sneezing or coughing of
an infected individual, creating virus-containing droplets
(>5 μm) and aerosols (<5 μm). Large droplets primarily
settle down, causing surface contamination of a per-
son/object, whereas aerosols are efficiently spread in air.
Direct transmission is generally short range, whereas air-
borne transmission occurs in extended distance/time.[23]
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F IGURE 1 Working approach to current and future sensing developments for fighting outbreaks and pandemics

Thus, airborne viruses can be deposited directly on to
the human respiratory epithelium. Therefore, developing
novel biodiagnostic approaches should in future consider
the transmission route as a point of intervention to
mitigate the spread of potential pandemics.

3 MATERIALS AND SENSING
TECHNOLOGIES

There are several types of technologies adopted for devel-
oping sensing platforms. Some sensing technologies are
lab-oriented technologies (eg, mass-spectrometry-based
detectors, the conventional PCR-based system), which are
highly sensitive; these are mostly bulky, expensive, and
time-consuming, making their use in pandemic diagnos-
tics less practical. For real-time point-of-care (PoC) diag-
nostics, other technologies would be preferable, such as
chemoresistors, electrochemical sensors, colorimetric sen-
sors, lateral flow test strip, and others. For efficient sensing,
the important and challenging targets are achieving high
accuracy and specificity. Therefore, to attain this objective,
studies have focused on tailor-made electronic[10,24–26] and
optical[27–30] devices/methods. Cutting-edge sensors based
on receptor-analyte recognition or molecular switch can
sense chemical biomarkers in real time by transducing bio-
logical interactions into electrical signals. Figure 1 presents
the flowwork concept suggested here for developing infec-
tious sensing technologies.

3.1 Sensing biomaterials inspired
by nature

Enzymes are catalysts for speeding up biochemical reac-
tions. They have excellent biorecognition capabilities,

binding specific molecules into the active site.[31,32] This
property can be harnessed as comprehensible signals in
both enzyme active or enzyme inhibition-based sensors.
Electrochemical sensors based on enzymes are commonly
used, eg, glucose oxidase.[33] Similarly, electrochemical
sensors have been used for detecting targets such as
lactate, H2O2, reduced nicotinamide adenine dinucleotide
(NADH), xanthine, carbosulfan, caspase-3, acetate,
hypoxanthine, catechol, and ethanol.[10] In recent work,
genosensors were demonstrated for the differential detec-
tion of Zika virus using both electrochemical and optical
detection mediated by enzymatic activity.[34] The sensor
was constructed by a unique biotinylated capture probe
immobilized on magnetic beads coated with streptavidin.
The target was prehybridized with the Dig-labeled signal
probe recognized by an anti-Dig monoclonal antibody
labeled with horseradish peroxidase. The beads were
magnetically attracted to the surface of an SPAuE (in full
before the acronym), allowing differential electrochemical
detection of the viral target.[34] This system discriminated
Zika virus from dengue and chikungunya viruses in spiked
samples of serum, urine, and saliva.[34] An enzyme-loaded
organic electrochemical transistor (OECT) functions as
a transducer in biochemical sensors for detecting elec-
trolytes and metabolites for different uses.[35] Changes in
the drain current, due to the selective activity of a redox
enzyme and the subsequent transfer of an electron to
the gate of the OECT, can be correlated with metabolite
concentration.[35] Hai et al[36] used an OECT sensor with
trisaccharide-functionalized PEDOT:PSS to detect human
influenza virus. The sialyllactose in this sensors improves
the interface with hemagglutinin on the viral surface
that mimics the host infection mechanism.[36] Virus
recognition was monitored by drain current changes at no
gate bias.[36] The entire viral nanoparticle bound to the
channel area (with a net negative charge) changed
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the drain current by an anion doping effect on the
channel. They achieved a detection limit of approxi-
mately two orders of magnitude lower than conventional
immunochromatographic tests.[36] The device operates
on low power consumption provided from a single power
source.[36] Though enzyme-based sensors have excel-
lent selectivity and fast responses to a stimulus, they are
temperature- and pH-dependent, andwork only in a liquid
environment. Additionally, immobilization and leakage of
the enzyme to the transducers remains challenging.
Other main biomaterial targets are nucleic acids. Zhang

et al[37] reported on a nanoparticle-based, biobarcoded
electrochemical biosensor for the simultaneous detection
of Bacillus anthracis and Salmonella enteritidis. Similarly,
a number of studies have reported on immobilizers (eg,
thiol linkages, avidin-biotin, or streptavidin-biotin com-
plexation) on quartz crystal microbalance (QCM) gold
electrodes that work with DNA probes for the selective
detection of viral targets, such as hepatitis B virus,[38] hep-
atitis C,[39] and dengue virus.[40] Chen and colleagues[41]
developed a DNA-based capacitive sensor based on
interdigitated Au electrodes for the detection of West
Nile Virus. Endemic in different regions worldwide,[42]
this virus transmitted by mosquitos mostly causes flu-
like symptoms, but can result in sever neurological
problems and death. Electrodes were immobilized with
24-nucleotide DNA probes selectively constructed from
the virus sequence. Sensor capacitance changed> 70 nF in
response to as few as 20 DNA targets (∼1.5 attomolar). The
dynamic range of the device was between 1 and 106 μL−1
molecules.[41] Aptamers fall under nucleic acid targets;
they are short sections (20-90 nucleotides) of single-
stranded DNA/RNA.[43] Their wide range of selectivity
and simple production make them attractive for sensing
targets, from molecules[44] up to whole cells.[45] Com-
bined with QCM, aptamers can directly detect viruses as
severe acute respiratory syndrome (SARS)[46,47] or Ebola
virus-b.[48] Though sensors based on enzymes or nucleic
acid are fast with excellent selectivity, their performance is
challenged by the counteracting effects of pH and temper-
ature. Additionally, these sensors require a liquid phase for
operation, usually being unable to target gaseous species.
Biological receptors, eg, proteins and peptides, can be

