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Brain parcellation helps to understand the structural and functional organization of
the cerebral cortex. Resting-state functional magnetic resonance imaging (fMRI) and
connectivity analysis provide useful information to delineate individual brain parcels
in vivo. We proposed an individualized cortical parcellation based on graph neural
networks (GNN) to learn the reliable functional characteristics of each brain parcel
on a large fMRI dataset and to infer the areal probability of each vertex on unseen
subjects. A subject-specific confidence mask was implemented in the GNN model
to account for the tradeoff between the topographic alignment across subjects and
functional homogeneity of brain parcels on individual brains. The individualized brain
parcellation achieved better functional homogeneity at rest and during cognitive tasks
compared with the group-registered atlas (p-values < 0.05). In addition, highly reliable
and replicable parcellation maps were generated on multiple sessions of the same
subject (intrasubject similarity = 0.89), while notable variations in the topographic
organization were captured across subjects (intersubject similarity = 0.81). Moreover, the
intersubject variability of brain parcellation indicated large variations in the association
cortices while keeping a stable parcellation on the primary cortex. Such topographic
variability was strongly associated with the functional connectivity variability, significantly
predicted cognitive behaviors, and generally followed the myelination, cytoarchitecture,
and functional organization of the human brain. This study provides new avenues
to the precise individualized mapping of the cortical areas through deep learning
and shows high potentials in the personalized localization diagnosis and treatment of
neurological disorders.

Keywords: functional connectivity, cortical parcellation, intersubject variability, topographic variability, resting-
state fMRI (rfMRI), test–retest reliability, graph neural network

INTRODUCTION

Brain atlas has been an important tool to understand the neural basis of human cognition and
to study the functional organization of the human brain (Ungerleider and Desimone, 1986;
Felleman and Van Essen, 1991; Amunts and Zilles, 2015). Neuroanatomists have built a variety
of brain atlases to depict cyto-, myelo-, and receptor architectures using postmortem brains
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(Brodmann, 1909; Zilles and Amunts, 2010; Amunts et al., 2020).
Recent advances in noninvasive neuroimaging techniques, such
as functional magnetic resonance imaging (fMRI), provide an
opportunity to explore the functional organization of the living
human brain. There has been a rich and fast-growing literature
on the functional brain parcellation using either spontaneous
low-frequency fluctuations of fMRI activity or the aggregation
of activation maps across different cognitive tasks (Blumensath
et al., 2013; Eickhoff et al., 2015; Eickhoff et al., 2018a,b).
The majority of current approaches focused on the group
representative functional mapping of the cerebral cortex, which
may provide useful insights into the intrinsic organizational
principles of the human brain (Buckner et al., 2013; Wig, 2017),
but ignore the variability of individual brains in areal size,
location, spatial arrangement, and connectivity patterns (Mueller
et al., 2013; Zuo and Xing, 2014). The precise mapping of
individualized functional areas is a critical step toward better
understanding of the structural–functional relationship of the
human brain that underlying cognition and behavior (Wang
et al., 2015; Kong et al., 2019, 2021) as well as for personalized
localization diagnosis and treatment of neurological disorders
(Mueller et al., 2015; Wang et al., 2020).

Traditional individualized mapping of brain atlas has relied
on the linear and nonlinear registration based on the structural
images in the volume space or cortical surfaces. Modern machine
learning algorithms provide analytic tools to align cortical
areas using neuroimaging data across multiple modalities,
including myelin maps and functional localizers (Robinson et al.,
2018), as well as anatomical (Ma et al., 2021) and functional
connectivity fingerprints (Wang et al., 2015). As one of the
most commonly used features for individualized brain mapping,
functional connectivity has been shown to reveal individual-
specific topographic organization that better predicted cognitive
functions and behaviors (Wang et al., 2015; Cui et al., 2019; Kong
et al., 2019; Li et al., 2019). However, the reliability and validity
of such topographic variability has been one major concern
considering that the fMRI signals are highly contaminated by
noises of various physiological processes and head motions. By
explicitly separating actual intersubject variability from noise
components (evaluated by multiple sessions of the same subject),
studies have shown that the individualized parcellation not
only exhibited better functional homogeneity at rest and during
cognitive tasks (Kong et al., 2021), but also captured reliable
and inheritable variability in the topographic organization
of the human brain (Anderson et al., 2021), demonstrated
by the genetic effects of topographic variability. Yet, this
multisession hierarchical Bayesian model (MS-HBM) used a
global concentration parameter to model the heterogeneity of
functional connectivity for different brain parcels, and resulted
in similar levels of topographic variability and heritability among
the primary and association cortices by treating each area equally,
which is in congruence with the well-known sensory-fugal
gradient in the myelination, cytoarchitecture, and functional
organization of human brain.

