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Abstract

Enrofloxacin is the most commonly used antibiotic to control diseases in aquatic animals

caused by A. hydrophila. This study conducted de novo transcriptome sequencing and

compared the global transcriptomes of enrofloxacin-resistant and enrofloxacin-susceptible

strains. We got a total of 4,714 unigenes were assembled. Of these, 4,122 were annotated.

A total of 3,280 unigenes were assigned to GO, 3,388 unigenes were classified into Cluster

of Orthologous Groups of proteins (COG) using BLAST and BLAST2GO software, and

2,568 were mapped onto pathways using the Kyoto Encyclopedia of Gene and Genomes

Pathway database. Furthermore, 218 unigenes were deemed to be DEGs. After enrofloxa-

cin treatment, 135 genes were upregulated and 83 genes were downregulated. The GO

terms biological process (126 genes) and metabolic process (136 genes) were the most

enriched, and the terms for protein folding, response to stress, and SOS response were

also significantly enriched.

This study identified enrofloxacin treatment affects multiple biological functions of A.

hydrophila. Enrofloxacin resistance in A. hydrophila is closely related to the reduction of

intracellular drug accumulation caused by ABC transporters and increased expression of

topoisomerase IV.

Introduction

Following the decline in the capture fishing industry and diminishing wild fish stocks, the

aquaculture industry has become an important source of food fish [1]. However, bacterial dis-

eases hinder desirable production outputs. The gram-negative bacterium Aeromonas hydro-
phila is one of the major causative agents of disease and can cause serious damage in many

animals [2], especially fish [3–4] as well as humans [5]. A. hydrophila, which is a representative

of the Aeromonadaceae family, is an emerging aquatic pathogen that is distributed in a wide

variety of aquatic systems [6–7]. It primarily inhabits freshwater and the intestines of freshwa-

ter animals. Farmers use a wide range of antibiotics or chemicals to control A. hydrophila
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infection [8]. Enrofloxacin is a third-generation fluoroquinolone with a broad antibacterial

spectrum and high potency that is commonly used to treat bacterial infections afflicting aqua-

culture [9]. Enrofloxacin has been used primarily to control A. hydrophila infections in aqua-

culture, and recently, A. hydrophila has developed strong resistance to enrofloxacin among

other drugs [10]. This resistance has rendered it increasingly difficult to treat diseases caused

by A. hydrophila in aquaculture animals. Moreover, heavy antibiotic use is associated with neg-

ative effects such as antibiotic resistance in the environment and fish [11]. Thus, eventually,

antibiotic use may be detrimental to the environment and human health.

Based on previous reports, quinolone-resistant bacteria adopt the following three main

strategies of antibiotic resistance: First, chromosome-mediated changes in the topoisomerase

target sites (changes in the amino acids in the quinolone resistance-determining region) [12];

second, reduction in intracellular drug accumulation caused by efflux pump [13]; and third,

bacterial protection conferred by plasmid-encoded qnr protein [14]. However, the mecha-

nisms by which A. hydrophila is resistant to enrofloxacin remains unclear, and little is known

about its molecular mechanisms of resistance. Here, we conducted de novo transcriptome

sequencing for the comprehensive analysis of the global transcriptomes of enrofloxacin-sus-

ceptible and enrofloxacin-resistant strains. Transcriptomic profiling is used to analyze gene

expression and signaling pathways in specific tissues or cells. The recent rapid development of

next-generation sequencing technologies such as the Solexa/Illumina technology offers great

advantages in analyzing the functional complexity of the entire transcriptome [15]. Next-gen-

eration sequencing techniques have been used for transcriptome analyses to simultaneously

provide data on sequence polymorphisms and the levels of gene expression involved in cellular

development, cancer, and immune responses [16–17].

In the present study, we examined the genetic diversity of A. hydrophila using de novo tran-

scriptome sequencing and investigated the molecular mechanisms of enrofloxacin resistance

in A. hydrophila.

