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Abstract

Motivation: Elementary flux modes (EFMs) are a key tool for analyzing genome-scale metabolic networks, and sev-
eral methods have been proposed to compute them. Among them, those based on solving linear programming (LP)
problems are known to be very efficient if the main interest lies in computing large enough sets of EFMs.

Results: Here, we propose a new method called EFM-Ta that boosts the efficiency rate by analyzing the information
provided by the LP solver. We base our method on a further study of the final tableau of the simplex method. By per-
forming additional elementary steps and avoiding trivial solutions consisting of two cycles, we obtain many more
EFMs for each LP problem posed, improving the efficiency rate of previously proposed methods by more than one

order of magnitude.

Availability and implementation: Software is freely available at https://github.com/biogacop/Boost_LP_EFM.

Contact: fguil@um.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Elementary flux modes (EFMs) are one widely known tool in com-
putational systems biology for studying genome-scale metabolic net-
works (GSMNs) reconstruction. EFMs represent a finite set of
possible states that can generate all the possible states of the net-
work by using convex combinations (see, e.g. De Figueiredo ef al.,
2009; Gagneur and Klamt, 2004; Klamt et al., 2005; Rezola et al.,
2011; Rohl et al., 2019; Schuster et al., 1999, 2000; Schuster and
Hilgetag, 1994). Unfortunately, the cardinality of this set is typically
very large so it can only be completely computed in a few cases
(Hunt et al., 2014). Methods to compute sets of EFMs can be rough-
ly divided into two families (Planes and Beasley, 2008), according to
if they rely on properties of the associated graph (path-finding meth-
ods) (Arabzadeh et al., 2018; Hidalgo et al., 2015) or just on the
study of the stoichiometric matrix of the network.

Regarding the second approach, different methods have been
proposed to solve the system of linear equations proposed by the
stoichiometric matrix. The most used ones are the double descrip-
tion method (DDM) (Fukuda and Prodon, 1995), the mixed integer
linear programming (MILP) method (De Figueiredo et al., 2009;
Rezola et al., 2011; Rohl and Bockmayr, 2017) and the linear pro-
gramming (LP) method (Machado et al., 2012; Tabe-Bordbar and
Marashi, 2013). The main advantage of the methods based on
DDM and MILP is that they can, theoretically, produce the full set
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of EFMs. On the other hand, LP methods are faster and can more ef-
ficiently produce big sets of EFMs, but they cannot assure when all
of the sets of EFMs have been computed.

Methods based on LP techniques are capable of producing sets
of EFMs at a better efficiency rate, both in time and computer
resources. Several efforts have been made to propose efficient algo-
rithms that can produce large enough sets of EFMs in GSMNs
(Kaleta et al., 2009; Quek and Nielsen, 2014; Pey et al., 2015). The
critical point of these techniques is to use different additional con-
straints and objective functions to transform the stoichiometric and
thermodynamic feasibility constraints into an optimization problem.
In this way, for any such LP problem, a solution can be an EFM
under certain hypothesis (Pey and Planes, 2014). Different strategies
try to minimize the associated issues that can appear (usually, infeas-
ible problems or repeated solutions). The efficiency rate of the LP
method is defined by how many LPs are needed to run to find a new
EFM. It is known that the ‘ideal’ rate is to find a new EFM for each
LP problem run. As far as we know, the best efficiency rate was
obtained by Pey ez al. (2015), where they achieved an efficiency rate
of 1.3 (i.e. a new EFM was obtained for each 1.3 LP problems
solved). Perhaps due to the fact that it is quite close to the ideal rate,
the interest in this topic has slowly decreased.

This article presents a new LP approach in which this ideal rate
is overcome. We have developed our proposal based on two ideas
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extracted from the LP problem-solving procedure. First, the object-
ive function (and so the optimal solution obtained) is just a tool to
produce a vertex of the (restricted) cone of solutions given by our
constraints. As previously noted (Pey and Planes, 2014) just using
one additional positive constraint (in a sense explained below) gives
that all the vertices of the restricted cone correspond to the subset of
EFMs of the network that fulfills the added constraint. Second, the
simplex algorithm (Taha, 2016) is based on a series of steps, and
each of them can be viewed, after obtaining a first feasible solution,
as a way to pass from one vertex to another.