In this study, we proposed a masked graph neural network
(GNN) architecture to learn the reliable functional characteristics
of each brain parcel using fMRI data from a large population

and to apply such information to infer the areal probability of
each vertex on unseen subjects. Specifically, we constructed a
vertex-level brain graph for each subject and embed the whole-
brain functional connectivity profiles as signals on the graph.
Then we used high-order graph convolution to integrate the local
connectivity context of each vertex such that the fluctuations in
functional connectivity profiles were evaluated among a small
neighboring area in the cortical surface rather than on each
vertex individually, largely suppressing the noise effects from
individual fMRI runs. Besides, we trained hundreds of graph
convolutional kernels at each graph convolution layer to encode
the variational organizational principles among cortical areas.
Moreover, we implemented subject-specific confidence masks in
the GNN model to maintain a consistent global topographic
organization among subjects while preserving the intersubject
variability in brain parcellation especially for vertices around the
areal borders. Compared with the baseline approaches including
the group-registered atlas and MS-HBM, our model generated
highly consistent and replicable parcellation maps on individual
brains, along with better functional homogeneity at rest and
during cognitive tasks. Moreover, the topographic variability
generally followed a sensory-fugal gradient from primary and
unimodal areas to heteromodal areas, with high variations in
the association cortices while keeping a stable parcellation on
the primary cortex. More importantly, the topographic variability
was strongly associated with individual variability in functional
connectivity profiles and cognitive behaviors.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
We used two independent datasets acquired from the Human
Connectome Project (HCP) dataset, consisting of T1-weighted
(T1w) data, resting-state functional MRI (rs-fMRI), as well as
task-fMRI data for each subject. The individualized parcellation
model was first trained and evaluated on a large dataset consisting
of 1,022 subjects acquired from the Human Connectome Project
S1200 release1. We then evaluated the test–retest reliability of
the model on the second dataset, consisting of 44 subjects
acquired from the HCP test–retest datasets. Whole-brain echo-
planar imaging (EPI) acquisitions were acquired with a 32-
channel head coil on a modified 3T Siemens Skyra with
TR = 720 ms, 2.0-mm isotropic voxels, using a multiband
sequence. Each subject underwent two fMRI sessions on separate
days, including two runs of 14-min resting-state and seven task
fMRI scans (we only used fMRI data with the left to right (LR)
phase encoding in the current study). The task-fMRI database
includes seven cognitive domains, which are emotion, gambling,
language, motor, relational, social, and working memory. The
detailed description of data collection and task paradigms can be
found in Barch et al. (2013).

We used the minimal preprocessed fMRI data from the
HCP pipelines2: (1) fMRIVolume pipeline generates “minimally

1https://db.humanconnectome.org/data/projects/HCP_1200
2https://github.com/Washington-University/HCPpipelines
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preprocessed” 4D time series (i.e., “.nii.gz” file) that includes
gradient unwarping, motion correction, fieldmap-based EPI
distortion correction, brain-boundary-based registration of EPI
to structural T1-weighted scan, nonlinear (FNIRT) registration
into MNI152 space, and grand-mean intensity normalization.
(2) fMRISurface pipeline projects fMRI data from the cortical
gray matter ribbon onto the individual brain surface (fs_LR32K
surface space) and then onto template surface meshes (i.e.,
“dtseries.nii” file), followed by surface-based smoothing using
a geodesic Gaussian algorithm. Additional preprocessing steps
were applied on rs-fMRI data before the calculation of
functional connectivity, including regressing out the signals from
white matter and csf, and the bandpass temporal filtering on
frequencies between 0.01 and 0.1 Hz. Further details on fMRI
data acquisition and preprocessing can be found in Glasser et al.
(2013) and Barch et al. (2013).

