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Global analysis of Drosophila Cys2-His2 zinc finger
proteins reveals a multitude of novel recognition
motifs and binding determinants
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Cys2-His2 zinc finger proteins (ZFPs) are the largest group of transcription factors in higher metazoans. A complete
characterization of these ZFPs and their associated target sequences is pivotal to fully annotate transcriptional regulatory
networks in metazoan genomes. As a first step in this process, we have characterized the DNA-binding specificities of 129
zinc finger sets from Drosophila using a bacterial one-hybrid system. This data set contains the DNA-binding specificities for
at least one encoded ZFP from 70 unique genes and 23 alternate splice isoforms representing the largest set of characterized
ZFPs from any organism described to date. These recognition motifs can be used to predict genomic binding sites for these
factors within the fruit fly genome. Subsets of fingers from these ZFPs were characterized to define their orientation and
register on their recognition sequences, thereby allowing us to define the recognition diversity within this finger set. We
find that the characterized fingers can specify 47 of the 64 possible DNA triplets. To confirm the utility of our finger
recognition models, we employed subsets of Drosophila fingers in combination with an existing archive of artificial zinc
finger modules to create ZFPs with novel DNA-binding specificity. These hybrids of natural and artificial fingers can be
used to create functional zinc finger nucleases for editing vertebrate genomes.

[Supplemental material is available for this article.]

The deconvolution of transcriptional regulatory networks in meta-

zoan genomes remains a problem of intense scientific interest.

Analysis of transcriptional regulation in Drosophila has provided

a mainstay for efforts to understand regulatory systems on an or-

ganismic level. Foundational studies focused on subsystems (both

cis-regulatory elements and their collaborating trans-acting factors)

controlling aspects of early developmental patterning (Hong et al.

2008; Wunderlich and DePace 2011). More recently, the advent

of system-wide methodologies coupled with high-throughput

sequencing technology has fueled the genome-wide analysis of

nucleosome occupancy, chromatin modification states, insulator

elements, transcription factor (TF) and RNA polymerase II binding

sites, and tissue and temporal gene expression patterns (MacArthur

et al. 2009; Schuettengruber et al. 2009; Negre et al. 2010, 2011; Roy

et al. 2010; Graveley et al. 2011; Kaplan et al. 2011; Kharchenko

et al. 2011; Li et al. 2011; The ENCODE Project Consortium 2012).

However, for TFs in particular there is a limited (but growing)

amount of genome-wide binding data (MacArthur et al. 2009;

Schuettengruber et al. 2009; Roy et al. 2010; Negre et al. 2011;

Neph et al. 2012; Wang et al. 2012). In its absence, knowledge of

TF DNA-binding specificities within regulatory networks in con-

cert with data sets on chromatin accessibility and modifications

can be exploited by computational algorithms to predict genomic

occupancy and thereby construct more elaborate transcriptional

regulatory models (Elrod-Erickson et al. 1996; Noyes et al. 2008b;

Segal et al. 2008; Badis et al. 2009; Jaeger et al. 2010; Kazemian

et al. 2010; Negre et al. 2011; Zhu et al. 2011b; The ENCODE

Project Consortium 2012; Marbach et al. 2012; Neph et al. 2012).

Cys2-His2 zinc finger proteins (ZFPs) are the largest class of

TFs within the majority of metazoan genomes (Vaquerizas et al.

2009) and, as such, hold great potential for elaborating tissue/

temporal-specific transcriptional regulatory programs. While many

other large families of DNA-binding domains (e.g., homeodomains

[Berger et al. 2008; Noyes et al. 2008a], basic helix-loop-helix

(bHLH) [Grove et al. 2009], and E-twenty six [ETS] [Wei et al. 2010])
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have been partially or completely characterized in a metazoan

genome, ZFPs remain an outstanding group that has only seen

a small fraction of its members characterized (Badis et al. 2008, 2009;

Noyes et al. 2008b; Zhu et al. 2009; Jolma et al. 2010; Neph et al.

2012; Wang et al. 2012). Moreover, unlike other TF families where

there is a high degree of homology between the resident factors in

diverse species (Berger et al. 2008; Noyes et al. 2008a; Grove et al.

2009; Wei et al. 2010), evolutionary analysis of metazoan genomes

reveals a dichotomy within the resident ZFPs: A subset displays

a high degree of homology within their DNA-binding domains

across species presupposing a conservation of function (Seetharam

et al. 2010), whereas for other ZFPs the number and composition

of fingers appear highly dynamic even over short evolutionary

distances (Emerson and Thomas 2009; Groeneveld et al. 2012).

Correspondingly, ZFPs, unlike many other prominent families

of DNA-binding domains, have the potential to specify a wide variety

of different DNA sequences. This property is a function of the diverse

DNA recognition potential of the zinc finger motif and the ability

of finger units to be assembled in a tandem array to facilitate the

recognition of a target sequence that represents the composite

specificities of the incorporated finger modules. The recognition

properties of individual zinc fingers can be influenced by their po-

sition in an array and the recognition determinants of their imme-

diate neighbors (Desjarlais and Berg 1993; Wolfe et al. 1999; Dreier

et al. 2001; Sander et al. 2009; Zhu et al. 2011a), but in some cases, in

particular for subsets of specificity determinants with well-defined

recognition properties, individual fingers can be assembled in novel

combinations to create new recognition modalities (Desjarlais and

Berg 1993; Segal et al. 1999; Dreier et al. 2000, 2001, 2005; Liu et al.

2002; Bae et al. 2003; Kim et al. 2009; Zhu et al. 2011a). Although

some principles that govern the recognition properties of zinc fingers

have been developed through the analysis of natural (Pavletich and

Pabo 1991, 1993; Fairall et al. 1993; Laity et al. 2000; Bae et al. 2003)

and artificial (Rebar and Pabo 1994; Segal et al. 1999; Dreier et al.