integrated with solid-state surfaces to form an electrical
biosensor.[24,49] Jin et al[50] developed a nanovesicle-based
bioelectronic nose platform mimicking human olfactory
signal transduction. They combined a single-walled
carbon nanotube-based field-effect transistor (FET)
together with nanovesicles derived from cells containing
human olfactory receptors and calcium ion signaling
pathways.[50] Their device used the cell signal pathways
to amplify the sensing signal, which improved selectivity
of single-carbon atomic resolution at a detection limit

of 1 fM. In evaluating the use of this sensor platform,
they showed that it could mimic a receptor-meditated
cellular signal transmission in living cells, making it a
plausible approach for medical diagnostics.[50] The ability
of monitoring G-protein coupled receptors (GPCRs)
activation in real time as in living cells could be used as
platform for infection. For example, GPCR TGR5 was used
as an interferon (IFN)-stimulated gene, thereby increasing
expression following viral infection, eg, vesicular stomati-
tis virus (VSV), Newcastle disease virus (NDV), and herpes
simplex virus type 1 (HSV-1) infection.[51] Active sites,
constructed of different receptors on a disc-like structure
constituting a lipid bilayer, membrane scaffold proteins
(MSPs) with improved stability of the receptor, have
been used to mimic the cell membrane environment.[52]
The diameters of the disc-like structures are ∼10s of
nanometers,[53] making them reasonably compatible with
microfabricated transducers. One important advantage
of FETs loaded with disc-like structures is that they can
operate both in ambient and liquid conditions, with
lasting stability in highly humid environments, owing to
the receptor’s hydrophobicity.[54] Yang et al[53] developed
nanoscale disc-like (ND_structures comprising TAAR13c
G-protein-coupled receptor from zebrafish) as a selective
receptor for cadaverine. The NDs were used to build an
e-nose by immobilizing the ND on CNT-FET electrodes.
Responses were measured as the conductance change
from the baseline value. The e-nose had an increased con-
ductance response to dose-dependent concentrations of
cadaverine, with a detection limit of 10 pM.[53] Although
the changes were subtle, the responses were reproducible
and clearly specific. Moreover, cadaverine could be selec-
tively detected from other molecules (eg, ethanolamine,
diaminodecane, trimethylamine, and glutamine). This
approach made it plausibility for the device to detect food
spoilage due to bacterial infections,[53] which could be a
source of possible large outbreaks. Additionally, ND-based
sensors were more stable than sensors based on natural
receptors, without loss of selectivity features. The ability
of these sensors to work in ambient/gaseous conditions
promises practical PoC applications for pandemic control.

3.2 Chemical detection inspired by
senses

Mimicking the working principle of biological sensory sys-
tems from living organisms is an important approach for
adaptable detection in complex environments.[9,55] It relies
on: (a) sensory units in the form of receptors that catch the
chemical signals and transduce the stimuli to readable sig-
nals via an electronic circuitry; and (b) a computation unit
(eg, brain) that performs pattern recognition to compare,
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classify, and make decisions from the collected data.[56]
This biomimetics can be operated in two ways. The first
approach targets highly selective detection to a specific tar-
get within a complex (mixture) environment.[56] In this
case, the data analysis would be very simple, but the design
and fabrication of the sensors and its related hardware
aremore difficult. The second approach targets simultane-
ously a compendium of compounds through semiselective
sensory units, and data processing that mimics the mam-
malian olfaction in tasting systems.[55,56] This approach
has attained good results in several fields, eg, healthcare,
public security, food safety, etc.[55]

3.3 Electronic noses

Electronic noses (e-noses) were developed to mimic
human olfaction that functions as a nonseparative mecha-
nism for the detection of volatile organic compound (VOC)
profiles (volatolomics) as a global fingerprint.[11,55,57]
Essentially, the instrument consists of head-space sam-
pling, sensor array, and pattern recognition modules, to
generate signal patterns that are used for detecting the
VOC fingerprint in disease. Haick and coworkers have
developed chemiresistors based on monolayer-capped
metal nanoparticles or single-wall carbon nanotubes
to determine and classify a number of diseases from
exhaled breath, including lung cancer[58–60] and gastric
cancer[59,61–63] metabolic diseases as Crohn’s disease,[64]
ulcerative colitis,[64] irritable bowel syndrome,[65] and
neurological diseases as idiopathic Parkinson,[64,66] atyp-
ical Parkinsonism,[64,66,67] multiple sclerosis,[68,69] as well
as different infectious diseases including tuberculosis
(TB)[70] and COVID-19.[71] Using the same approach,
they have shown that a breath-based system can be used
for diagnosis of infectious disease and pandemics.[70,71]
In the first research conducted in Cape Town, 210 adult
participants at three sites provided breath samples as
part of a case-control study.[70] Samples were stored on
absorbent tubes that were desorbed into a sensor cham-
ber containing 12 different nanomaterial-based sensors
(molecularly modified gold nanoparticles, or molecularly
modified single-walled carbon nanotubes). The interac-
tion among the modified nanoparticles layers and the
VOCs resulted in a reversible time-dependent change in
resistance, which was recorded and normalized. Results
of the validation set gave 92% accuracy in detecting active
TB infection and 90% and 93% sensitivity and specificity,
respectively. In recent work relying on the same core
technology, Haick and coworkers[71] have developed a
hand-held device (no larger than an average smartphone)
with eight different nanomaterial-based sensors; they
used it to detect COVID-19. The hand-held device sensors