Putting these two ideas together, our approach (named EFM-Ta,
which stands for EFMs using the tableau) uses the LP simplex algo-
rithm to produce an initial optimal solution that is an EFM and,
after that, some simple steps are performed to obtain new vertices,
that is, new EFMs. To limit the possible rounding problems arising
from the use of floating point numbers, EFM-Ta performs just one
possible step from the initial vertex obtained. However, having
plenty of possible ways of doing this step leads to the possibility of
obtaining lots of new vertices from the initial one. In the article, we
call these vertices the adjacent vertices of the first computed
solution.

As observed in Gerstl et al. (2015), it is desirable to avoid the ap-
pearance of two cycles. In the current context, this is especially im-
portant for two reasons. First, these solutions are sometimes false
EFMs, in the sense of consisting of pairs of irreversible reactions
coming from the splitting of a reversible one (Klamt et al., 2005). In
general, the output returned by the simplex method cannot be of
this unwanted type, but the use of an additional constraint can pro-
duce its appearance. In the experiments performed, we have seen
that this is a common behavior that dramatically decreases the effi-
ciency of the methods used. Moreover, these two-length vertices (in
the sense of corresponding to EFMs with support of cardinality two)
tend to have adjacent vertices that also are two length. So, EFM-Ta
has been extended to avoid this kind of undesired solution.

EFM-Ta obtains efficiency rates that go far beyond those
achieved by previous methods by a factor of 10x and so breaking
the ideal rate of one EFM by LP problem solved. Our approach has
been tested in previously studied GSMNs models and compared
with well-known tools (as EFMEvolver or treeEFM), obtaining an
increase in the efficiency rate of more than one order of magnitude.

The main contributions presented in this article are the
following:

* A further study of the final tableau of the simplex method. For
each LP problem posed, new vertices (EFMs) from the original
one are calculated, invoking additional elementary simplex steps.

* The importance of avoiding two-cycle EFMs as solutions. To do
that, reactions that come from reversible ones are avoided, and
also those that appear in previous EFMs of length 2.

* The significant improvement by a factor of 10x of the efficiency
rate in the extraction of sets of EFMs.

We have not used any heuristic rule for this increment (setting
apart the avoiding of two cycles), so we expect that this efficiency
rate can be greatly improved in subsequent works. We also want to
point out that this method of obtaining new vertices from the initial
one can also be easily added to other approaches based on LP
methods.

The associated matrix to any metabolic network is called its stoi-
chiometric matrix, and it represents the processes that can take place
on the network. Rows and columns of S represent the internal
metabolites and reactions, respectively. So, if the network has m
metabolites and 7 reactions, the associated matrix S has 7 rows and
n columns. Each value of the matrix is the stoichiometric coefficient
of the corresponding column (reaction) in the metabolic equation
represented by its row.

Any given state of the network is characterized by a vector of
variables of length equal to the number of reactions. The

corresponding values of the variables give the rate at which each re-
action is performing in this state. This vector is called a flux rate.

If the time interval considered is small enough, it is normal to as-
sume that the concentrations (internal metabolites) are stable. This
leads to the so-called steady-state constraint:

S-v=0. (1)

Let R and Irr be the sets of reactions and irreversible reactions of
our network. Irreversible reactions are those that can only occur in
one direction, while reversible ones are those that are not irreversible.
The usual method to deal with a reversible reactions is to replace it
with two irreversible ones, representing its two possible directions.

For Irr reactions, the flux rates must be non-negative, what is
known as the thermodynamic constraint:

v[j] >0, Vjelr. 2)

A flux vector is called a mode if it fulfills both the steady-state
and thermodynamic constraints.

If v is a mode, its support supp(v) is defined as the set of those
reactions 7 that appear in v with a non-zero rate. A mode v is called
an elementary mode, or EFM, if its support is minimal (i.e. there is
no other non-zero mode v/ with supp(v') & supp(v)) (see Schuster
and Hilgetag, 1994).