Construction of Individual Brain Graph
The preprocessed fMRI data were mapped onto the standard
surface template with 32k vertices per hemisphere. After
removing confounding vertices on the medial surfaces, the
cortical mask consists of 59,412 cortical vertices. Then an
adjacency matrix A was generated from the surface mesh files,
with Aij = 1 indicating that the two vertices i and j are shared
in a common triangle in the cortical mesh. Since all subjects have
already been registered onto the standard surface template during
data preprocessing, the adjacency matrix A was also shared
across all subjects. As such, a binary brain graph G = (V, E) was
constructed for each individual brain, with the node V indicating
each vertex in the cortical mesh, and the edge E specified by the
adjacency matrix indicating whether two nodes are connected or
not. The resulting brain graph is sparsely connected and highly
localized in space, with each vertex only connecting with two to
six nearest vertices on average.

Functional Connectivity Profile as Graph
Signals
For each vertex in the cortical mask, we calculated its functional
connectivity profile by calculating Pearson correlations on
preprocessed fMRI signals and treated it as a feature vector on
each node of the graph. In order to save the computational
cost and complexity, we did not use the vertex-wise functional
connectivity maps but instead calculated the connectivity
fingerprints evaluated on hundreds of functional region of
interest (ROIs) from a group atlas, e.g., Schaefer400 (Schaefer
et al., 2018). The connectivity fingerprint of each cortical vertex
x represents the probability of assigning the seed vertex to the
same label of each functional ROI. These connectivity profiles
were then concatenated and embedded in the individual brain
graph as graph X ∈ RN=F , where N indicates the number of
cortical vertices, and F indicates the number of features in the
connectivity profiles.

ChebNet Convolution on the Brain Graph
After defining the graph G = (V, E) with signals X ∈ RN=F for
each subject, a GNN architecture was applied on the combined
graph data G̃ = (V, E,X) with the aim of integrating the context

information of functional connectivity profiles at each vertex
from its spatial neighbors by using graph convolutions. Graph
convolution relies on the graph Laplacian, which is a smoothing
operator characterizing the magnitude of signal changes between
adjacent nodes. The normalized graph Laplacian is defined as:

L = I − D−1/2AD−1/2 (1)

where D is a diagonal matrix of node degrees, I is the
identity matrix, and A is the adjacent matrix of the graph.
The eigen decomposition of Laplacian matrix is defined as L =
U4UT , where U = (u0, u1, · · · uN−1) is the matrix of Laplacian
eigenvectors and is also called graph Fourier modes, and
4 = diag (λ0, λ1, · · ·λN−1) is a diagonal matrix of eigenvalues,
specifying the frequency of the graph modes. The convolution
between the graph signals X ∈ RN=F and a graph filter gθ ∈
RN=F based on graph G, is defined as their element-wise
Hadamard product in the spectral domain:

x ∗G gθ = U
(
UTgθ

)
�

(
UTx

)
= UGθUTx (2)

where Gθ = diag
(
UTgθ

)
and θ indicate a parametric model for

graph convolution gθ, UTx projects the graph signals onto the
full spectrum of graph modes. To avoid calculating the spectral
decomposition of the graph Laplacian, ChebNet convolution
(Defferrard et al., 2016) uses a truncated expansion of the
Chebyshev polynomials, which are defined recursively by:

Tk (x) = 2xTk−1 (x)− Tk−2 (x) , T0 (x) = 1, T1 (x) = x (3)

Consequently, the ChebNet graph convolution is defined as:

x∗G gθ =
K∑

k=0

θkTk
(
L̃
)
x (4)

where L̃ = 2L/λmax − I is a normalized version of graph
Laplacian with λmax being the largest eigenvalue, θk is the
model parameter to be learned at each order of the Chebychev
polynomials. It has been proven that the ChebNet graph
convolution was naturally K-localized in space by taking up
to Kth order Chebyshev polynomials (Defferrard et al., 2016),
which means that each ChebNet convolutional layer integrates
the context of brain activity within a K-step neighborhood. We
found that high-order graph convolutions might introduce over
smoothing issues and result in decreased functional homogeneity
in fMRI signals (Supplementary Figure 3). In this study, we used
the third-order graph convolutions in our GNN architecture.