operated similarly to the above, and once exposed to the
breath sample resulted with timely changes in electrical
resistance. A normalized change in sensor resistance
increased for the COVID patients, and decreased for the
control and cured patients. Researchers examined three
different groups including COVID-19, healthy control, and
other lung infections. From each sample requiring just
2-3 min at room temperature, preliminary results showed
that training and test set data had 94% and 76% accuracy,
respectively, in differentiating patients from controls, as
well as 90% and 95% accuracy, respectively, in differenti-
ating between patients with COVID-19 and patients with
other lung infections.[71] In addition, when they examined
people during and after healing from the disease, breath
patterns were also found to be different. Another type of e-
nose (Aeonose) was tested for its plausibility to screen out
COVID-19 positive patients before surgery.[72] This system
is based on an array of three microhotplate metal oxide
sensors: carbon monoxide, nitrogen dioxide, and VOC
sensors that change their conductivity after exposure. The
sensors operation temperature cycles between 260 and
340 ◦C, followed by machine learning (ML) methodology
used for classifying the data, the results showing 86%
sensitivity.[72]

3.4 Wearable sensors

Wearable sensors could have a crucial role for monitoring
and controlling pandemics by providing infection risk
assessment via “live,” real-time monitoring, and analysis
of accessible body tissue and fluids (skin, sweat, breath,
saliva, interstitial fluid), or monitoring of nonspecific vital
signs that could be correlated to an active infection. The
first group could be referred to as biointerfaced sensors,
namely, sensing devices that interfacewith biological com-
ponents. The human body’s state, both normal and abnor-
mal, has whole series of chemical/biological/physical
stimuli. For example, some diseases or conditions lead to
changes of specific VOCs emission from the skin or a dam-
aged organs that change their mechanical properties.[10,73]
The majority of these sensors are based on electrical
measurements, whereas some are based on colorimetric
methods. The detected target is transduced to a mea-
surable signal in device or via portable/WIFI/Bluetooth
connections. One major advantage of such devices is
their noninvasive[74,75] or minimally invasive features.[76]
The performance of these biosensors depends on the
interaction with the microenvironment of the sampled
organ and not just the physical operation of the sensor.
When sampling body fluids, different fouling aspects (eg,
adhesion of protein fragments, lipids, cell fractions) can
interfere with the proper operation of the biosensors.
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With invasive sensors, the effect is more profound and
can result with foreign body response, leading to the
rejection of the implanted device or resulting in failure
of the devices.[77] One notable example for which such
sensors have been developed is diabetes, by allowing
active monitoring of glucose levels in the form of textile,
patches, and tattoos, which can provide samples from
different body regions (arm, eye, and mouth).[78,79] Yet,
adopting this approach for pandemic/infectious outbreak
monitoring is challenging as the biomarker target is not
known in advance or requires frequent changes of the
analyzer. For that reason, currently available wearable
devices focus mostly on the detection and monitoring of
vital signs linked to early stages of infection, including
fever, fatigue, headaches, and cough.[80,81] The downside
of this approach is low-medium diagnostics regarding
sensitivity and specificity.

4 BIODIAGNOSTIC APPROACHES

The (bio)marker spectrum of infectious or viral diseases
has two complementary parts. The first part relies on the
detection of specific biomarkers (eg, spike S1 subunit
protein) that are indicative for specific diseases (eg,
COVID-19) that are highly prevalent amongst an aging
population. The second part relies on the detection of
generic, nonspecific (bio)markers (eg, C-reactive pro-
tein, 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dg), and
vital signs) that are indicative of the existence of health
disorders (eg, inflammation, oxidative stress, and other
diseases) that would have an indirect link to a specific
disease. Thus, it can be divided into two approaches,
indirect and direct sensing (Figure 2).

4.1 Indirect biochemical sensing

The overlying principle of this approach relies on metabo-
lites in bodily response (eg, immune system) to an infec-
tious/viral agent, such as specific antibodies or volatile
metabolites.[9,11,83] Thesemetabolites could appear in body
samples/fluids, such as breath, urine, stool, and blood,
for simple and accurate disease diagnosis.[11] Having part
of the biomarkers in several body fluids at the time the
other part appears solely in specific body fluid has the
advantage of receiving different biomarker profiles from
different sampling sources within the body under the
same condition.[9,57,87] Therefore, for diagnostic tests, one
can measure a single source for biomarkers, or concur-
rently measure multiple sources to improve the diag-
nostic power.[10,11,88] Chemical markers include different
metabolites, proteins and different small molecules as