Materials and methods

Culture of susceptible strain and induction of an enrofloxacin-resistant

strain

A. hydrophila ATCC 7966, which was used in the present study, had been maintained at the

National Pathogen Collection Center for Aquatic Animals, China. Because the genome back-

ground of the ATCC 7966 standard strain is known, it is known to be sensitive to quinolones;

therefore, it was selected as the sensitive strain. This strain was inoculated on Luria Broth (LB)

agar and incubated at 28˚C for 24 h.

The type strain ATCC 7966 was used to develop an enrofloxacin-resistant strain by cultur-

ing it in the presence of gradually increasing concentrations of enrofloxacin in vitro, and enro-

floxacin-resistant strain 7966QR was judged by the critical concentration suggested by the

Clinical and Laboratory Standards Institute (CLSI, 2011). The results of the drug sensitivity

test were determined using the disc diffusion method. Resistance and sensitivity to enrofloxa-

cin were determined on the basis of the drug sensitivity evaluation criteria issued by the Amer-

ican Association of Clinical Laboratory Standards in 2011 [18]. Briefly, ATCC 7966 cells were

inoculated on LB agar containing 1/2 the minimum inhibitory concentration (MIC) of enro-

floxacin (Shanghai Guoyao Chemical Reagent Co. Shanghai, China). Every 2 days, the cultured

strains were inoculated into fresh LB agar containing 2× the previous concentration of enro-

floxacin. The strains were inoculated to LB agar that containing no enrofloxacin until the MIC

was conformed to the drug resistance determination. The resultant resistant strains were
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screened on LB for 12 generations until the resultant strain (7966QR) could be deemed

resistant.

Suspensions containing the susceptible (ATCC 7966) and resistant (7966QR) strains were

collected and centrifuged, and the final products were store at 4˚C until analysis.

RNA isolation, RNA-Seq library construction, and sequencing

Frozen samples were ground in a mortar with liquid nitrogen, and total RNA was extracted

from approximately 1 mL of bacterial suspension with TRIzol reagent (Invitrogen, USA),

according to the manufacturer’s instructions. DNA contaminants were removed by treatment

with RNase-free DNase I (Takara Biotechnology, Dalian, China). The resultant total RNA was

dissolved in 200 μL RNase-free water. The concentration of total RNA was determined using a

Nano-Drop2000 spectrophotometer (Thermo Scientific, USA), and its integrity was checked

using an RNA 6000 Pico LabChip with the Agilent 2100 bioanalyzer (Agilent, USA) at 37˚C

for 1 h, and the sample volume was diluted to 250 μL using nuclease-free water. Messenger

RNA (mRNA) was further purified with a Micropoly (A) Purist kit (Ambion, USA) according

to the manufacturer’s protocol. mRNA was dissolved in 100 μL RNA Storage Solution (Amb-

ion), purified using oligo (dT) magnetic beads, fragmented by treatment with divalent cations

and heat, and reverse transcribed into cDNA using reverse transcriptase and random hexamer

primers. This was followed by second-strand cDNA synthesis using DNA polymerase I and

RNaseH. The resultant double-stranded cDNA was end-repaired using T4 DNA polymerase,

Klenow fragments, and T4 polynucleotide kinase followed by a single (A) base addition using

Klenow 30 to 50 exopolymerase. This was then ligated with an adapter or index adapter using

T4 Quick DNA ligase. The size range of the adapter-modified fragments was selected by gel

purification, and these sizes were used as templates in PCR amplification. The cDNA library

was validated with an Agilent 2100 Bioanalyzer and ABI StepOnePlus Real-time PCR system

and sequenced on a flow cell using an Illumina HiSeq 2500 (Illumina, San Diego, CA, USA).

Sequencing, data processing, and quality control

We filtered low-quality reads and removed 30-adapter sequences using Trim Galore. The

obtained reads were cleaned using FastQC software (http://www.bioinformatics.babraham.ac.

uk/projects/fastqc/), and the content and quality of the nucleotide bases in the sequencing data

were evaluated. Next, we conducted a comparative analysis with the reference genome (Aero-

monas hydrophila subsp. Hydrophila ATCC 7966). For each sample, sequence alignment with

the reference genome sequences was carried out using Tophat [19].