For any non-trivial network, its set of modes is infinite.
However, the set of EFMs of the network is finite and any non-
elementary mode can be written (in a non-unique way) as a linear
combination of EFMs using non-negative coefficients (see, e.g.
Klamt and Stelling, 2003). In this way, the problem of getting all the
modes is translated to the problem of computing the set of all EFMs.

To tackle the problem of whether a given mode is elementary or
not, the well-known characterization of EFMs in terms of the stoi-
chiometric matrix is used. For any mode v, the submatrix S, of § is
constructed by taking just those columns corresponding to reactions
in supp(v). If all the reactions of the network are irreversible, linear
algebra methods can prove that a mode v is an EFM if and only if
rank(S,) = k — 1 for k = |supp(v)| (Klamt et al., 2005; Terzer and
Stelling, 2008).

Linear programming techniques
As stated in Section 1, one approach to find EFMs is the use of linear
optimization techniques. In this way, it is common to use any libra-
ries that are publicly available to handle this kind of problems. To
do so, the procedure starts from the stoichiometric and thermo-
dynamic constraints that define a (polyhedral) cone of solutions and
introduce an ad hoc objective function to convert them into a linear
program. To guarantee that this problem is bounded, the objective
function is minimized along with the use of non-negative
coefficients.

The direct translation of a stoichiometric matrix into a linear
program defines a clean linear program [Equation (3)].

Minimize Zai -vld]
p
subject to S-v =0 .
v[i] >0 Vrielr

But, in this case, one minimal solution is obtained by setting all
variables to zero. So, the problem must be additionally restricted to
get non-trivial solutions. Different conditions must be used to mod-
ify this clean linear program in order to constrain it. It can be
imposed that certain set of reactions must appear with non-zero flux
(at least one of them). This kind of constraints are called positive
constraints (see Acuna et al., 2009 or Hidalgo et al., 2017). Other
times, the imposition is that a set of reactions must be absent in the
final solution (negative constraints). If the set of reactions of interest
is ] = {ri,,..., 7}, the constraints can be written as
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Zv[i,'] =1 (for positive constraints), (4)
iv[i,'] =0 (for negative constraints). (5)
J

So, different modes (solutions) can be obtained by choosing dif-
ferent sets of positive and negative constraints.

However, in order to compute EFMs, only certain types of con-
straints can be used. To avoid possible infeasible LP problems, just
one positive constraint is used. The LP problem posed with just one
positive constraint and any number of negative ones gives a solution
that is an EFM, whenever all reactions are irreversible and the sim-
plex algorithm is used to solve the LP problem (Pey and Planes,
2014).

2 Materials and methods

2.1 Posing the LP problem: the influence of reversible

reactions on the positive constraint

In order to avoid possible infeasible LP problems, in addition to just
use one positive constraint, the blocked reactions are removed from
the network (Hidalgo et al., 2017).

As stated before, the conventional way to obtain EFMs using the
simplex method is by taking into account the stoichiometric and
thermodynamic constraints, and additionally constraining the prob-
lem with one positive constraint. Then, the following LP problem
has to be posed:

n
Minimize Zai -]
i1

subject to S-v =0 6)

Sefij=1

J
v[i] >0 Vrielr

where the objective function includes a random number of reactions
with non-negative coefficients, and only one positive constraint is
chosen from a set of reactions J = {r;, ---,7; } using Equation (4).
Then, every solution returned by the solver is always an EFM.

However, we have found that the combination of one positive
constraint together with reversible reactions can produce undesired
artifacts in the LP problem, leading to the solution found is not al-
ways an EFM. Remind that reversible reactions are replaced with
two irreversible ones, representing its two possible directions.

This anomalous behavior can be observed in the following
example.

Consider the metabolic network given by the following graph:

in which the reaction 7 is reversible and all stoichiometric values
are set to 1. This network has three EFMs with supports {r1,72} (in
this case r; acts in the direction from m1; to m,), {r1,73} (r1 in the
opposite direction) and {r2,73}.