VOCs and ions. Comprehensive reviews regarding the
potential of VOCs as chemical biomarkers for disease diag-
nostics have been published.[9,11,87–89] Here, we provide
representative examples of this approach.
The recent SARS-CoV-2 pandemic has also challenged

researchers to provide new technologies or adapt pre-
vious technologies for indirect detection and control
of the outbreak. Haick and coworkers[71] concluded
an exploratory clinical study in Wuhan, China, which
included sampling with a breath analyzer device based
on an array of chemiresistive sensors made up of molec-
ularly modified gold nanoparticles in conjugation with
ML methods (Figure 2A). The study cohort included 41
confirmed COVID-19 patients, 14 symptomatic negative
COVID-19 patients, and 47 asymptomatic controls. Pos-
itive COVID-19 patients were sampled twice: (a) during
active disease and (b) after cure. The discriminant factor
analysis (DFA) model achieved excellent training and
blind discriminations between the different groups. For
example, discrimination between: (a) positive COVID-19
patients versus control resulted with 76% accuracy and
100% sensitivity; (b) positive COVID-19 versus negative
COVID-19 patients achieved 95% accuracy and 100%
sensitivity; and (c) positive COVID-19 patients before and
after cure with 88% accuracy and 83% sensitivity.[71] In
another study, researchers have monitored early traces
of elevated production mitochondrial reactive oxygen
species (ROS) expressed in sputum samples.[90] In this
way, introduction of sputum samples to an electro-
chemical sensor functionalized with multiwall carbon
nanotubes provided 97% true positive detection results
within 30 s.
One leading infectious target worldwide is TB caused

by the bacterium Mycobacterium tuberculosis (MtB).
Although TB has been around for many years, it remains
a major public health concern, with millions of new
cases globally each year and high mortality levels.[70,91]
Currently, a diagnostic test cannot distinguish between
active and latent state.[70,92] Another diagnostic test gives
high false negatives[93] and many require a lab-based
system and trained staff.[94,95] A number of studies have
suggested the use of different metabolites as VOCs that
can be measured from breath, using lab systems such as
gas chromatography mass spectrometry (GC-MS)[96,97] or
PoC sensor-based systems.[2,70] The biomarkersmeasured,
eg, alkanes and alkanes derivatives, are claimed to be the
result of infected lung cells or different response processes,
such as oxidative stress.[70,96] Oxidative stress, which leads
to free radicals, is an important mechanism for fighting
infections.[98] Some bacteria such as MtB can influence
this process, allowing measurement of these alterations.
Other studies have shown the plausibility of measuring
VOCs from urine samples. VOCs, such as o-xylene,
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F IGURE 2 Examples for indirect and direct detection devices for infectious agents. (A) Handheld breath analyzer system composed of
nanomaterial base sensor array used for Covid-19 detection, reproduced with permission of[71] Copyright 2020 American Chemical Society;
(B) disposable urine headspace sensor for detecting tuberculosis based on VOCs, with a principal component analysis score plot showing
discrimination of TB and high-risk control patients, reproduced with permission of Copyright 2016 American Chemical Society;[82] (C) a
waveguide mode sensor schematic diagram for detecting antigen-antibody complexes, with an illustration of dips in reflectance spectra,
reproduced with permission ofMDPI open access;[83] (D) Ebola virus envelope detection using monoclonal and quartz crystal microbalance
schematic and detection of EBO virus Zaire GP, reprinted from with permission of Elsevier;[84] (E) electrochemical DNA biosensor based on a
tetrahedral nanostructure probe for the detection of Avian Influenza A (H7N9) virus through recognizing a fragment of the hemagglutinin
gene sequence, reproduced with permission of Copyright 2015 American Chemical Society;[85] (F) vertical flow-based paper immunosensor
for rapid electrochemical and colorimetric detection of influenza virus using a different pore-size sample pad, reprinted from Ref.[86] with
permission of Elsevier

iso-pracetate, 3-pentanol, dimethylstyrene, and cymol,
were thought to vary in urine of TB patients compared to
healthy controls.[99] Arrays of colorimetric sensors gave
visible indication based on chemical changes within a few
hours of a variety of indicators (eg, metalloporphyrins,
acid/base indicators, nucleophilic indicators, redox indi-
cators), with up to 85% sensitivity (Figure 2B).[82] Other
metabolites that can be used to detect the infection,
but require more complex analysis, including indirect
plasma metabolites as ceramide, which are involved in the
host response to pathogens, a ceramide-rich membrane,
which has different roles throughout bacterial infections,
including apoptosis, phagocytosis, phagosome trafficking,
and macrophage maturation.[91] During TB infections,
4α-formyl-4β-methyl-5α-cholesta-8-en-3β-ol may lead to
enhanced cholesterol biosynthesis—cholesterol has key
roles in the pathogenesis of TB—and 12(R)-HETE, which

is an arachidonic acid metabolite induced by immune
system cytokines such as interleukin 4 (IL4).
Antibody detection is another common indirect method