Assembly and functional annotation

High-quality reads were obtained after removing the adapter sequence, low-quality reads

(reads with ambiguous bases N), and duplicate sequences using Trim Galore and FastQC, and

then FastQC software was used to clean reads and evaluate the performance of different k-

mers. Next, the clean reads were combined using de Bruijn graphs and SOAPdenovo software

based on sequence overlap to form longer fragments (without ambiguous ‘N’ reads), to create

contigs [20]. Furthermore, the contigs were connected into transcript sequences and joined

into scaffolds using paired-end reads. The paired-end reads were also used to fill the gaps in

scaffolds, where the unigenes have the least Ns and cannot be extended on both ends. Based on

the results of the assembly evaluation, the best results were selected and used for clustering

analysis using TGI Clustering tools to achieve a unigene database [21]. The obtained unigenes

were compared with the National Center for Biotechnology Information (NCBI), non-redun-

dant protein (Nr), and UniProt databases using BLASTx (Basic Local Alignment Search Tool)
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search with an E value < 0.00001. Based on the results of the Nr annotation, we used Blast2GO

software (https://www.blast2go.com/) to analyze functional annotations by gene ontology

terms (GO; http://www.geneontology.org) [22]. The unigenes were also aligned to the Kyoto

Encyclopedia of Genes and Genomes (KEGG), Clusters of Orthologous Group (COG), and

Swiss-Prot databases to predict and classify gene functions to perform pathway annotation

searching for unigenes with similarity >30% and an E value <0.00001, and all the information

was merged.

Analysis of differentially expressed unigenes

To estimate the expression level (relative abundance) of a specific transcript expressed as frag-

ments per kilobase per million fragments mapped (FPKM), we used RSEM software with the

default parameter settings [23]. The expression level of each transcript was transformed using

base 2 log2(FPKM+1). The fold changes in the expression of a transcript and differentially

expressed gene (DEG) were estimated using DESeq software [24]. Two-fold changes in expres-

sion level and differences with a p value of<0.05 were considered significant.

GO functional and pathway enrichment analysis of DEGs

We annotated DEGs to analyze the transcriptome differences between enrofloxacin-resistant

and enrofloxacin-susceptible strains of A. hydrophila. To this end, we used GO terms in accor-

dance with previously published procedures [25]. This p = analysis first mapped all DEGs to

GO terms in the database by calculating gene numbers for every term followed by an ultra-

geometric test to identify significantly enriched GO terms in DEGs compared to the transcrip-

tome background. The following formula was used:

p ¼ 1 �
Xm� 1

i¼0

M

i

 !
N � M

n � i

 !

N

n

 !

where N represents the number of all genes with GO annotation, n represents the number of

DEGs in N, M represents the number of all genes annotated to specific GO terms, and m rep-

resents the number of DEGs in M. The calculated p value was subjected to Bonferroni correc-

tion. A corrected p value<0.05 was defined as the “threshold.” GO terms were considered

significantly enriched in the DEGs.

Pathway analysis of DEGs

Pathways of DEGs were annotated against the KEGG database using the BLASTall program

(http://nebc.nox.ac.uk/bioinformatics/docs/blastall.html). Enriched DEG pathways were iden-

tified according to the same formula as that used in the GO analysis. In this case, N represented

the number of all genes with KEGG annotations, n represented the number of DEGs in N, M

was the number of all genes annotated to specific pathways, and m was the number of DEGs in

M [25].

Verification of DEGs using qRT-PCR

Quantitative RT-PCR (qRT-PCR) was used to verify the expression levels of DEGs that were

identified by RNA-Seq analysis. Primers were designed using Primer 5 software and SpTub-b

was used as the reference gene [25,26]. Reactions were performed in a 25-μL reaction volume
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composed of 2 μL cDNA, 0.5 μL each of forward and reverse primers (10 μM), 12.5 μL SYBR

Premix Ex Taq (2×), and 9.5 μL RNase-free H2O. The thermal cycle protocol was as follows:

95˚C for 30 s followed by 40 cycles of 95˚C for 5 s, 60˚C for 30 s, and 72˚C for 30 s. Melting

curve analysis was performed at the end of qRT-PCR to confirm PCR specificity.