If the reaction rq is replaced with two irreversible reactions 7
and r7, the following graph is derived:

For the following order of variables (r,7{,72,73) (only consider-
ing internal metabolites), this stoichiometric matrix is derived

11 0 0
§= ( 1 -1 -1 1)'

Then, the restricted LP problem obtained by adding the con-
straint 71 = 1 yields as solution the tuple (1,1,0,0) that does not
correspond to any EFM.

The problem in the previous example is due to a solution is not
allowed to include together the two reactions obtained from the
same reversible one. But, as shown, this cannot be assured by just
posing LP problems and one positive reaction.

Our next result shows how to avoid this undesired behavior:

Theorem 1. Let M be a metabolic network. Without loss of generality,
the reactions can be reordered so that {ry,...,r.} are irreversible and
Thit,-- . Tn are reversible. For each reversible reaction r;, a pair of irre-
versible reactions {r{,r;} representing the two possible signs for the
flux of the reaction r; are introduced. Let us take a list of non-negative
numbers {ai,...,ay} such that at least one of the a; is non-zero.

Consider the subset V.C R” defined by the following constraints

S-v=0
v>0

If V # & then any extreme point of V corresponds to an EFM of the
network.

Observe that, in this result, the positive constraint only includes
reactions that does not come from reversible ones. This theorem
improves the known result from Pey and Planes (2014) in order to
avoid situations as in our previous example. A proof of this result
can be found in Supplementary Material of this article.

Remark: It is easy to prove that the only situation in which a ver-
tex can include both reactions, coming from a reversible one, is in
the trivial case that only includes those two reactions with the same
flux value. Even so, in practical situations, it is better to avoid them
(see Supplementary Material). To conclude this section, LP prob-
lems with a positive constraint must only include reactions that do
not come from reversible ones to assure the obtention of EFMs.

2.2 Getting more information from the solution

The main drawback of the LP methods is that, for every posed LP
problem, a unique EFM is obtained, even though the proposed mini-
mization problem can have a non-unique solution, which is a very
common case. Moreover, some of the obtained EFMs are repeated,
so the efficiency rate is not quite good.

EFM-Ta focuses on obtaining, for any LP problem posed, as
many solutions as possible, that is, as many vertices as possible from
the cone of solutions. To do so, we leverage the tableau information
that the simplex method handles along the process of finding the LP
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problem solution. Let us start by re-examining the steps performed
by the simplex method.

As commented in Taha (2016), the simplex algorithm is devel-
oped in two phases. The first phase is devoted to obtain a first feas-
ible solution that is a vertex of the polyhedron, introducing some
artificial variables. Once a vertex is found, all artificial variables
should have zero value and be removed so the process continues in
the second phase using just the original ones (and slack variables if
needed). The second phase uses the found vertex and the gradient of
the function to try to obtain another vertex with a lower function
value (if it is minimizing the function). Let us briefly examine how
this is done.

Associated to the function f(x1,...,%,) = >_ax; the stoichio-

S11 St
. . $21 e Sy .. .
metric matrix § = and the positive constraint
Sm1 - Smn

>~ djxj = 1 the following tableau is started:

-ay —ay -+ —a,, O

ral
SIT S1iz - Sin | O
$21 s» 0 S, | O

0
Sm1 Sm2 o Smn 0
dq d - d, |1

Suppose that, in one step of the second phase, a vertex P =
(x1,...x,) is set. At this point, the simplex method splits the set of
reactions into two disjoint subsets. The reactions of these two sub-
sets are called basic and non-basic variables (respectively). The col-
umns of the tableau (putting aside the first row) in the original one
corresponding to the basic variables form an invertible matrix B. In
this step, another tableau can be obtained from the original one by
suitably multiplying by the matrix B~! and, in this new tableau, the
columns corresponding to the basic variables form the identity ma-
trix (except for the order).

21 —C 22 —C Zn — Cy c

' ' ’
S11 S12 e Sin 1
J / / !
$21 S22 e Son by
/ J J /

Sm1 Sm2 e Sin bm
A 4 ! /

dl dZ e dn m+1

The numbers b1, ...,b],,, are non-negative numbers. The vertex
P from this tableau is calculated by assigning a zero value to the
non-basic variables and solving the trivial associated system.