Masked Semi-Supervised Graph
Convolutional Neural Network for
Individualized Cortical Parcellation
The GNN model takes the constructed brain graph G̃ =
(V, E,X) as inputs, where V is the set of 32k vertices in the
cortical surface, E is the set of edges indicating whether two
vertices share a common triangle in the surface, and X ∈ RN=F

is the set of feature vectors indicating the functional connectivity
profiles of each vertex. A series of third-order graph convolution
were then applied on the graph signals, with 64 kernels in the
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first graph convolutional layer and 201 kernels in the second
layer. The learned graph representations of the last layer were
transformed to a 201-dimensional probability vector using the
SoftMax function. The loss function of the proposed model was
defined as follows:

Loss =
∑
n

∑
v

wn,v
∑
k

yn,v,klog(pv,k) (5)

We used the K–L divergence to compute the difference between
the group prior yn,v,k and the predicted probability pv,k at each
vertex v for each region k. The weight of uncertainty wn,v
was evaluated for each vertex, inferred by a subject-specific
confidence mask. The confidence mask was generated as follows
(Supplementary Figure 1): (1) initial parcellation: assigning each
vertex in the cortical mask to the corresponding parcel with the
highest similarity in functional connectivity profiles; (2) group-
level alignment: excluding vertices in the initial parcellation
with different parcel labels as the group atlas; (3) subject-level
alignment: overlapping parcellation maps across all available
sessions of a single subject. The resulting confidence map
contains around half of the cortical mask (56% of vertices) that
contributed to the final loss function in all subjects. The benefits
of using the above loss function include: (1) high contributions
from the vertices near the center of brain parcels, preserving
a consistent global topographic organization across subjects;
and (2) small contributions from the vertices around the areal
borders, retaining the intersubject variability to some degree by
introducing mismatching labels across subjects.

The proposed pipeline of individualized brain parcellation (as
shown in Supplementary Figure 5) was trained on 50 subjects
with two sessions for 100 epochs with the batch size set to 1
(processing one subject at a time), evaluated on all other subjects
in the HCP S1200 dataset as well as the test–retest dataset. To
avoid overfitting, an early stopping of 10 epochs was used, along
with an additional l2 regularizations of 0.0005 on model weights
and a dropout rate of 0.5 on each graph convolutional layer.
The best model over 100 training epochs was saved and further
evaluated on the independent test sets from HCP S1200 and
test–retest datasets.

Comparison With Alternative Machine
Learning Approaches
Many approaches of individualized brain parcellation have been
proposed in the literature, for instance, by using an iterative
clustering of fMRI signals (Wang et al., 2015) or hierarchical
inference through a multilevel Bayesian model (Kong et al.,
2021). We included two individualized methods as baseline
approaches in the current study. The first approach aligned
the group atlas into individual brains using the multimodal
alignment protocol (Robinson et al., 2018), which utilized myelin
maps, resting state network maps, and visuotopic maps to align
cortical areas. The second approach modified the individual
mapping of brain atlas using a multisession hierarchical Bayesian
model (Kong et al., 2019, 2021), by explicitly modeling the
variability in functional connectivity at the levels of intra- and
intersubject. The preprocessed HCP fMRI dataset has already

included the copies of the first approach (i.e., the MSMALL
version), for which we compared the functional homogeneity
between our individualized brain parcellation and group-
registered brain atlas (see section “Resting State Functional
Homogeneity of Brain Parcels”). For fair comparisons with the
second approach, we reran the MS-HBM approach on the same
group of subjects along with the same preprocessing steps as
in our model and compared the distribution of topographic
variability between the two approaches (see section “The
Intersubject Reliability and Variability of Individual Properties”).
We chose the Schaefer400 atlas (Schaefer et al., 2018) as
the referenced group atlas for all approaches and used the
author-suggested model parameters for rerunning the MS-HBM
approach (Kong et al., 2021), including priors of group spatial
(100), markov random field (MRF) smoothing (50), and gradient-
based spatial localization (50).