Results

Illumina sequencing and quality assessment

Differences in gene expression between the enrofloxacin-susceptible and enrofloxacin-resis-

tant strains of A. hydrophila were determined by sequencing the RNA-Seq data using the Illu-

mina sequencing platform. After filtering and quality checks of the raw reads (26,316,850 and

26,910,746 reads for the 7966QR and ATCC 7966 strains, respectively), approximately 26 mil-

lion (26,123,674) and 26 million (26,730,263) trimmed reads with trim rates of 99.27% and

99.33% were obtained for 7966QR and ATCC 7966, respectively. Meanwhile, the average

lengths of reads for these two strains were 119.66 and 120.61 bp, and their GC percentages

were 55% and 54%, respectively (Table 1), indicating successful sequencing of the A. hydro-
phila transcriptome. Trimmed reads were used for the subsequent analysis.

Comparative analysis with reference genome

The trimmed reads of the A. hydrophila transcriptome were compared with the reference

genome sequence. The total mapping rates of the reads with the reference genome were

94.19% and 93.29% in the ATCC 7966 and 7966QR groups, respectively. There were approxi-

mately 22 million (22,717,810) and 21 million (21,997,467) uniquely mapped reads for the

ATCC 7966 and 7966QR groups, accounting for 85.51% and 84.78% of the total reads, respec-

tively. There were approximately 2,306,148 and 2,208,047 multiple mapped reads in the ATCC

7966 and 7966QR groups, respectively, accounting for 8.68% and 8.51% of the total reads,

respectively. The number of reads mapped in proper pairs accounted for 84.04% and 83.31%

in the ATCC 7966 and 7966QR groups, respectively (Table 2).

We then compared the unigenes of the sample species with the common data genes, and

functional annotation was performed based on the similarity of the genes. The protein

sequences were compared with the KOG, GO, and KEGG databases. The annotation of uni-

genes in the Swiss-Prot and TrEMBL databases accounted for 79.77% and 99.93% of the total

unigenes, respectively (Table 3 and Fig 1).

The unigene annotations in the COG, GO, and KEGG databases were about 82.19%,

79.57%, and 62.3%, respectively (Table 3). Transcripts were analyzed by COG classification.

There were 3,388 unigenes clustered into 25 functional categories (S1 Fig). The “amino acid

transport and metabolism” and “signal transduction mechanisms” clusters represented the

majority of transcripts (276 transcripts, 8.15%; S1 Fig). GO and KEGG database analysis of

unigenes revealed that most unigenes were enriched in cellular processes, environmental

information processing, genetic information processing, metabolism, and organismal systems

(S2 and S3 Figs).

Table 1. Summary of reads in A. hydrophila transcriptome sequencing.

Sample Raw reads Trimmed reads Average length Trim rate GC rate

ATCC 7966 26,316,850 26,123,676 119.66bp 99.27% 55%

7966QR 26,910,746 26,730,263 120.61bp 99.33% 54%

https://doi.org/10.1371/journal.pone.0179549.t001
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Analysis of DEGs

The Cuffdiff program was used to generate A. hydrophila gene expression profiles to identify

genes that are differentially expressed between the resistant and susceptible strains of A. hydro-
phila (Figs 2 and 3). The program identified that among the DEGs, 135 genes were markedly

upregulated and 83 were markedly downregulated, indicating that the gene expression had

changed in the drug-resistant strains.

GO annotation of DEGs

We used GO to determine the biological functions in which the DEGs are involved. GO func-

tional enrichment analysis also involved cluster analysis of expression patterns. Thus, the

expression patterns of DEGs annotated with a given GO term were easily obtained. All the

annotated genes were classified into three GO domains: biological process, cellular compo-

nent, and molecular function. Dissimilar expression profiles of the DEGs in the treated and

control groups were used to determine the molecular mechanisms of enrofloxacin resistance

in A. hydrophila.

The expression profiles of the three GO domains were as follows (Fig 4 and S1 Table).