The process of trying to obtain a new vertex is started by select-
ing a non-basic variable x;. The first element of the associated col-
umn (i.e. zj — ¢j) tells how the proposed change is going to affect the
value of the function. If this number is 0, then the function will have
the same value in the new vertex that it had in P. If the number is
negative (or positive), the function value will decrease (or increase)
in the new vertex.

To obtain the new vertex, the values assigned to the variables
must be carefully chosen so that they are all non-negative and fulfill
all the constraints of the problem. To do so, a column j is chosen
such that there are positive values s; with the corresponding b} also
positive. To proceed, all the values of the jth column with this prop-
erty are taken and the minimum of the corresponding quotients & is
calculated. Then, the row i, such that ¢ > 0 is minimal is selected
and a pivoting step is done that converts the j column into the col-
umn vector ¢; = (0,...,0,1,... ,O,O)T (having the 1 in the ith
position).

This process affects the values of the variables in the following
way:

* The variable x; is now considered basic and its value is set to
? > 0.

o TLet x;, be the basic variable such that its column in the previous
step is e;. This variable is considered non-basic (its value is 0).

* The remaining variables remain basic or non-basic. For the basic
ones, their values under the pivoting step must be updated.

Suppose a basic variable x;, such that the only non-zero entry in
its column appears in the row #;. Then, the following tableau is
formed, in which only the columns corresponding to the reaction x;,
and the new basic variable x; and the rows 7; and i are shown.

Ziy — Ciy gj—¢ | C
/ /

0 ... s . bl

/ ’

1 Sitj o bil

’ /

0 s b

In order to transform the i; entry of the column f into zero, the
ith row multiplied by % must be added to the i;th row. Therefore,
the value of this variablé changes from b;, to b}, — b} - =¥

Most solvers use the revised simplex method in which, in order
to speed up the calculations, the tableau is not calculated in inter-
mediate steps. Instead, only the original tableau is kept in memory
and only the matrix B~! is updated in each step, so the tableau is
only available in the final step of the process.

Therefore, EFM-Ta only calculates the vertices that can be easily
computed from the final tableau. Our approach consists of the fol-
lowing steps:

1. Get the final solution (vertex) and final tableau from the solver
Obtain the list of non-basic variables x;

3. For each one, check if there are positive values sj; with the corre-
sponding b value also positive

4. 1If this is the case, obtain a new vertex (EFM) by manually doing
the pivoting step as previously explained

2.3 Tuning the computing of the adjacent vertices in the

EFM extraction
Our proposed approach has still some drawbacks and requires a
fine-tuning optimization.

First, in some commercial optimization packages, for example in
the IBM package CPLEX used in this article (http://www-01.ibm.
com/software/integration/optimization/cplex-optim), not all artifi-
cial variables are removed at the end of the first phase of the simplex
method if the problem is degenerated (as in this case). Instead, the
remaining artificial variables are constrained to have zero value dur-
ing the rest of the optimization process. When the final tableau is
retrieved, a list of basic variables is obtained, but not all the varia-
bles that are not in that list are non-basic ones.

Second, pivoting steps without having the full list of non-basic
variables can produce false extreme points (modes that are not
EFMs), preventing some other adjacent vertices from being reached
by another pivoting step.

Finally, the pivoting steps require the use of the S matrix in dense
form, which produces a slowdown of the computation process.

Therefore, we have elaborated more on our approach to over-
coming these drawbacks. We have tuned our proposal for steps 24,
replacing the pivoting step by invoking another restricted LP
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problem. Then, EFM-Ta searches for new vertices invoking another
LP problem with the same constraints but starting with the previous-
ly obtained solution, changing the objective function and limiting to
one the number of steps performed by the solver. EFM-Ta uses as
new objective functions those defined from subsets of reactions con-
tained in the support of the solution, and do so while the number of
repeated adjacent vertices computed is below a certain threshold.
Algorithm 1 summarizes our EFM-Ta proposal.In the Algorithm,
the randomFunction builds a function based on randomly chosen
reactions from the given set; the randomReaction selects a random
reaction from the given set; the poseLinearProgram builds the LP
problem with objective function f, stoichiometric matrix S, and posi-
tive  additional  constraint  coms; and  finally,  the
poseRestrictedLinearProg builds the LP problem similarly to
poseLinearProg but using sol as a starting vertex and limiting the
number of steps to one.