in which levels of immunoglobulin G and M (IgG and
IgM) for specific targets (eg, Covid-19, TB) are measured
from human serum.[100] The level is indicative of previous
exposure to the infection and activity of the immune
system. The serological test is highly sensitive and can
provide a prolonged time frame for analysis, and there-
fore, they might be preferred for long-run surveillance.
However, most available tests require a lab setup and
the use of an invasive blood sample. To overcome these
drawbacks, different PoC tests (as a lateral flow test
strip) are widely used toward this aim. They are based
on simple lateral chromatography on a cellulose-based
device to detect the presence of a target analyte (antibody)
from a liquid sample (eg, blood).[101] New approaches
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combine serological testing with other sensing platforms,
as graphene FET (Gr-FET) that does not require fluores-
cence or complicated enzyme labeling.[102] The system
functionalizes graphene with selective SARS-COV spike
S1 subunit protein antibody (CSAb)—COVID-19 spike
S1 subunit protein (which contains the RBD) antigen
interaction to develop an immunosensor with a limit of
detection down to 0.2 pM.[102] The authors have shown
that the process can be inverted and the S1 protein can be
connected to the sensor and the sensing system can
potentially be used to screen for antibodies in the human
sample.[102] Makishima and colleagues[83] have shown
the use of a waveguide mode sensor that can be used as a
portable on-site blood testing device. They evaluated the
ability to identify antibodies in blood samples for several
infectious disease including hepatitis B virus, hepatitis C
virus, human immunodeficiency virus, and treponema
pallidum infection. Specific antigens are fixed to the
sensing chip composed of three layers of SiO2 and Si.
The antigen can connect to the antibodies in the sample,
which are exposed to a secondary antibody coupled with
a fluorescent dye, gold nanoparticles, or HRP for signal
enhancement (Figure 2C).[83]

4.2 Direct biochemical sensing

This approach relies on metabolites or other fractions that
originate from the infectious agent itself, ie, sensing is
aimed to identify directly the causative agents as opposed
to the response of the body, for instance, in viral infec-
tions, analytes such as viral proteins, viral nucleic acids
(DNA and RNA), and viral particles. In this context, one
needs to consider the viral load (for viral infectious dis-
ease) being important in establishing and choosing the best
direct detection method. As an example, in COVID-19, a
typical viral load ranges from 641 to 1.34 × 1011 copies/mL
and a median of 1.69 × 105 copies/mL in nasal samples, 105
copies/mL in sputum, and 7.99 × 104 copies/mL in throat
samples.[103,104] During the first days of infection, the viral
load is usually at high levels that can easily be detected,
after which it gradually declines toward the detection limit
in∼3weeks.[105] Therefore, two diagnostic strategies could
be taken low-frequency testing with high analytic sensitiv-
ity, ie, performing a highly sensitive diagnostic test at long
time intervals. This is opposed to high-frequency testing
with low analytic sensitivity, ie, performing less sensitive
tests, but in repeated short time intervals. The latter option,
in the case of COVID-19 pandemic, is more likely to detect
the disease during the transmissionwindow,which ismost
important for controlling the pandemic.[106] Thus, differ-
ent sensing technologies could provide solutions by using
these strategies.

Weissleder and colleagues[107] used a viral-induced self-
assembly magnetic nanoparticles to detect both HSV and
adenovirus from blood sample. Specific antibodies were
immobilized on to the nanoparticles, composed of a super-
paramagnetic iron oxide core with a dextran coating, used
as specific identifiers of the viral sample particles. When
the nanoparticles connect to the viral particles, they assem-
ble and create a change that can be measured by magnetic
resonance imaging.[107] In a following concept, Jiang and
colleagues[108] combined magnetic relaxation with mag-
netic separation and showed the ability to identify both
viral infections (eg, NDV, LOD: 102 copy/mL) and bacte-
rial infections (eg, Salmonella enterica, LOD: 102 cfu/mL)
in one step. Huang et al[109] have recently shown the use
of nanoplasmonic sensors for fast viral detection with spe-
cific antibodies. The nanochip was immobilized with spe-
cific COVID-19 antibodies. Once exposed to a real sample,
a color change could readily be detected with a microplate
reader or a PoC device.[109] Kinnamon and coworkers[110]
showed a screen-printed graphene oxide textile biosen-
sor for point-of-exposure detection of Influenza-A virus.
Influenza protein-specific antibodies were incubated on
the textile-biosensor surface with a limit of detection of
10 ng/mL in simulated lab samples.[110] Nucleic acids
(eg, DNA, RNA) from viral or bacterial source are also
used as targets. In an electrochemical nuclei acid sen-
sor, a nucleic acid hybridization event is transformed into
a measurable electrochemical signal.[111] In yet another
recent work, Ciftci et al[112] reported on an isothermal
padlock probe-based test for an easy and portable detec-
tion of pathogens coupled with a glucose oxidase-based
electrochemical readout (measured by chronoamperom-
etry after the reduction of the H2O2 generated). The
study evaluated clinical samples of the Ebola virus and
showed plausible detection for samples with a high viral
load of cycle threshold (Ct) = 16. In bacterial infec-
tions, there is a possibility to directly detect metabolites,
for example, detection of CO2 levels generated by the
activity of bacterial CO dehydrogenase.[113] Other stud-
ies based on the analysis of VOCs present in specific
volatiles that emanate from bacterial cultures are believed
to be plausible for direct diagnostics. A study evaluat-
ing cystic fibrosis-associated bacterial infections includ-
ing Pseudomonas aeruginosa, Burkholderia cenocepacia,
Haemophilus influenzae, Stenotrophomonas maltophilia,
Streptococcus pneumoniae, and Streptococcus milleri had
potential in differentiating them based on their VOC pro-
files using GC × GC-TOFMS.[114]
QCM, which senses analytes based on mass changes