Biological process: formate metabolic process (5 genes), histidine catabolic process to gluta-

mate and formate (4 genes), amine metabolic process (7 genes), histidine catabolic process to

glutamate and formamide (4 genes), formamide metabolic process (4 genes), histidine cata-

bolic process (4 genes). Cellular component: HslUV protease complex (2 genes), proteasome

complex (2 genes), bacterial-type flagellum basal body, distal rod (2 genes), cytosolic protea-

some complex (2 genes). Molecular function: oxidoreductase activity, acting on paired donors,

Table 2. Statistical results of trimmed reads mapping with reference genome.

Map to genome 7966QR ATCC 7966

Read numbers Percentage Read numbers Percentage

Total reads 25,946,162 100.00% 26,566,428 100.00%

Total mapped 24,205,514 93.29% 25,023,958 94.19%

Uniquely mapped 21,997,467 84.78% 22,717,810 85.51%

Multiple mapped 2,208,047 8.51% 2,306,148 8.68%

Reads1 mapped 11,003,361 42.41% 11,370,421 42.80%

Reads2 mapped 10,994,106 42,37% 11,347,389 42.71%

Mapped to ‘+’ 11,004,476 42.41% 11,368,564 42,79%

Mapped to ‘-’ 10,992,991 42.37% 11,349,246 42,72%

Reads mapped

in proper pairs

21,614,858 83.31% 22,327,558 84,04%

https://doi.org/10.1371/journal.pone.0179549.t002

Table 3. Statistical results of the gene functional annotation.

Database Number of unigenes Percentage (%)

Annotation in COG 3388 82.19

Annotation in Swiss-Prot 3288 79.77

Annotation in TrEMBL 4119 99.93

Annotation in GO 3280 79.57

Annotation in KEGG 2568 62.3

Annotation in at least one database 4119 99.93

Annotation in all databases 2313 56.11

Total Unigenes 4122 100

https://doi.org/10.1371/journal.pone.0179549.t003
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with incorporation or reduction of molecular oxygen (3 genes); anion transmembrane-trans-

porting ATPase activity (3 genes); oxidoreductase activity, acting on single donors with incor-

poration of molecular oxygen (3 genes); oxidoreductase activity, acting on single donors with

incorporation of molecular oxygen, incorporation (3 genes); carbon-nitrogen lyase activity (3

genes); ATPase activity, coupled to transmembrane movement of ions (5 genes); and dioxy-

genase activity (3 genes).

The following DEGs related to the biological process were upregulated: AHA_0377 (for-

mate metabolic process); AHA_0377; AHA_0378 (histidine catabolic process to glutamate and

formate); AHA_0377; AHA_0378; AHA_0379; AHA_0380 (glutamate metabolic process); and

cellular component relate genes such as AHA_4114, AHA_4115 (HslUV protease complex),

Fig 1. Venn diagram representation of database annotations.

https://doi.org/10.1371/journal.pone.0179549.g001
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AHA_4114, AHA_4115 (cytosolic proteasome complex), AHA_1948, AHA_3601 (oxidore-

ductase activity), AHA_0380, AHA_1413, and AHA_4201 (carbon-nitrogen lyase activity).

The biological process-related genes such as AHA_1213, AHA_1652 (glycerol metabolic pro-

cess), AHA_4006 (alditol metabolic process), AHA_1921, and AHA_2046 (endoplasmic retic-

ulum) were downregulated. The functions of the hypothetical proteins were not clear, but

were closely related to the biological functions of organisms. (Fig 5)

Fig 2. Effect of enrofloxacin treatment on the gene expression profile in resistant and susceptible strains of A. hydrophila.

Volcanic plot of the degree of differences between the expression profiles of resistant and susceptible A. hydrophila strains. X-axis,

log2(fold change); Y-axis, -log2(P value). Gray, differential expression genes; black, not differential expression genes. Each dot

represents one gene.

https://doi.org/10.1371/journal.pone.0179549.g002
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Overall, the above analyses shed insight into the molecular mechanisms of enrofloxacin

resistance in A. hydrophila.