2000, 2001, 2005; Liu et al. 2002; Bae et al. 2003; Maeder et al. 2008;

Kim et al. 2009; Sander et al. 2011; Zhu et al. 2011a; Gupta et al. 2012)

ZFPs, the ability to accurately predict the DNA-binding specificity of

naturally occurring zinc finger assemblies remains suboptimal.

Herein we describe a broad survey of the DNA-binding spec-

ificities of ZFPs within Drosophila. Using a bacterial one-hybrid

(B1H) selection system (Noyes et al. 2008b), we have characterized

the DNA-binding specificities of 93 Cys2-His2 ZFPs. This data set

includes 23 alternate splice isoforms that change the finger com-

position within the ZFP and their resulting DNA-binding speci-

ficity, highlighting how different isoforms can increase the com-

plexity of available trans-acting factors for gene regulation without

expanding gene number. These data can be used to predict geno-

mic targets for these TFs within the Drosophila genome. In addi-

tion, we have defined the orientation and register of individual

fingers on their characterized recognition sequences for the ma-

jority of these ZFPs, which allows us to estimate the breadth of

recognition potential present for fingers within the Drosophila

genome. We demonstrate the utility of these data by constructing

ZFPs from a combination of Drosophila and artificial fingers with

adequate specificity for use in zinc finger nucleases (ZFNs).

Results

Determining the DNA-binding specificities of Drosophila ZFPs

Based on hidden Markov model (HMM) analysis of proteins in the

Drosophila genome, there are at least 327 genes containing putative

Cys2-His2 zinc fingers (Fig. 1A). In general, identified fingers con-

form to the consensus sequence: (F/Y)-X-C-X(2-5)-C-X3-(F/Y)-X5-

C-X2-H-X(3-5)-(H/C), where X represents any amino acid and C

a large hydrophobic amino acid (Klug 2010). This sequence folds

into a bba motif around a single zinc ion, where residues on the

‘‘recognition’’ helix make base-specifying contacts in DNA-binding

fingers (Fig. 1B). However, Cys2-His2 zinc fingers can also participate

in protein–RNA (Pelham and Brown 1980) and protein–protein

(Brayer and Segal 2008) interactions. Two hundred eighty-two

genes contain tandem finger arrays with a broad distribution of

linker lengths joining neighbors (Supplemental Fig. 1A). Five amino

acids is the most common linker length, and this group displays

a consensus (TGE[K/R]P) (Supplemental Fig. 1B) that is a hallmark

of DNA-binding fingers that dock in a ‘‘canonical’’ mode within

the major groove (Laity et al. 2000; Wolfe et al. 2000). Thus, if we

conservatively assume that any five-amino-acid linker within our

data set is related to a TGE(K/R)P-type linker, a large fraction of

multi-finger ZFPs (216 of 282) have DNA-recognition potential

(Supplemental Fig. 1C).

We have employed a B1H system to determine the DNA-

binding specificity of these zinc finger domains (Meng et al. 2005,

2008; Noyes et al. 2008b; Chu et al. 2012). We extracted a ‘‘cluster’’

of closely linked fingers (fewer than 20 amino acids between ad-

jacent fingers) for analysis to minimize the amount of superfluous

sequence expressed in the B1H system. Some proteins, such as

CG4360, contain multiple well-separated finger clusters, which

were characterized as independent recognition units (Supplemental

Fig. 1D). Each zinc finger cluster was displayed as a C-terminal fusion

to the omega subunit of Escherichia coli RNA polymerase without an

accessory DNA-binding domain (Noyes et al. 2008b). Complemen-

tary binding sites for each ZFP were identified through a single round

of selection from a 28-bp randomized library with the recovered se-

quences characterized by both Sanger and Illumina sequencing (Zhu

et al. 2011a; Gupta et al. 2012). Recognition motifs were identified as

overrepresented sequence motifs within the recovered sequences

(Zhu et al. 2011a; Christensen et al. 2012).

To date, we have successfully characterized the DNA-binding

specificity of ZFPs encoded by 70 Drosophila genes (Fig. 1C; Sup-

plemental Fig. 2). Our success rate varied depending on the num-

ber of zinc fingers present in the cluster and the presence of ca-

nonically linked fingers (Supplemental Fig. 3). In general, our B1H

motifs show a high degree of similarity to previously defined rec-

ognition motifs where these data exist, providing confidence in

the quality of our data set (Fig. 1D).

Predictive value of ZFP recognition motifs

Recognition motifs for TFs within a common regulatory network can

be used to computationally identify putative cis-regulatory modules

and define the regulatory role of each member (Kazemian et al. 2010;

Kaplan et al. 2011; Schroeder et al. 2011; Marbach et al. 2012; Neph

et al. 2012). Previously, we validated B1H-defined recognition motifs

for TFs involved in anterior-posterior axis segmentation by demon-

strating their ability to discriminate genomic regions corresponding

to ChIP-chip peaks for each factor from randomly chosen noncoding

regions (Kazemian et al. 2010). These TFs spanned multiple families,

including ZFPs. We performed a similar assessment of our new ZFP

recognition motifs using recently published ChIP data for nine fac-

tors (Chinmo, Disco, Lmd, Pho, Phol, Sens, Shn, Sna, and Ttk)

(MacArthur et al. 2009; Schuettengruber et al. 2009; Negre et al.