The Intersubject Reliability and
Variability of Individual Properties
The reliability of individual parcellation and its intersubject
variability were evaluated on both HCP S1200 and test–retest
datasets. Each subject underwent two (HCP S1200 dataset)
or four (test–retest dataset) fMRI sessions. The reliability of
individual parcellation was evaluated by the averaged Dice
coefficients among all possible pairs. The Dice coefficient
was first evaluated on each brain parcel using the equation
(2 × A∩B)/(A + B), where A and B indicate two different
parcellation schemes, and then averaged across the whole cortex.
The effect size of the intersubject variability was measured by
Cohen’s d, representing the standardized difference between the
mean values of two distributions, defined as follows:

Cohen′s d =
µinter − µintra√
σ2
inter + σ2

intra

(6)

where µinter and σinter represent the mean and standard
deviation of the variabilities between each pair of subjects, while
µintra and σintra represent the mean and standard deviation
of the variabilities between different fMRI scans of the same
subject. We used different indices to measure the variability
of parcellation maps and connectivity profiles. Specifically,
the variability in brain parcellation (i.e., areal topographic
variability) was measured by the Dice coefficient between
two parcellation maps. The variability of connectivity profiles
(i.e., functional connectivity variability) was measured by the
correlation coefficients of the functional connectivity profiles
between two fMRI runs.

For further validation of the biological basis of the intersubject
variability in brain parcellation, additional association analyses
were conducted for the areal topographic variability, including
the variability of connectivity profiles, distribution of T1w/T2w
myelin ratio, as well as the sensory-fugal map of laminar
differentiation. As a quantitative measure of the myelin content
of cerebral cortex, the myelin ratio map was defined as the
ratio of T1w and T2w structural images on each subject and
then averaged across all subjects on the HCP S1200 release
(Glasser and Van Essen, 2011). The cortical myelin map was then
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mapped onto the chosen group atlas by averaging the T1w/T2w
ratio within each ROI. The laminar differentiation map identifies
four different cortical types based on their cytoarchitectonic
organization, namely, paralimbic, heteromodal, unimodal, and
idiotypic areas (Mesulam, 1998). A cortical mapping of laminar
differentiation was generated by assigning each ROI in the chosen
group atlas to one of the four types.

Resting State Functional Homogeneity of
Brain Parcels
Functional homogeneity in resting-state fMRI was defined as
the averaged Pearson’s correlations of fMRI signals between
all pairs of vertices within each parcel, adjusted for the parcel
size (Kong et al., 2019, 2021). Higher functional homogeneity
indicates similar brain dynamics of fMRI activity within the
same parcel. The functional homogeneity was evaluated on the
test set from the HCP S1200 (in a total of 928 subjects, after
excluding the training data, subjects included in the test–retest
data, and some abnormal data with missing functional scans) for
both group-registered parcellation and masked semi-supervised
graph convolutional neural network (MSGCN) individualized
brain parcellation. A two-sided paired t-test was applied to test
the significant differences of functional homogeneity between
the two approaches.

Regional Variability and Homogeneity in
Task Activation
We chose one representative task contrast from each of the
seven cognitive domains: right-hand movement for the motor
task, two back conditions on tool images for working memory,
math vs. story for language processing, faces vs. shapes for
emotional processing, theory of mind vs. random motion for
social cognition, reward for the gambling task, and relational
processing vs. pattern match for relational processing. For
each task contrast, we evaluated the regional variability and
homogeneity in the task activations from the test subjects of
the HCP S1200 dataset. Regional variability in task activation
was evaluated by calculating the standard deviation of brain
activation within each parcel by using the beta maps derived
from the generalized linear model (GLM) analysis. Lower task
variability indicates small variations of task activations within
each brain parcel and large variations along the areal boundaries.
Regional homogeneity in task activation was evaluated by the
mean activation strength in each brain parcel. Higher task
homogeneity indicates better functional alignment in the task
activations across different subjects.