2.4 Avoiding repeated EFMs

As previously stated, one of the main problems of LP methods is the
EFM found in every LP call is repeated. This is a common behavior
that significantly decreases the efficiency of the methods used. This
problem is exacerbated when using EFMs of length 2 (in the sense of
corresponding to EFMs with a support of cardinality two), as due to
their reduced size is highly probably to be repeated, and also they
tend to have adjacent vertices that also are two length.

Therefore, we decided not to include a solution in our set of
computed EFMs unless it has a length >2 (this excludes such solu-
tions from the set of computed EFMs, but they can be easily recov-
ered after the process is over). EFM-Ta favors this behavior using

Algorithm 1 Computing extra EFMs from the final simplex
tableau

Data: Matrix S
Data: Integer nEFMs
Result: set EFMs

Function(runExperiment(S))
EFMs —
while (|[EFMs| < nEFMs) do
f «— randomFunction(R);
cons «— randomReaction(Irr);
Ip — poseLinearProgram(f,S, cons);
{sol} — simplex(Ip);
if isNew(sol) then
EFMs « EFMs U {sol};
sop = supp(sol);
repeated = 0;
while (repeated < threshold) do
f — randomFunction(sop);
Ip — poseRestrictedLinearProgram(f, S, cons, sol);
{newSol} — simplex(Ip);
if isNew(newSol) then
EFMs «— EFMs U {newSol};
repeated = 0;
end
else
repeated — repeated + 1;
end
end
end
end
return EFMs;

two measures: (i) only includes in the positive constraint those reac-
tions that had not previously appeared in any computed solution of
length 2 and, (ii) reactions coming from reversible ones are also put
in the objective function, so the minimizing process would also try
to exclude them.

Algorithm 2 describes our final EFM-Ta proposal.From
Algorithm 2, EFM-Ta works in the following manner:

* Use the stoichiometric matrix in which all blocked reactions are
removed.

* Start with an initially empty set of forbidden reactions.

* Choose a positive constraint to extract EFMs from this matrix,
by randomly choosing a non-forbidden reaction and imposing
that this must be equal to 1 (i.e. the obtained solution must in-
clude this reaction from this set).

* Use a similar method to construct the objective function by ran-
domly choosing a set of not forbidden reactions. Additionally, all

Algorithm 2 Improvement of efficiency by discarding two-
cycle EFMs

Data: Matrix S
Data: Integer nEFMs
Result: set EFMs

Function(2cycleEFM(sol))
if (length(supp(sol)) < 3) then
return TRUE;
end
return FALSE;
Function(runExperiment(S)) EFMs «— J;
forbidden — s
while (|EFMs| < nEFMs) do
f « randomFunction(R);
cons «— randomReaction(Irr\forbidden);
Ip — poseLinearProg(f,S, cons);
{sol} — simplex(Ip);
if 2cycleEFM(sol) then
forbidden — forbidden U supp(sol);
end
else
if isNew(sol) then
EFMs — EFMs U {sol};
sop = supp(sol);
repeated = 0;
while (repeated < threshold) do
f « randomFunction(sop);
Ip — poseRestrictedLinearProg(f, S, cons, sol);
{newSol} — simplex(Ip);
if isNew(newSol) then
EFMs «— EFMs U {newSol};
repeated = 0;
end
else
repeated — repeated + 1;
end
end
end
end
end
return EFMs;
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the forbidden reactions have to be included in this function so if
possible, the LP method will try to push these reactions out of
the solution. To increase its randomness, also multiply each coef-
ficient of this objective function by a random number (currently
set to between 0 and 1).

* Solve the LP problem associated with this constraint and object-
ive function.

*  Use the techniques explained in Section 3.2 to find adjacent verti-
ces to this solution. Save to a list those that are different from
previously obtained ones. This process will stop if the number of
consecutive repeated vertices obtained is greater than a given
threshold.

* Each time a solution of length 2 is obtained, store the reactions
involved in the set of forbidden reactions and discard this
solution.