2010; Busser et al. 2012). We evaluated binding potential to each

genomic segment using Stubb scores, which reflect motif frequency
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Figure 1. Distribution of Cys2-His2 zinc fingers in genes within D. melanogaster genome. (A) Distribution of the number of fingers identified within each
zinc-finger-containing gene in the fruit fly genome. (B) A schematic depicting canonical DNA recognition by a Cys2-His2 zinc finger. The numbered
spheres on the a-helix represent the residues that are anticipated to contact DNA in the canonical recognition mode. These residues are numbered relative
to the start of the a-helix and make contact (arrows) with their respective color-coded DNA bases (boxes). Each finger (in an N-terminal to C-terminal
orientation) binds its DNA subsite (labeled 59 to 39) in an anti-parallel arrangement. (C ) Number of ZFPs attempted and the success rate of these B1H
selections. (D) Comparative MatAlign analysis of ZFP motifs determined by B1H and other methods (Hallikas et al. 2006; Robasky and Bulyk 2011). B1H
motifs are designated by red ovals.
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and strength within each region, phylogenetically averaged over 12

fruit fly species (Kazemian et al. 2010, 2011). For all but one factor,

Ttk (Tramtrack), we find that the B1H motif provides significant

discrimination between the top 1000 ChIP-bound regions and

a random set of noncoding regions (Table 1). In this analysis, our

B1H motifs perform similar to or better than FlyReg motifs for three

of these factors (Pho, Sna, and Ttk) (Bergman et al. 2005).

Added recognition potential from alternately spliced
ZFP isoforms

Organisms can diversify the regulatory potential of a TF through

the generation of alternately spliced isoforms (Nilsen and Graveley

2010). In many instances, an alteration in the composition of

domains associated with a DNA-binding domain can change its

regulatory potential at a common set of target sites. However, al-

ternate splicing can also change the composition of the DNA-

binding domain and thereby its DNA-recognition potential (e.g.,

Cf2) (Gogos et al. 1992). In Drosophila, 28 zinc finger-encoding

genes have alternately spliced isoforms of this type (Supplemental

Table 3). Many alterations simply change the number of fingers at

the N or C terminus of an array, which should preserve the core

recognition potential of common fingers between isoforms.

However, 10 genes encode alternate isoforms where the insertion

or substitution of one or more internal fingers within an array

could radically alter recognition properties. We determined the

DNA-binding specificity of 23 splice isoforms from this group

to assess their recognition potential. Many of these alternately

spliced ZFP isoforms, such as found in broad (Supplemental Fig. 4)

and ttk (Supplemental Fig. 5), display distinct specificities that

expand their regulatory potential (Supplemental Discussion).

The 23 isoforms of lola (longitudinals lacking) highlight the

increased regulatory capacity realized through this mechanism. In

the developing nervous system, lola directs a myriad of axon guid-

ance decisions through the spatial and temporal expression of dif-

ferent isoforms (Supplemental Fig. 6; Seeger et al. 1993; Giniger et al.

1994; Madden et al. 1999; Crowner et al. 2002; Goeke et al. 2003).

We determined the DNA-binding specificity of 17 Lola isoforms,

which include 13 distinct sets of zinc finger clusters. The resulting

family of motifs reveals the diverse recognition potential generated

through alternate splicing (Fig. 2). Notably, all of the Lola isoforms

contain a common BTB domain. This domain could facilitate het-

erodimerization between isoforms (Badenhorst et al. 2002; Bonchuk

et al. 2011), which would further expand the complexity of recog-

nition motifs recognizable by isoforms from this locus.

Global comparison of ZFP specificities

We constructed a pairwise alignment of the 94 ZFP B1H recognition

motifs based on their similarity to assess the breadth of the recovered

recognition sequences. These data were used to construct a phylo-

genetic tree, providing a visual framework for examining the in-

terrelatedness of the recognition preferences of each ZFP (Fig. 3). This

global perspective highlights the degree of diversity within these ZFP

recognition sequences. As expected, families of ZFPs sharing similar

finger arrays display similar recognition motifs (e.g., Sp/KLF, EGR,

YY1, Gli/Opa, Snail/Slug, Odd, Gfi, and ZFAM4) (Seetharam et al.

2010). Interestingly, while three of the four Broad isoforms cluster

together, the Lola isoforms are highly dispersed throughout the tree,

demonstrating the diversity of recognition sequences that can be

generated from a single locus. It is not uncommon for TFs in different

families to have overlapping DNA-binding specificities, where po-

tential competition for binding sites can create an added layer of

regulatory potential (Ip et al. 1992; Kuo and Calame 2004; Reece-

Hoyes et al. 2009). Likewise, some ZFP motifs overlap with the pre-

viously defined recognition motifs of other factors. For example, the

recognition motifs for Shn and NF-KB are highly similar (Supple-

mental Fig. 7). Consistent with this observation, HIVEP1, the human

homolog of Shn (Staehling-Hampton et al. 1995), can bind NF-KB

recognition sequence in the HIV LTR (Maekawa et al. 1989; Baldwin

et al. 1990; Fan and Maniatis 1990).

Assigning individual fingers to subsites within each
recognition motif

We made strand-specific assignments of individual fingers to spe-

cific DNA subsites within each ZFP recognition motif to estimate

Table 1. Predictive value of B1H determined motifs

ZFP Motif source ChIP data set (PMID)

12 species Stubb

PCC P-value

chinmo B1H 20084099 0.204 1.6 3 10�20

disco B1H 20084099 0.154 2.3 3 10�25

lmd B1H 23184988 0.31 4.2 3 10�46

pho FlyReg 19143474 0.017 0.229

pho B1H 19143474 0.41 3.1 3 10�82

phol B1H 19143474 0.333 2.7 3 10�53

sens B1H 20084099 0.153 2.6 3 10�12

sens-2 B1H 20084099 0.18 2.8 3 10�16

shn B1H 19627575 0.188 9.4 3 10�18

sna FlyReg 19627575 0.32 2.9 3 10�49

sna B1H 19627575 0.339 2.7 3 10�55

ttk-PF FlyReg 20084099 �0.017 0.780

ttk-PF B1H 20084099 �0.038 0.956

FlyReg indicates motifs from the FlyReg DNaseI footprinting database
(Bergman et al. 2005). (PCC) Pearson correlation coefficient.

Figure 2. Comparison of isoform specificities. DNA-binding specificities
of 17 Lola isoforms generated through alternate splicing. MatAlign cluster-
gram emphasizing the diversity within the recognition motifs of the various
Lola isoforms. All of the characterized ZFPs utilize a pair of zinc fingers to
recognize DNA. Identical fingers are present in the lola-PN and -PY isoforms
and the lola-PT and -PU isoforms, and both pairs have identical specificity.