resulting with alteration in resonant frequency, together
with natural or synthetic receptors, has potential for gravi-
metric viral diagnostics.[10] Using natural antibody-virus
interactions that can be transduced by QCM was used
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to detect highly virulent viral species, eg, Ebola virus.
Haynes and colleagues[84] used viral information from
three regions in Africa for the generation of anti-Ebola
polyclonal antibodies. Binding events for Ebola glycopro-
tein were monitored in real time (12 min) on newly pre-
pared QCM sensors. This approach has a limit of detection
of 14 and 56 nM for Zaire and Sudan-Gulu Ebola glycopro-
tein, respectively, with 11 ng as the lowest detectable mass
(Figure 2D).[84]
In other work targeting viral detection, researchers have

developed a DNA nanostructure-based electrochemical
biosensor to detect avian influenzaA (H7N9) virus by iden-
tifying a part of the hemagglutinin gene sequence (Fig-
ure 2E).[85] The DNA tetrahedral probe was based on three
thiolated nucleotide sequences and a longer sequence
containing complementary DNA for the hybridization to
the target single-stranded DNA. The probe was immobi-
lized onto a gold electrode surface and avidin-horseradish
peroxidase was added to produce an amperometric sig-
nal via the interaction with 3,3′,5,5′-tetramethylbenzidine
substrate.[85] The results showed that the sensor could
clearly identify the influenza A (H7N9) DNA fragment
from other influenza viruses types, eg, influenza A (H1N1)
and (H3N2) viruses, with a detection limit down to
100 fM.[85]
Bhardwaj et al[86] developed an immunosensor-based

vertical flow assay (VFA) paper to detect Influenza
H1N1 viruses electrochemically and colorimetrically. The
sensing assay was constructed with a sample pad with
double-size pores, a conjugate pad, and a nitrocellulose
membrane. A working gold paper electrode, counter
carbon paste electrode, and Ag/AgCl reference electrode
were used. The double-pore sample pad consisted of
both small and large pores that enabled fast detection
(∼6 min) based on the antigen-antibody complexes on the
conjugate pad with detection limits down to 3.3 plaque
forming units (PFU)/mL (Figure 2F).[86] Moreover, this
porosity attribute of the sample pad allows small particles
like viruses to pass through, providing a definite advantage
for viral direct detection in air samples.[86] Seo et al[115]
have recently reported on a FET-based sensing device for
SARS-CoV-2 detection in clinical samples. The sensor was
developed by covering the FET’s graphene sheets with
a specific antibody against SARS-CoV-2 spike protein;
they achieved a limit of detection of 100 fg/mL in clinical
transport medium.[115]
Another approach that has also been evaluated for

direct detection of infections is exhaled breath conden-
sates (EBCs). EBC contains respiratory droplets represent-
ing the lower airways lining fluid. EBC (and exhaled breath
aerosol [EBA]) analysis contains volatile and nonvolatile
molecule, such as RNA, DNA, bacteria, and viruses, typ-
ically by means of successive PCR-based methods in the

exhaled breath.[116] One important advantage of EBC anal-
ysis with respect to detection of such infections is the
preconcentrating of the droplets from the lining fluid
together with the virus, bacteria, or other byproducts
to give a detectable concentration level.[117–119] Thus, an
EBC method can collect different target viable particles
efficiently. Ryan et al[120] used EBC followed by RT-
PCR analysis for the diagnosis of 31 COVID-19 patients,
achieving 93.5% accuracy by targeting four genes. Further-
more, they showed that previously false negatives from
nasopharyngeal swabs could be detected by this method.
In other work, researchers tested the spread of COVID-
19 virus in exhaled air; limited results on 19 patients
showed that EBC had the highest positive rate of virus,[121]
thus making it an important target for diagnostics. Shen
et al[122] demonstrated the direct and selective detection of
influenza viruses (H3N2) using diluted EBC collected from
flu patients with a silicon nanowire sensor.

5 DATAMANAGEMENT OF
BIODIAGNOSTICS

5.1 Big data health platform, data
ingestion, and data access

Big data analysis is another approach aimed at analyzing
big unstructured data volumes that are generated continu-
ously from many data sources and sensors. The advantage
of big data analysis is the real-time monitoring and predic-
tion of outcomes. In medical and clinical fields, this term
denotes the large datasets of health-related sources, such
as electronic health records, test results, imaging results,
pharmaceutical information, and more.[123] Big data tech-
nologies are under development, focusing on open-source
solutions, with many alternatives targeting different
aspects, including data storage, ingestion, preparation,
analytics, and visualization. Nevertheless, several design
patterns are now becoming common. The multisource
extractor pattern facilitates drawing data from multiple
(bio)sensing and (bio)diagnostic sources and different
formats in an efficient manner. Multiple enricher entities
aggregate and clean data from different sources, and then
feed them to intermediate collection agents, carrying out
the final processing and loading the destination systems.
Each enricher transfers and validates files, reduces noise,
compresses and transforms them from a native format to
an easily interpreted representation, and removes dupli-
cates. On the other hand, the protocol converter pattern
is required to standardize the structure of the various
different messages (ie, harmonize), making it possible to
analyze the information together. For pseudo-real-time
scenarios, the real-time streaming patterns impose several
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restrictions by being self-sufficient and use local memory
in each node; nodes must be independent and without
a centralized master node, and provide a simple API for
parsing real-time data. Event processing nodes consume
inputs from different sources and create events, which are
delivered to listeners to the event. These entities process
events quickly and deliver the event to an alerter, which
publishes the results of the analytics to the destination.
In this context of a large range of big data building block
solutions, it is important that the framework/platforms
enable easier customization of the big data technologies
for specific biodiagnostic and pandemic needs. For the
configuration, deployment and monitoring of project-
specific big data platforms, analytics and applications,
and containerization and orchestration technologies (eg
Docker containers and Kubernetes) are the key technolo-
gies facilitating the deployment of updates, and ensuring
reliability and scalability.
In the context of big data, the variety and veracity of data