KEGG pathway analysis of DEGs

To further explore the biological functions of the DEGs, DEGs were mapped to the KEGG data-

base and enriched to important pathways based on the whole transcriptome. A total of 218 genes

were mapped to 67 pathways. Many of the genes were found in multiple pathways, whereas

many others were restricted to a single pathway. These pathways included metabolism, genetic

Fig 3. Heatmap representation of DEGs between resistant and susceptible strains of A. Hydrophila. A broken line in the figure

represents a gene’s expression in different samples. The graph shows that all the genes under each cluster are similar in all samples.

https://doi.org/10.1371/journal.pone.0179549.g003
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information processing, cellular processes, organismal systems, and environmental infor-

mation processing. The metabolism-related pathways were the most significantly (Fig 6 and

S2 Table).

The metabolism-related biological pathways included metabolism of amino acids and their

important derivatives, drug metabolism pathway, and carbohydrate metabolism. A total of 86

genes were mapped to metabolism-related biological pathways. In addition, lipid metabolism-

related biological pathways, including fatty acid metabolism (3 genes), glycerolipid metabolism

(2 genes), and glycerophospholipid metabolism (2 genes), were also significantly enriched.

Enriched amino acid metabolism-related biological pathways included histidine metabolism

(4 genes), D-alanine metabolism (2 genes), phenylalanine (4 genes), cysteine and methionine

metabolism (2 genes), alanine metabolism (3 genes), glycine metabolism (3 genes), tyrosine

metabolism (1 gene), lysine biosynthesis (1 gene), and arginine and proline metabolism (2

genes). Metabolism of xenobiotics by cytochrome P450 (1 gene) and drug metabolism-cyto-

chrome P450 (1 gene) were the drug metabolism pathways that had been enriched. The carbo-

hydrate metabolism pathways that were enriched included pentose phosphate pathway (2

genes), fructose and mannose metabolism (2 genes), glycolysis/gluconeogenesis (2 genes) (S2

Table).

The other significantly enriched pathways included environmental information processing

(19 genes), cellular processes (3 genes), genetic information processing (9 genes), and organis-

mal systems (5 genes). The environmental information processing pathways that were

enriched included PI3K-Akt signaling pathway (1 gene), ABC transporters (9 genes), bacterial

secretion system (3 genes), phosphotransferase system (PTS) (1 gene). Enriched cellular pro-

cesses included flagellar assembly (2 genes) and bacterial chemotaxis (1 gene). Enriched

genetic information processing included protein processing in endoplasmic reticulum (1

Fig 4. Histogram representation of enriched terms from GO annotation of DEGs in resistant versus susceptible strains of A. hydrophila. GO

terms (X-axis) were grouped into three main ontologies: biological process, cellular component, and molecular function. The Y-axis indicates the number

of DEGs. All annotated DEGs were classified into three GO domains: biological process, cellular component, and molecular function.

https://doi.org/10.1371/journal.pone.0179549.g004
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gene), protein export (3 genes), RNA degradation (2 genes). Additionally, the following path-

ways were enriched: antigen processing and presentation (1 gene), progesterone-mediated

oocyte maturation (1 gene), estrogen signaling pathway (1 gene), NOD-like receptor signaling

pathway (1 gene), and plant-pathogen interaction (1 gene) (S2 Table).

The expression of certain genes such as AHA_2490 (PI3K-Akt signaling pathway);

AHA_2490 (NOD-like receptor signaling pathway); AHA_0608, AHA_2812, AHA_0913,

AHA_3728, AHA_1964, AHA_1687, AHA_4285, AHA_1595, and AHA_2813 (ABC trans-

porters) were upregulated, while the AHA_1419 (environmental information processing),

Fig 5. Scatter plot of the enriched GO annotation of differential expression genes (DEGs) in resistant and susceptible strains of A. hydrophila.

Scatter plot of the degree of differences in the expression profile of E. sinensis. X-axis, Rich factor; Y-axis, pathway name. A corrected p-value < 0.05 was

defined as ‘threshold’. GO terms were considered significantly enriched in the DEGs. The size of the dots indicates the number of DEGs contained in each

term.

https://doi.org/10.1371/journal.pone.0179549.g005
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AHA_1331 (drug metabolism-cytochrome P450), AHA_2360, AHA_1331 (glycolysis/gluco-

neogenesis), and AHA_1331 (metabolism of xenobiotics by cytochrome P450) genes were

downregulated. The ABC transporter genes were expressed at higher levels than drug metabo-

lism-cytochrome P450, indicating that A. hydrophila resistance to enrofloxacin may be medi-

ated by a mechanism involving ABC transporters. These finding are consistent with the results

of the GO enrichment analysis.