DNA-binding specificities of Drosophila ZFPs
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the diversity of finger specificities encoded within Drosophila. In

many cases, these assignments were straightforward as certain

fingers within a cluster had specificity determinants with well-

defined recognition preferences (Supplemental Discussion) that

could be associated with a complementary DNA subsite within the

recovered motif (Supplemental Fig. 8). Such a positioned finger

served as an anchor, allowing the positions of neighboring fingers

within the recognition sequence to be assigned assuming that

fingers within the cluster docked to the DNA in a canonical ge-

ometry (with overlapping four base-pair recognition elements).

This assumption is likely valid for the majority of our char-

acterized ZFPs since they are predominantly canonically linked

(Supplemental Fig. 3). Using this anchoring approach, we associ-

ated fingers with subsites for 61 of 94 recognition motifs.

To facilitate the assignment of the remaining finger sets, we

determined the DNA-binding specificity of a subset of fingers from

a characterized cluster deemed likely to harbor some of its recog-

nition potential. This strategy utilized two related approaches. In

most cases, we extracted a subset of the fingers (typically three)

from a larger finger array and determined their DNA-binding

specificity (Supplemental Fig. 9). As an alternate assessment, we

spliced subsets of one or two fingers from a cluster in question to

fingers from another ZFP with well-defined DNA-binding speci-

ficity (Supplemental Fig. 10). Once determined, these subset

specificities provided anchors for assigning the recognition posi-

tions of other linked fingers within the array. Using these ap-

proaches, we determined the specificity of 34 zinc finger subsets or

spliced finger sets from 26 different genes (Supplemental Fig. 11).

Figure 3. Phylogenetic comparison of the B1H-determined recognition motifs for 94 Drosophila ZFPs based on the primary recognition strand. ZFPs
conserved across the Drosophila and human genomes are specified with their family labels.

Enuameh et al.
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Based on this analysis, we could successfully dock 83 of the 94

zinc fingers sets (genes and alternately spliced variants) on their

recognition sequences. Delineating the mode of recognition for

a small number of ZFPs (e.g., CG14962) remains problematic even

after this additional analysis.

Using these assignments, we deconvoluted the assigned 83

ZFPs into 238 single finger–DNA subsite combinations (Supple-

mental Data Set 1). Sorting these fingers based on their apparent

core DNA triplet preference provides a perspective on the breadth

of ‘‘recognition’’ space that appears to be specified by this extant

zinc finger set. As expected, a high percentage of classical recog-

nition fingers are found within this data set. For example, the

RSDELXR recognition helix occurs eight times, displaying a

G(c/t)G specificity. In addition, a number of novel recognition

units are present, such as the second finger of Sens (QKSDMKK),

which appears to specify TC(a/t) within its primary triplet se-

quence. Remarkably, 157 of these 238 fingers demonstrate a strong

preference at the three core recognition positions. These fingers

span 47 of the 64 possible triplet sequences (Fig. 4; Supplemental

Table 4), demonstrating the inherent diversity of the recognition

modalities within naturally occurring zinc fingers sets. For bins of

recognition helices that have multiple unique members, there is

typically a preference for certain determinants at the key recogni-

tion positions (Supplemental Fig. 12; Supplemental Table 5).

Examining specificity determinant–DNA base associations

We analyzed the specificity determinants associated with assigned

finger–DNA subsite combinations to gain further insight into

fundamental aspects of DNA-recognition. Assuming a canonical

binding model, we assigned specificity determinants to each DNA

base within the primary triplet (i.e., positions 6, 3, and �1 of the

recognition helix to the 59, middle, and 39 base, respectively as

shown in Fig. 1B). This analysis suggests complementarity between

particular amino acid–base combinations (Fig. 5; Supplemental

Fig. 13). We note, however, that this analysis only includes the

naturally occurring diversity of our ZFP set and should not be

interpreted to represent all of the possible specificities that might

be observed in in vitro experiments. Nonetheless, many of these

associations, such as the pairing of Arg at position �1 with Gua-

nine and Asn at position 3 with Adenine, represent well-defined

recognition preferences (Isalan et al. 1998; Wolfe et al. 2000; Dreier

et al. 2001; Sera and Uranga 2002; Gupta et al. 2012). In addition,

other strong associations are present, particularly for aromatic

residues, that have not been broadly employed in artificial fingers

or characterized across multiple naturally occurring ZFPs. Notably,

a preference of Tyr at position �1 for Thymine is consistent with

the specificity of artificial fingers containing Tyr at this position

(Zhu et al. 2011a). Likewise, the preference of Tyr at position 3 for

Adenine is consistent with the specificity of artificial fingers gen-

erated by Sangamo BioSciences (Hockemeyer et al. 2009) and us

(Supplemental Fig. 14).

In the context of canonical recognition, position 2 of the

recognition helix can influence base preference immediately 39 to

the primary recognition triplet through contact with the comple-

mentary DNA strand (Elrod-Erickson et al. 1996; Isalan et al. 1997).

Assigning base preference at this position is complicated by the

potential of a neighboring N-terminal finger to influence speci-

ficity at this base through position 6 of its recognition helix. Thus,

associations between a particular amino acid at position 2 and

a certain neighboring base should be interpreted cautiously. At

minimum, any preference implies compatibility of the observed

amino acid–base combination, and for some amino acids at posi-

tion 2, this interaction may be the dominant determinant defining

base preference (Supplemental Discussion).

Testing the recognition preference of a subset of Drosophila
fingers

To demonstrate the quality of our zinc finger–DNA subsite as-

signments, we utilized these finger sets in the assembly of artificial

zinc finger arrays (ZFAs) with new composite DNA-binding speci-

ficities. Characterized fingers from naturally occurring ZFPs have

been successfully utilized as modules to assemble artificial TFs or

nucleases for targeted gene disruption (Bae et al. 2003; Kim et al.