are paramount concerns, even over volume and velocity.
Regarding variety, two main issues arise: the integration
of heterogeneous data sources and the extraction of useful
data from traditionally unexploited sources,[124] such
as raw scans, sensor signals, or free text. Text mining
techniques[125] try to identify the concepts underlying
free text written in natural language, generally using
semantic technologies. For imaging, the fusion of different
modalities, as well as the extraction of useful features[126]
combined with other sources, are the main challenges for
its use in a big data scenario. This also applies to sensing
omics.[127] In the case of noisy and/or nonstandardized
data sources, data curation plays an important role.[128]
This may be the case for OpenData data and individuals’
health monitoring data, eg, where flaws in measurements
or collection processes lead to incorrect values. This data
preprocessing stage may include data cleaning (inconsis-
tent data), normalization (improve data range homogene-
ity), transformation (feature extraction), missing values
imputation and integration (aggregation from different
sources), and noise identification (filtering and repairing).
Distributed large-scale data processing engines usually
provide stack libraries to work with heterogeneous data
sources individually or combine them for more complex
analytics.[129] Finally, regarding the domain of healthcare
application, a key concern for exploiting the available
data is privacy. Researchers targeted security and privacy
of access to traditional electronic health records (EHRs),
taking into account the increased uptake of personal
health records (PHRs). Moving from actual EHR access
to the processing of large-scale data, there is an ongo-
ing effort to make ML algorithms “privacy-preserving”
when confidential data are distributed in a cluster for
computation.[130]

Some examples of the uses for pandemic control are
mentioned: Keeling et al[131] suggested amodel to estimate
the transmission rate ofCOVID-19 infection by tracing con-
tact. This model recognized possibly infected individuals
before the occurrence of severe symptoms. Detailed infor-
mation on social encounters from >5800 people in the
United Kingdom was joined to predictive models of con-
tact tracing and control. Their model predicted that under
effective contact tracing, less than one in six cases will
produce any untraced infections.[131] Furthermore, they
showed that tracing contact in cases of contact of 4 h
or more is unlikely to control spread. There are different
real-time platforms for big data analysis supporting differ-
ent application domains, such as stream processing, batch
processing, or hybrid approaches.[132] Different needs will
eventually determine the best suitable platform.

5.2 Data analysis and clinical
decision-support system

Knowledge-based clinical decision-support system (CDSS)
attempts to model human knowledge in computational
terms, starting in a top-down fashion from human self-
reporting of the concepts and knowledge individuals
use to solve problems or answer queries in a domain
of expertise, including common sense knowledge for-
malized in software. The knowledge base contains the
rules and associations of compiled data that most often
take the form of IF-THEN rules. The knowledge-based
approach to clinical decision support is limited in scale,
due to the lack of evidence in some domains, as well as
to the cost of human knowledge authoring processes.
Nonknowledge-based CDSS relies on AI and ML, which
allows computers to learn from experience and find
patterns in clinical data. This eliminates the need for
writing rules or expert input. Since systems based on ML
cannot explain the reasons for their conclusions, most
clinicians therefore do not use them directly for diagnoses
due to reliability and accountability reasons. Nevertheless,
they can be useful for suggesting patterns to clinicians for
them to look in more depth, or as postdiagnostic systems.
Nonknowledge-based networks often focus on a narrow
list of symptoms, eg, for a single disease, as opposed to the
knowledge-based approach that covers diagnosis of many
different diseases. Nonknowledge-based CDSS requires
big data and very substantial computing power to reach
adequate performance levels. Hybrid systems combine
both approaches, taking advantage of both formalized
knowledge and available data. Nonknowledge-based
CDSS fulfils a mainly complementary role to knowledge-
based CDSS.[133] A recent example for the application
of a CDSS for pandemic control has been tested on
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COVID-19. McRae et al[134] tested a model based on
training data from 701 patients with COVID-19 within
the Health Centers network in New York. A help deter-
mines if biomarker-based testing and/or hospitalization is
necessary.[134] Stage 2 forecasts the probability of mortal-
ity via age data and biomarker measurements (including
D-dimer, procalcitonin, and C-reactive protein).[134] The
two models were validated on patients using two external
datasets from hospitals in Wuhan, China. Significantly
higher levels of the tested biomarkers were found in
patients who died versus those who were not hospitalized
or discharged, showing the validity of the CDSS and
mobile app for managing COVID-19 patient care.[134]