Remind that our approach can be used in any previously pro-
posed method to obtain sets of EFMs by posing LP problems.

3 Results

This section shows the evaluation results of EFM-Ta using a specific
case study.

3.1 Experimental framework

As suggested in Pey er al. (2015), a good unit to measure the effi-
ciency of LP methods is the number of LP problems solved for one
EFM obtained. This makes efficiency as independent as possible of
the software, hardware and model chosen. However, as EFM-Ta
does more things than just solving LP problems (it has to run the
Algorithm 2), this section also shows the number of LPs, restricted
LPs (RLPs), and the total time (s) of every experiment. To be able to
compare our proposal with previous approaches, we define the effi-
ciency rate as the number of solutions obtained by a unit of time
defined as the (mean) time required to solve an LP problem.

Regarding our evaluation platform, this is equipped with a dou-
ble socket Cascade Lake Xeon Gold 6238 (44 cores) @ 2.2 GHz
with 384 GB of RAM. The system runs on a CentOS Linux 7.5, run-
ning CPLEX 12.10 version from IBM and Python 3.6.8 version
from Intel.

As a case study, we have chosen three different network models
available from BIGG models (Schellenberger et al., 2010), ranging
from small to medium-large sizes. The main model used is the recon-
struction model for Escherichia coli iAF1260 (Feist et al., 2007)
with 2382 reactions and 1668 metabolites, being this model previ-
ously used in Pey et al. (2015). The two other models are the model
for Cricetulus griseus iCHOv1 (Hefzi et al., 2016) with 6663 reac-
tions and 4456 metabolites and the Homo sapiens Recon3D (Brunk
et al., 2018) with 10 600 reactions and 5385 metabolites.

Finally, in the following experiments blocked reactions have
been removed from the stoichiometric matrix.

3.2 Characterization of EFM-Ta

First, this section gives the results for our three models of the case
study while extracting 100 000 different EFMs. Table 1 shows the
number of LPs, restricted LPs (RLPs), total time (s) and efficiency
rate (in number of LP per EFM) needed to compute 100 000 differ-
ent EFMs in our three network models.

Next, we give a detailed information for the /AF1260 network
model while extracting 1 000 000 different EFMs. Table 2 shows
the total number of LPs, RLPs, total time (s) and efficiency rate (LP/
EFM) at every 200 000 EFMs found, up to a 1 000 000 different
EFMs.

For each iteration with a starting solution of length >2, EFM-Ta
found between no new EFMs and a maximum of 24 859 (in just one
iteration). The mean number of new EFMs obtained for iteration is
853.71 (with standard deviation of 3632.74).

Table 1. Characterization of EFM-Ta for computing 100 000 differ-
ent EFMs in three network models

Model used LPs RLPs Time (s) Ef. rate (LP/EFM)
iAF1260 68 101 825 355 0.099
iCHOv1 84 103 462 1220 0.062
Recon3D 384 106 979 3879 0.067

Table 2. EFM-Ta characterization for iAF1260 network model for 1
000 000 different EFMs

No. of EFMs LPs RLPs Time (s) Eff. rate (LP/EFM)
200 000 100 205 781 672 0.098
400 000 537 414 107 1360 0.096
600 000 981 621460 2045 0.095
800 000 1962 831779 2763 0.095
1 000 000 2535 1038022 3445 0.094

Regarding the times reported, we have run EFM-Ta in a sequen-
tial way, that is, only one copy of the code is run. We expect that a
parallel version of EFM-Ta would be faster and could take advan-
tage of the number of cores that our testbed computer has, but this
is out of the goal of this article and is postponed as future work.

From Tables 1 and 2, we can conclude that most of the comput-
ing effort needed to compute those sets of EFMs rely on solving
RLPs (i.e. in computing adjacent vertices), and not in full LPs (just
0.24% of the problems solved). Note that solving an RLP is quite
faster that doing so for a full LP.

One of the main problems when using random sampling as an
extraction method is the number of repeated solutions obtained (Pey
et al., 2015). In this case, the rate of repeated solutions is <4.1%, as
the number of LP and RLP problems needed to obtain 1 000 000
EFMs is of 1 040 557.