2009, 2011). While single fingers—primarily of artificial origin

(Segal et al. 1999; Dreier et al. 2000, 2001, 2005; Liu et al. 2002; Zhu

et al. 2011a)——have been the mainstay of archives for the as-

sembly of ZFAs with novel DNA-binding specificity (Liu et al. 1997;

Carroll et al. 2006; Mandell and Barbas 2006; Wright et al. 2006;

Kim et al. 2009; Zhu et al. 2011a; Bhakta et al. 2013), more recent

assembly methods have focused on archives of two-finger modules

(Doyon et al. 2008; Kim et al. 2011; Sander et al. 2011; Gupta et al.

2012; Zhu et al. 2013) to reduce the number of ‘‘novel’’ finger–

finger interfaces that are incorporated into the ZFA (Urnov et al.

2010). Consequently, we examined the utility of one and two

finger Drosophila modules for the creation of ZFAs with novel

specificity. Target sites were chosen to allow the construction of

ZFNs from these ZFAs for six different genes (cpe, irs1, irs1b-like,

nhlh2, nr3c1, and pparg) within the zebrafish genome to provide an

in vivo assessment of their quality.

Figure 4. Diversity of triplet recognition sequences. Coverage of the 64
possible triplet sequences based on the specificity of the extracted single
finger–DNA subsites combinations. Each panel represents 16 different
triplets, where the 59 base is fixed (e.g., upper left is the ANN triplets). The
height of the buttons at each position reflects that number of fingers that
prefer this triplet within the data set, where those triplets without com-
plementary fingers are white.

DNA-binding specificities of Drosophila ZFPs
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Eight of the constructed four-finger (4F) ZFAs incorporate one

or two Drosophila fingers in combination with artificial single- and

two-finger modules from our existing archives (Gupta et al. 2011;

Zhu et al. 2011a, 2013). In the construction of these ZFAs, the in-

corporated Drosophila finger sequences were used in their entirety,

whereas fingers from our artificial archive use the Zif268 or SP1C

(Shi and Berg 1995) backbone (Supplemental Table 6). The DNA-

binding specificity of these ZFAs were characterized using our B1H

system to determine if the incorporated Drosophila modules dis-

play the anticipated DNA-binding specificity and are compatible

with neighboring finger units for recognition. Five of eight ZFAs

containing Drosophila fingers displayed the expected specificity

and exhibited coordinated recognition with neighboring fingers

within the array (Fig. 6). For two of the failed ZFAs (3p_nr3c1 and

3p_pparg), the Drosophila fingers displayed the desired DNA-

binding specificity but proved incompatible with neighboring

fingers. The two Lola-PW fingers in 3p_nr3c1 failed to collaborate

in recognition with neighboring fingers until their recognition

helices were grafted into the Zif268 backbone (3p_nr3c1_n ZFA).

The Ci and Sna fingers in 3p_pparg ZFA, which are joined by a ca-

nonical linker, display a preference for an additional ‘‘C’’ between

their subsites (GAC and CTG, respectively). This noncanonical

behavior originates from the Ci finger, as the structure of the hu-

man homolog (Gli) reveals an altered docking geometry that af-

fords recognition of an additional 39 base pair (Pavletich and Pabo

1993). The preservation of specificity in both the Ci and Sna fin-

gers in this artificial assembly implies that their docking geometry

is driven by intrinsic features (e.g., the constellation of phosphate

contacts) rather than the composition of the interfinger linker.

Thus, these results demonstrate that the individual finger speci-

ficity assignments tested in these arrays were correct but that the

interfaces between fingers are not always compatible.

ZFNs containing Drosophila fingers are functional in vivo

Overall, pairs of ZFAs with compatible specificity for five of six ZFN

target sites were successfully constructed (Fig. 6; Supplemental Fig.

15). The activity of ZFNs constructed from these ZFAs was de-

termined in zebrafish embryos (Meng et al. 2008). Often, equal

concentrations of mRNA encoding each ZFN monomer are coin-

jected into embryos. However, in some cases we also examined

ZFN activity at different monomer ratios based on the B1H activity

of individual ZFAs (Supplemental Table 7). An altered monomer

ratio sometimes appeared to modestly increase activity or reduce

toxicity. Three of five tested ZFN pairs generated lesions at the

desired target site with efficiencies in normal embryos between 2%

and 7% (Supplemental Figs. 16–18). Activity in a fourth ZFN pair

(irs1b-like) was achieved by introducing Arg at position 6 within

the recognition helix of the C-terminal Sens2 finger to improve its

preference for G within the corresponding position of its subsite

(Supplemental Figs. 15, 19). These data demonstrate that ZFAs

containing Drosophila fingers in combination with artificial fingers

have sufficient specificity and affinity to generate functional ZFNs

in a complex vertebrate genome.

Discussion
Our B1H analysis of Cys2-His2 zinc fingers within the Drosophila

genome has generated 94 recognition motifs that span 70 genes

and 23 additional alternately spliced isoforms with variant speci-

ficities. To our knowledge, this represents the largest block of ZFP

specificities that have been curated for any metazoan genome.

Where specificity data are available for orthologous ZFPs from

other species, we find that there is good concordance between the

data sets. Consequently, we believe that these data are of high

quality. Consistent with this assertion, we find that our motifs

provide significant predictive power for the identification of

bound genomic regions in existing ChIP data sets for the corre-

sponding ZFPs (Table 1). The size of our recovered recognition

motif increases as the number of fingers in the ZFP increases from

two to three fingers but plateaus thereafter (Supplemental Fig. 20).

Consequently, for ZFPs containing a large numbers of fingers (e.g.,

crol), our identified motif may represent only a portion of its full

recognition potential due to limitations of our selection method.