Fig 6. Scatter plot of enriched pathways from KEGG annotation of differential expression genes (DEGs) in resistant versus susceptible strains

of A. hydrophila. Scatter plot of the degree of differences in the expression profile of E. sinensis. X-axis, Rich factor; Y-axis, pathway name. A corrected p-

value < 0.05 was defined as ‘threshold’. KEGG pathway were considered significantly enriched in the DEGs. The size of the dots to indicate the number of

DEGs contained in each pathway.

https://doi.org/10.1371/journal.pone.0179549.g006
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Overall, the results of the DEG pathway analysis support the viewpoint that enrofloxacin

inhibits A. hydrophila growth by affecting multiple biological functions, such as energy biogen-

esis, protein synthesis, and metabolism.

Verification of the differential expression of DEGs

Based on the results of the GO and KEGG analyses, the primers of eight genes significantly

differed between the resistant and susceptible A. hydrophila strains and were therefore consid-

ered to be related to drug metabolism. With clear functional implication, these primers were

designed to verify the expression of these DEGs identified in the RNA-Seq analysis. All primer

sequences are listed in Table 4.

Discussion

Transcriptome sequencing is a powerful technique for studying the mechanisms of changes in

biological characteristics of an organism and has been used successfully in some species [27–

29]. In our study, we examined the transcriptome of A. hydrophila using the Illumina sequenc-

ing platform and explored the molecular mechanism of enrofloxacin resistance in A. hydrophi-
lia. Compared with the reference genome, the total mapped rates of reads were 94.19% and

93.29% in the A. hydrophilia transcriptome of the enrofloxacin-susceptible (ATCC 7966) and

enrofloxacin-resistant (ATCC 7966QR) strains, respectively, indicating that the quality of

sequencing data met the demand for follow-up studies.

We obtained 218 DEGs and classified them into 1,052 GO terms consisting of three

domains: biological process, cellular component, and molecular function. Of these, 176 GO

terms were found to have dramatic changes in expression. We mapped the DEGs to 68 path-

ways, of which 10 were significantly enriched. We divided the genes into five branches based

on the KEGG metabolic pathway involved: cellular processes, environmental information pro-

cessing, genetic information processing, metabolism, and organismal systems. The metabo-

lism-related biological pathways and biosynthesis of amino acids were the most significantly

enriched pathways in this analysis; these pathways are responsible for the main biological func-

tions of A. hydrophila. The results of the KEGG pathway analysis revealed that a considerable

percentage of genes was enriched in ABC transporters, metabolism of xenobiotics by cyto-

chrome P450, and drug metabolism-cytochrome P450. All genes enriched in ABC transporters

were upregulated, whereas all the genes enriched in metabolism of xenobiotics by cytochrome

P450 and drug metabolism-cytochrome P450 were downregulated. We speculate that

Fig 7. Comparison of the expression levels of eight genes determined by RNA-Seq and RT-PCR.

Negative values indicate that gene expression in A. hydrophila was downregulated following enrofloxacin

treatment; positive values indicate that the gene expression was upregulated.

https://doi.org/10.1371/journal.pone.0179549.g007
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enrofloxacin promotes the protein expression of ABC transporters and inhibits the protein

expression of cytochrome P450. This may be related to enrofloxacin resistance of A. hydro-
phila. Our study supplements the previous studies by Seshadri et al. who investigated the viru-

lence genes in A. hydrophila by sequencing its genome [30]. The results of the GO annotation

enrichment revealed that most DEGs were related to transmembrane transport and biosynthe-

sis and degradation of amino acids. Furthermore, some of the genes were mapped to cellular

response to DNA damage stimulus, and among the DEGs, gyrA was upregulated, which was

verified by qRT-PCR. The qRT-PCR results were generally consistent with the results of the

transcriptome analysis. Our results are in agreement with the results of Shakir et al., who

reported that changes in the topoisomerase target sites of chromosomes (amino acid changes

in quinolone resistance-determining regions, QRDRs) could produce drug resistance and, A.