5.3 Machin learning and federated
learning

AI refers to any system capable of observing its envi-
ronment, and promotes steps that maximize the
autonomously required goal’s success rate.[123] Such
a system should cope successfully with big varied data
sources and process it within a limited time frame,[123]
eventually developing self-learning systems capable of
treating any prediction-related task.[123] Computational
models based on AI can be built on a variety of patient
data. Unsupervised ML methods find patterns on the data
without prior labeling, and include different clustering
methods, feature reduction techniques, autoencoders,
or expectation maximization algorithms. Supervised
learning approaches require training data to adjust the
parameters of their mathematical representation and
include regression techniques for real-valued output
variables and classification methods for categorical output
variables, such as support vector machines (SVMs) and
neural networks. Time-series data may also be used to
predict future events, using methods such as the sliding
window for conversion into a supervised learning prob-
lem. Recently, deep learning approaches have gained
much attention due to unprecedented results in difficult
classification and analytical tasks (despite the lack of
model interpretability). They perform simultaneous and
implicit feature extraction and classification, detecting
hidden or complex patterns on the data, but require a
large amount of annotated training data, making them
more suitable in big data scenarios. These techniques
have been extensively applied to single data modalities
in cancer disease modeling for both stratification and
prediction.[135] Federated learning (FL)[136] makes it
possible for AI algorithms to gain experience from a vast
range of data located at different sites. The approach
enables several sites to collaborate on model develop-
ment, yet without needing to share sensitive data directly

with each other.[137] Over several training iterations, the
shared models are exposed to a significantly wider range
of data than any single-site possesses in-house. It can
handle unbalanced and nonindependent and identically
distributed (non-IID) data, which naturally arise in the
real world.[138] FL has bequeathed a range of applications,
such as next word prediction,[139] visual object detection
for safety,[140] and applications in the health domain (eg
patient similarity learning, patient clustering).[141]
Xu et al[142] achieved an accuracy of 86.7% for COVID-19

detection using a deep learning model for early screening
of patients. The study tried to establish an early screen-
ing model to classify COVID-19 from influenza-A viral
pneumonia and healthy cases, using computed tomogra-
phy (CT) images and deep learning techniques.[142] They
sampled a total of 618 CTs from 110 COVID-19 patients,
224 patients with influenza-A, and 175 healthy people. Ini-
tially, the infection area was segmented out from the pul-
monary CT image set of the patients using a 3-D deep
learning model.[142] These separated images were classi-
fied to the three groups, using a location-attention clas-
sification model. Finally, for each CT case, the infection
type and confidence scorewere calculated using theNoisy-
OR Bayesian function, resulting in an overall accuracy of
86.7%.

6 SUMMARY AND PERSPECTIVE

The recent SARS-CoV-2 pandemic has exposed the world
to unforeseen challenges in fast diagnostics, monitoring,
and prevention of the outbreak. Many diverse approaches
have been used to address the situation. Leading tech-
nological solutions have been adopted toward fast diag-
nostics; however, substantial pitfalls still exist. Selective
sensing approaches that rely on specific and well-defined
targets usually provide very accurate results. Neverthe-
less, they are very disease-specific for biodiagnostics; their
adaptation for other types of diseases mainly during sud-
den outbreak requires significant effort and time. On the
other hand, the nonspecific sensing approach—an impera-
tivemilestone toward “informed health”—should go a long
way toward healthful, responsible self-care, but at the same
time when established intervention is required, serve as
important input to enable the healthcare system to initi-
ate the right examinations that pinpoint the suspected dis-
ease (or change in progression of a known condition), or to
monitor the individual’s health situation in a skillful and
data-based manner. For the sake of development of sens-
ing devices and informedhealth digital platforms, the com-
bination of the two complementary (bio)marker concepts
will enable the leverage measurements of a relatively lim-
ited set of health parameters to indicate a specific wide set
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F IGURE 3 AI analysis together with collected sensing
information for establishing efficient CDSS

of indicators for common health disorders. This combined
approach also has the potential to decrease the complexity
of analysis, and to accelerate forward-looking healthcare
regulatory processes.
Utilizing advanced decision-support tools that merge

deep analysis with powerful prediction capabilities from
biodiagnostic sensing platforms should aid decision-
makers and help healthcare systems to improve the way
they approach the infectious/viral information, insights,
and their surrounding contexts. A main emphasis should
be put on enabling the uptake of effective medicine, and
thus to increase the precision of disease diagnostics and
monitoring. This could be achieved by using innovative
AI and personalized CDSS for integrating a wide spectrum
of retrospective and prospective data from a range of
sources, such as medical records, omics, medical imaging,
and wearable diagnostics, to predict and detect specific

disease, differentiate subcategories and genetic features
of the disease, and monitor disease progression and treat-
ment process (Figure 3). The resulting platform will be
offered as a patient- and healthcare-centric solution that
meets their specific needs. In this way, the integrated plat-
form will give continuous patient support from predictive
diagnosis to follow-up; it will preempt disease progression,
customize disease-treatment strategies (when realized),
prescribe effective follow-up strategies, reduce time, cost
and failure rate of pharmaceutical clinical trials, and elim-
inate trial-and-error inefficiencies that inflate healthcare
costs and undermine patient care. Moreover, it will reduce
the number of unnecessary confirmatory tests and lower
the burden on the hospitals. During hospitalization or
home isolation, combination of a wearable technology
will serve as a monitoring tool for treatment success and
disease regression. By creating a sample database, models
can be established for predicting disease development
among the high-risk groups and hospitalization periods
and prognosis for positive patients. The integrated platform
will assist not only adequate patient diagnosis, treatment,
and follow-up, but also a continual screening of at-risk
populations and real-time monitoring of epidemics,
providing population-wide and location-based data for
statistical analysis and data mining, thereby facilitating
the in-depth epidemiological study. Additionally, it will
gather information about future needs related to this kind
of highly infectious disease screening and monitoring.
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