Recognition motifs and primary data for these ZFPs are

available through our web portal FlyFactorSurvey (http://pgfe.

umassmed.edu/ffs/), which now harbors published and un-

published recognition motifs for more than 300 predicted Dro-

sophila TFs (Zhu et al. 2011b). Predicted genome binding profiles

for these Drosophila factors have been constructed within Genome

Surveyor (http://veda.cs.uiuc.edu/gs) where combinations of these

motifs can be coupled with evolutionary comparisons across 12

Drosophila species for the discovery of cis-regulatory modules (Noyes

et al. 2008b; Kazemian et al. 2011). These specificity data can be

combined with expression patterns of these TFs to further refine cis-

regulatory module prediction (Kazemian et al. 2010).

In this study we surveyed ZFPs from 184 genes, representing

56% of the predicted ZFPs within the genome. Our success rate was

lower (;38%) than in previous studies utilizing the B1H system for

Figure 5. Amino acid–base correlations. Frequency logo displaying the
average base preference for each amino acid at each recognition position
on the recognition helix (RH) assuming canonical recognition. The total
number of recognition helices and the number of unique recognition
helices (having a unique set of residues at positions �1, 2, 3, and 6) that
contain the amino acid at that position are indicated above each logo.
Base position nomenclature is defined in Figure 1B.
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Figure 6. Drosophila finger sets maintain their specificity when incorporated into artificial arrays. The left column displays the B1H-determined rec-
ognition motif for each assembled ZFA. For each motif, the subsite recognized by the utilized fingers in the ZFA and Drosophila ZFP (middle column) is
boxed, and where these are similar, the assembly was deemed a success (check; right column). In some cases fingers from more than one Drosophila ZFP
were used in the artificial finger assembly. In the case of 3p_nr3c1, due to the initial failure (X), two additional variants were constructed (3p_nr3c1_n and
3p_nr3c1_nn) to achieve the desired DNA-binding specificity. The complements for some of these ZFN pairs are entirely artificial in construction and are
thus shown in Supplemental Figure 15.



TF analysis (Noyes et al. 2008a,b). Some failures likely represent

true negatives, where the characterized ZFP binds to other proteins

or RNA, instead of DNA. Consistent with this hypothesis, higher

success rates were achieved for ZFPs that are entirely canonically

linked (Supplemental Fig. 3), which is a hallmark of DNA-binding

zinc fingers. However, we failed to determine the specificity of some

ZFPs, such as CTCF and TRL (also known as GAGA), that have

sequence-specific DNA-binding activity (Bergman et al. 2005;

Holohan et al. 2007). Some failures (false negatives) may originate

from biases in our library. For example, we found that the CTCF

binding site when cloned into our reporter vector activated tran-

scription of the reporter genes in the absence of CTCF, likely through

the function of an endogenous factor (data not shown). Self-activating

sequences are depleted from the library prior to use via counter-

selection (Meng et al. 2005). In other cases, such as Cbt (a paralog

to successfully characterized Sp1 family members), the gene or

protein sequence may be incompatible with function in bacteria.

Where possible, we have extended our characterization of

ZFPs by assigning DNA subsites to the recognition of individual

fingers within each ZFA. This provides an opportunity to assess the

true breadth of the recognition potential of extant ZFPs within

a genome, even for this incomplete set. We find that 47 of the 64

potential DNA triplets are represented within the finger subsites

recognized by 83 characterized ZFPs, where we could putatively

assign the orientation and register of the fingers on the DNA. The

recognition potential of these fingers is the most diverse described

to date for naturally occurring ZFPs, substantially surpassing the

analysis of approximately 2000 individual human fingers that

generated an archive capable of recognizing 25 of the 64 potential

triplets (Bae et al. 2003). Whether ZFPs within the fly genome are

more diverse in their recognition potential than those found in

humans will remain unclear until a comprehensive analysis of all

ZFPs in both genomes is available. However, there are specificity

determinant sets in the fly genome, such as the Aef1 fingers that

specify a repeating ACA triplet, that are not present within the

human zinc finger repertoire.

From our results, it is clear that naturally occurring ZFPs uti-

lize a broad palette of specificities to define distinguishing recog-

nition sequences. This is consistent with the evolutionary diversity

within this family (Tadepally et al. 2008; Emerson and Thomas

2009; Thomas and Emerson 2009), and with selection-based ap-

proaches to engineer zinc fingers with novel DNA-binding speci-

ficity that have generated fingers capable of recognizing a broad

variety of sequences (Carroll et al. 2006; Urnov et al. 2010). The

utilization of a broad range of DNA recognition preferences by

naturally occurring ZFPs is in sharp contrast to homeodomains,

the second most-common family of DNA-binding domains in

metazoan genomes, which appear to utilize only a small fraction of

their true recognition potential in natural systems (Chu et al.

2012). In contrast to homeodomains, zinc fingers appear to func-

tion as highly malleable units that permit facile rewiring of regu-

latory systems by providing a wealth of new regulatory potential

as trans-acting factors that can readily evolve novel recognition

modalities.

The assignment of zinc finger–DNA subsite combinations

within this data set allows the correlation of specificity de-

terminants and base preferences. This information can be used in

conjunction with existing data sets to train improved predictive

recognition models for ZFPs. The expansive evolutionary diversity

present among naturally occurring ZFPs underlies the importance

of creating a robust predictive model to assess the regulatory po-

tential of members of this family in any genome, as it is unlikely

that the specificity of all extant ZFPs can be inferred by direct ho-

mology from characterized ZFPs resident in a small number of

organisms.

Methods

Discovery and clustering of Cys2-His2 ZFPs for analysis
ZFPs were identified based on the motif annotations within the
SMART database (http://smart.embl.de/) (Letunic et al. 2012) and
HMMER analysis using hmmsearch (Finn et al. 2011) of proteins
within FlyBase (McQuilton et al. 2012) with a HMM based on the
consensus Cys2-His2 zinc finger motif within PFAM (Punta et al.
2012). ZFAs within these genes were then classified into clusters,
where a single cluster is any set of fingers linked by an amino acid
sequence of less than 20 residues. Thus, ZFPs composed of two or
more fingers could exist as a single cluster or multiple clusters of
fingers (Supplemental Table 1). Boundaries for the core Drosophila
melanogaster DNA-binding domain to be used in the specificity
analysis were defined through TBLASTN comparisons with Dro-
sophila pseudoobscura, Drosophila virilis, and Drosophila grimshawi,
by identifying two sequential amino acid positions that were not
conserved between these species.