This leads to a very effective efficiency rate for EFM-Ta that is
also very stable in time (as can be seen in Fig. 1).

Different experiments with this model show that this efficiency
rate tends to remain stable in a value between 0.094 and 0.095 with
mean of 0.948 and standard deviation of 0.01. Similar behavior has
been observed in the other models used.

3.3 Comparing the efficiency with other tools

As pointed out in Pey et al. (2015), an exciting problem consists of
obtaining EFMs that contains a target reaction in its support. As
other tools have reported the number of EFMs obtained including
target reactions, in this section we also do in this way to compare
EFM-Ta with them.

First, EFM-Ta has to be relaxed to compute EFMs containing a
specific target reaction. To do so, we fix the positive constraint to be
the flux through the desired reaction and use just the objective func-
tion to avoid undesired solutions.

We have followed this approach to compute 2000 EFMs in the
network model iAF1260 passing through reactions with lysine,
threonine and arginine. Table 3 shows the final efficiency rate for
different reactions in the network and compare them with those
obtained with EFMEvolver (Kaleta ez al., 2009) and treeEFM (Pey
et al., 2015). EFM-Ta obtained slightly worse efficiency rates than
in the general case, but still much higher than in previous
approaches.

The efficiency rate highly depends on the reaction chosen. In all
the studied cases, the efficiency rate tends to grow, stabilized at a
specific rate that differs depending on the reaction. Graphs showing
the evolution of efficiency while computing 20 000 EFMs passing
through reactions with lysine, threonine and arginine can be found
in Supplementary Material.
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Fig. 1. Evolution of the efficiency rate during the whole experiment

Table 3. Comparison of efficiency rates (LP/EFM) for extracting
2000 EFMs including different target reactions

Eff. rate EFMEvolver treeEFM EFM-Ta
Lysine 2.23 1.38 0.19
Threonine 1.90 1.64 0.16
Arginine 1.80 1.67 0.16

4 Conclusions and future work

We have presented a new method to obtain sets of EFMs called
EFM-Ta. Its main difference with previous LP-based algorithms is
found in the analysis of the final tableau, which enables us to obtain
several solutions for each LP problem by performing additional sim-
plex steps. EFM-Ta searches for new vertices invoking additional
restricted LP problems with the same constraints but starting with
the previously obtained solution, changing the objective function
and limiting to one of the number of steps performed by the solver.

We have also analyzed the importance of two-cycle EFMs (that
usually represent false EFMs and are caused by the imposition of
positive constraints), and the negative impact in our method. This
impact can be mitigated by using very simple heuristics combining
both the positive constraint and objective function.

By extending EFM-Ta with the heuristics to avoid two cycles, we
have implemented an algorithm that greatly breaks the ideal effi-
ciency rate of 1 by a factor of more than 10x. We have also shown
that this highly improved rate is very stable along the time.

Finally, we have compared EFM-Ta with other previously used
tools when obtaining the sets of EFMs passing through a given tar-
get reaction. EFM-Ta manages it by using just the objective function
and using the positive constraint to get the desired target. As
expected, this produces a slight decrease in the efficiency rate (at
least for some reactions), but the obtained rates remain high, and in
all the studied cases, EFM-Ta obtains efficiency rates that are better
than the previous ones in one order of magnitude.

As future work, we plan to explore the changes in the efficiency
of EFM-Ta when applied to bigger models. The experiments per-
formed indicate that the efficiency rates increase with the size of the
model considered. We think that this can be a consequence of sev-
eral characteristics of the model such as having a large number of
reactions or the difference between this number and the rank of the
stoichiometric matrix. It would be interesting to get a better under-
standing of this behavior so we can have an initial estimation of the
efficiency of our method in different networks.

In the end, as for any extraction method based on random sam-
pling, it is usually recommended a statistic analysis of the solutions
obtained in order to avoid any bias produced by that method (see,
e.g. Hidalgo et al., 2018; Tabe-Bordbar and Marashi, 2013).
Therefore, another interesting future work is to carry out that

statistic analysis to check the diversity and quality of the EFMs
found by EFM-Ta.
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