hydrophila strains exhibiting high levels of resistance to antibiotics are common in the strains

with gyrA and parD double mutations in QRDRs [5]. Together, these results indicate that A.

hydrophilia resistance to enrofloxacin occurs primarily due to alterations in multiple biological

functions, energy biogenesis, protein synthesis, and metabolism. Our findings support that the

mechanism of enrofloxacin resistance in A. hydrophila is closely related to reduction of intra-

cellular drug accumulation caused by ABC transporters and topoisomerase IV.

Table 4. Oligonucleotide primers of qRT-PCR for validation of DEGs.

Gene

name

Putative function GO category Pathway

name

Primer

name

Nucleotide sequence (50-30) Expected

product

ACTIN - - - ACTIN-F TGTGTAGCGGTGAAATGCG 140bp

ACTIN-R CATCGTTTACGGCGTGGAC

METL Aspartokinase II Aspartate family amino acid

biosynthetic process

(Biological process)

Metabolic

pathways

METL-F AAGGTGTAGTTGCTGGAGAGGT 130bp

METL-R GCGTGTGAAGAGACATCAAGGA

METE 5-methyltetrahydropteroyltriglutamate Methylation (Biological

process)

Metabolic

pathways

METE-F CTTACGAGGCGGGCATTCAG 151bp

METE-R AAGCGGGTGATGGCAAAGC

air-2 alanine racemase regulation of cell shape,

peptidoglycan biosynthetic

process (Biological process)

Metabolic

pathways

air-2-F AACGCTTTCTCTGGCTCCCTA 125bp

air-2-R CGACATCAGCACGGCATTCA

air alanine racemase peptidoglycan biosynthetic

process, alanine metabolic

process (Biological process)

Metabolic

pathways

air-F ACCGCACCTTCACCCTCAA 209bp

air-R GAACAGCACCACCTCGTCAC

AHA2142 Acetyl-CoA acetyltransferase signal transduction, metabolic

process, cholesterol metabolic

process (Biological process)

Metabolic

pathways

AHA2142-F GGAGACATTGCCGAAGTGACC 118bp

AHA2142-R CTACCTCATAGTGCCGCTCAAC

gyrB1 DNA gyrase subunit B DNA topoisomerase type II

(ATP-hydrolyzing) activity,

ATP binding, metal ion

binding, DNA replication origin

binding, GTPase activity

(Molecular process)

Metabolic

pathways

gyrB1-F GCGGAATGTTGTTGGTGAAGC 173bp

gyrB1-R CTACGAAGGCGGCATCAAGG

gyrA DNA gyrase subunit A DNA topoisomerase type II

(ATP-hydrolyzing) activity,

magnesium ion binding,

protein heterodimerization

activity (Molecular process)

Metabolic

pathways

gyrA-F GTCTTCTCGTCCACCTCCACT 222bp

gyrA-R CAACATTCCGCCTCACAACCT

The data revealed that the upregulation or downregulation of these six genes was consistent with the RNA-Seq results. Together, these results indicate that

the qRT-PCR and RNA-Seq results were reliable overall; however, further studies to determine the molecular mechanisms of resistance to enrofloxacin are

required (Fig 7).

https://doi.org/10.1371/journal.pone.0179549.t004
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Most of the genes in A. hydrophilia encode putative proteins whose functions are not clear.

In order to facilitate further research, we selected 8 of the DGEs whose functions were clearly

known and subjected them to qPCR analysis to verify the RNA-Seq results of. The qPCR

results were consistent with the results of the transcriptome analysis, except for two genes.

Therefore, we believe that the qualities of the A. hydrophila transcriptomes are adequate for

further studies on its functional genes. These findings greatly extend the existing sequence

resources relating to A. hydrophilia and provide abundant genetic information that can be

applied to further understand the molecular mechanisms of enrofloxacin resistance in A.

hydrophilia in aquaculture.
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