Preparation of Drosophila genomic DNA for amplification
of ZFAs

Ten anesthetized flies were collected in an Eppendorf tube, frozen
at �80°C and ground in 200 mL Buffer A (100 mM Tris-HCl at pH
7.5, 100 mM EDTA, 100 mM NaCl, 0.5% SDS) with a disposable
tissue grinder (Kontes). With the addition of another 200 mL ali-
quot of Buffer A, grinding was continued until only cuticles
remained. This mixture was incubated for 30 min at 65°C, after
which 800 mL LiCl/CH3COOK solution (1 part 5 M CH3COOK
stock: 2.5 parts 6 M LiCl stock) was added and incubated on ice for
at least 10 min. This was followed by a 15-min spin at 15000 r.p.m.
in a table-top centrifuge. One milliliter of the resulting supernatant
was transferred into a new tube, avoiding the floating debris. Six
hundred microliters of isopropanol was added to the supernatant,
mixed and further spun at 15,000 r.p.m. for 15 min. The super-
natant was aspirated away, and the pelleted DNA washed gently
with 70% ethanol, air-dried, and resuspended in 75 mL TE buffer.
This genomic DNA was stored at �20°C.

B1H-binding site selections using the 28-bp library

In our characterization of D. melanogaster ZFPs, we truncated the
coding sequence of each gene to span a ‘‘cluster’’ of fingers that
were closely linked (less than 20 amino acids between adjacent
fingers) (Supplemental Tables 1, 2). For example, for CTCF all 11
zinc fingers were assayed as a single cluster. For genes with multiple
well-separated finger clusters, the clusters were characterized as
independent recognition units. ZFA clusters were obtained by PCR
from cDNA clones of the BDGP DGC Gold and TF collections
(Stapleton et al. 2002; Lin et al. 2007) or D. melanogaster genomic
DNA. Each zinc finger cluster was cloned as a C-terminal fusion to
the omega subunit of E. coli RNA polymerase in the B1H system.
Selections were carried out according to the method previously
described (Noyes et al. 2008b) by plating 1–2 3 107 selection strain
cells transformed with the 1352-omega-UV2, 1352-omega-UV5,
or 1352-omega-lppC ZFA-containing expression plasmid and the
28-bp pH3U3 library plasmid on NM minimal medium selec-
tive plates. These selection plates contained 0 mM or 5 mM uracil,
10 mM IPTG, and 3-amino-1,2,4-triazole (3-AT; 2.5 mM, 5 mM,
10 mM, or 15mM) as the HIS3 competitive inhibitor and were
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incubated for 36–72 h at 37°C. After the number of surviving
bacterial colonies were counted, ZFAs displaying threefold or greater
increase in colony numbers over a no ZFA control were deemed
successful selections. Sanger sequencing was initially used to char-
acterize complementary binding sites for each successful ZFP selec-
tion with overrepresented motifs identified through MEME analysis
(Bailey and Elkan 1994). Promising selections were further
characterized by Illumina sequencing amplicons spanning the
library region from pooled surviving colonies where the sample
preparation of selected binding sites for deep sequencing was
undertaken according to the method described previously (Gupta
et al. 2011; Zhu et al. 2011a). Unique sequences from each se-
lection were ranked based on the number of recovered reads.
Subsequently, binding site recognition motifs were identified
as overrepresented sequence motifs within these recovered se-
quences using MEME, where motifs constructed from the Illumina
sequencing can contain thousands of unique binding sites
(Christensen et al. 2012).

Clustering of determined binding site motifs

Strand-specific comparative MatAlign (Matalign-v2a) (T Wang
and GD Stormo, unpubl.) analysis of ZFP motifs was used to
generate neighbor joining trees (NJs), to depict the inherent di-
versity, similarity, and clustering of the characterized Cys2-His2

ZFP specificities.

Evaluation of the predictive value of the ZFP motifs based
on existing ChIP data

TF-ChIP profiles of eight TFs from early stages of Drosophila em-
bryonic development were downloaded from multiple sources.
Data for Disco, Chinmo, Sens, and Ttk were acquired from Negre
et al. (2010); Pho and Phol from Schuettengruber et al. (2009); and
Shn and Sna from MacArthur et al. (2009). In the case of Disco,
ChIP-seq data were used rather than ChIP-chip. For each factor, the
raw TF-ChIP read scores were smoothed by averaging them over
500-bp windows with shifts of 50 bp. After this transformation,
1000 nonoverlapping windows with the highest ChIP score
(‘‘bound regions’’) were selected, along with 1000 random, non-
exonic windows from the remaining genome. For each selected
window, we used the related DNA-binding motif from B1H (Zhu
et al. 2011b) or FlyReg (Bergman et al. 2005) to calculate the
STUBB scores of orthologous windows across 12 Drosophila spe-
cies and then found the average based on the phylogenetic tree,
according to the method previously described by Kazemian et al.
(2010). This phylogenetically weighted average is called the
‘‘motif score’’ of the window. Finally, the predictive value of the
motif was quantified using the Pearson correlation coefficient
(PCC) between the motif scores and ChIP scores of the selected
2000 windows.

Assignment of the preferred triplet for each zinc finger

Three base pair submotifs were extracted for individual zinc fingers
that were successfully aligned to their target site. A consensus
recognition site for each finger was determined based on a refined
consensus alphabet with the following probability thresholds
(Mahony and Benos 2007): A/C/G/T is used if the appropriate
single base frequency is greater than 0.6; M/R/W/S/Y/K is used if
the sum of the appropriate two bases is greater than 0.8; and N is
used otherwise. In the assessment of triplet coverage, fingers were
counted toward a triplet only if they do not contain ‘‘N’’ at any
position, and a two base code (M/R/W/S/Y/K) is allowed only at
a single position.

Creation and B1H characterization of ZFAs

Four-finger ZFAs for use in ZFNs were assembled from our charac-
terized Drosophila ZFPs and our in-house two-finger module and
single-finger module archives via overlapping PCR according to
the method described previously (Gupta et al. 2011; Zhu et al.
2011a). In this assembly, the Drosophila finger sequences were used
in their entirety; i.e., their recognition helices were not grafted into
the Zif268 backbone, which is the basis of the fingers in our arti-
ficial archive. Assembled four-finger ZFAs were cloned into the
1352-UV2 expression vector and characterized in the B1H system
using the 28-bp randomized library (Noyes et al. 2008b). Selections
were undertaken at 2.5–10 mM 3-AT, 10-50 mM IPTG with or
without 200 mM uracil according to the method described pre-
viously (Zhu et al. 2011a). A successful selection and recovery of
the binding site motif for each ZFA was determined as indicated
above for the Drosophila Cys2-His2 ZFPs.

ZFN injections and analysis of somatic lesion frequency

In order to create ZFNs to target genes in zebrafish, assembled ZFA
PCR amplicons were digested with Acc65I and BamHI-HF (New
England Biolabs). Following gel extraction and purification, these
were cloned into pCS2 vectors containing the sequence encoding
the DD/RR obligate heterodimeric version of the FokI nuclease do-
main according to the method described previously (Gupta et al.
2011). For ZFNs targeting sites with a 7-bp spacer, an eight-amino-acid
TGPGAAGS linker of nucleotide sequence ACCGGTCCTGGTGCC
GCGGGATCC was used in place of the typical LRGS linker to span the
ZFA and DD/RR FokI domains (Handel et al. 2009). Subsequently, the
pCS2-ZFN constructs were linearized with NotI, and mRNA was
transcribed using the mMessage mMachine SP6 kit (Ambion). In-
jections of ZFN mRNAs into the blastomere of one-cell-stage zebrafish
embryos were carried out according to the method described pre-
viously (Meng et al. 2008; Gupta et al. 2011). Different ratios of 59 and
39 ZFNs were tested for some nucleases to improve the lesion fre-
quencies, where these choices were guided by the relative activities of
the associated ZFAs exhibited in the B1H system. After 24 h, ZFN
mRNA–injected embryos with normal and deformed appearance
(eight to 30 embryos) and uninjected embryos were collected and
incubated in 50 mM NaOH (15 mL/embryo) for 15 min at 95°C to
isolate genomic DNA. This was subsequently neutralized with 0.5 M
Tris-HCl (4 mL/embryo) and centrifuged at 13,000 r.p.m. for 1 min,
after which the supernatant containing genomic DNA was utilized in
PCRs for lesion analysis (below).

ZFN activity analysis at endogenous zebrafish genes

PCR primers were designed to amplify a ;200-bp region bordering
the ZFN target site using the Phire Hot Start DNA polymerase
(Finnzymes), and the PCR was run with 1 mL of the extracted ge-
nomic zebrafish DNA in a total reaction volume of 20 mL. ZFN
activity was determined via restriction fragment length poly-
morphism analysis or T7 Endonuclease I assay (New England
Biolabs). In the restriction fragment length polymorphism analy-
sis, the 20 mL PCR product was directly digested with a restriction
enzyme unique to the spacer region at the ZFN target site in
a compatible NEB Buffer for 1 h at 37°C. The digestion products
were run on a 3.5% 0.53 TBE UltraPure Agarose (Invitrogen) gel at
200 V for 15–20 min. Band intensities for the uncut PCR product
relative to the entire product was used to estimate for the lesion at
the ZFN target site using ImageJ (Schneider et al. 2012). Addi-
tionally, the restriction enzyme–resistant PCR product fragment
was gel extracted and cloned into a Bluescript vector pBS2SK+
(Stratagene) via the EcoRV site. By utilizing blue-white screening,
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sequences harboring lesions at the ZFN site were recovered after
PCR with T7 and T3 universal primers and Sanger sequencing with
T3 universal primer.

When T7 Endonuclease I was used to assay for gene targeting
by the ZFN constructs (Kim et al. 2009; Reyon et al. 2012), 20 mL
PCR product was submitted to the following protocol on a ther-
mocycler: 95°C for 5 min; 95°C to 85°C at �2°C/sec; 85°C to 25°C
at �0.1°C/sec; hold at 4°C. Reannealed PCR products from this
step were incubated with 10 U of T7 Endonuclease I in a 23 mL
reaction for 45 min at 37°C in NEB Buffer 2. The digestion products
were run on a 3.5% 0.53 TBE UltraPure Agarose (Invitrogen) gel at
200 V for 15–20 min. Band intensities for the cut PCR product
relative to the entire PCR product was used to estimate for the le-
sion rate (fractional modification = fraction of cleaved bands/2) at
the ZFN target site (Guschin et al. 2010) using Image J (Schneider
et al. 2012). Furthermore, a set of primers were designed to clone
a <100-bp region of genomic DNA bordering the target site of in-
terest into a modified pBS2SK+ vector via the XbaI and Acc65I sites,
such that it is in frame with the lacZ gene. By utilizing blue-white
screening, sequences harboring out of frame lesions at the ZFN site
were recovered by colony PCR of white colonies with T7 and T3
universal primers, subsequent to Sanger sequencing with T3 uni-
versal primer (JC McNulty, VL Hall, and SA Wolfe, unpubl.).

Zebrafish lines

The use of zebrafish was in accordance with established protocols
(Westerfield 1993) and in conformity with Institutional Animal
Care and Use Committee guidelines of the University of Massa-
chusetts Medical School.

Data access
The sequencing data from this study have been submitted to the
NCBI Gene Expression Omnibus (GEO) (http://www.ncbi.nlm.nih.
gov/geo) under accession number GSE42709.
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