Prediction Cognitive Behaviors Using
Individualized Parcellation
To further validate that individualized parcellation improves
the intersubject functional alignment in brain organization and
captures meaningful aspects of human cognition, we performed
another experiment to predict cognitive behaviors using the
intersubject variability in brain parcellation. A kernel regression
method was used to predict the behavioral score of the test
subject based on the assumption that similar topography in brain

parcellation induced similar performance in behavior, defined as
follows:

y ≈
∑
i

Dice(l, li)yi

where yi represents the behavioral score of the i-th subject in
the training set, li represents the parcellation map of the subject
i, Dice(l, li) represents the Dice coefficient of parcellation maps
between the test subject and the subject i, and y represents
the behavioral score of the test subject. An additional l2-
regularization term was used to prevent overfitting issues, with
the regularization parameter determined by a fivefold cross-
validation procedure.

For each of the 58 cognitive behaviors, a prediction model was
trained and evaluated on 928 individualized brain parcellations.
Specifically, we trained the prediction model on 200 subjects and
evaluated it on the rest of the 728 subjects. First, we used a five-
fold cross-validation strategy to determine the optimal prediction
model (including model parameters and the l2-regularization
parameter). The model was then used to predict the behavioral
scores on the test subjects. Finally, the performance of the
prediction model was evaluated by calculating the Pearson
correlation of predicted and measured behavioral scores.

RESULTS

Masked Semi-Supervised Graph
Convolutional Neural Network Model for
Individualized Brain Parcellation
The MSGCN model (as shown in Supplementary Figure 5)
was evaluated using 1,022 subjects from HCP S1200 dataset
with two fMRI sessions for each subject, among which 40
subjects were randomly chosen for model training, 10 subjects
for validation, and the rest of the datasets used for model
testing. During model training, a vertex-level brain graph was
first constructed from individual T1-weighted brain images,
indicating the spatial adjacency between any two vertices in
the cortical surface. The functional connectivity profiles of each
vertex were then embedded in the brain graph as graph signals.
Finally, the areal probability of each vertex was inferred by using
a two-layer graph convolution architecture with a subject-specific
confidence mask. As a result, the MSGCN model extracted
reliable functional characteristics of each brain parcel inferred
from a large population and generalized over data of unseen
subjects by revealing reliable parcellation maps for each of
the test subjects.

Topographic Organization of Individual
Parcellation and Its Test–Retest
Reliability
The cortical parcellation maps on individual brains followed
a similar global topographic organization as the group atlas
(e.g., Schafer400 atlas), indicating a relatively high similarity
[dice = 0.847 ± 0.013 (mean ± std)] among all fMRI sessions
of 1,022 HCP subjects. First, a stable brain parcellation scheme
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FIGURE 1 | Topographic organization of individual parcellation and its reliability measured on the HCP S1200 dataset. (A) Reliability of individual parcellation. The
masked semi-supervised graph convolutional neural network (MSGCN) individualized parcellation showed significantly higher similarity for intrasubject
(0.889 ± 0.025) than intersubject (0.810 ± 0.021), detected by a paired t-test (p < 0.001). (B) Cortical mapping of the group atlas. We used a similar color scheme
as the Yeo-7 networks for the Scaefer400 atlas, while the areal borders were delineated by the gray line. (C) Probability map of individualized parcellation maps. The
parcellation maps on all subjects were summarized into a population probability map, indicating the probability of assigning the vertex to the same parcel among the
HCP population. A population threshold of 60% was applied to the probability map. (D) Distribution of intersubject variability in brain parcellation among functional
networks. We used Cohen’s d to evaluate the effect size of variability in individualized parcellation generated by MSGCN (orange line) and multisession hierarchical
Bayesian model (MS-HBM) (purple line), both of which showed large variations in the association cortex including “Ffontal,” “parietal,” and “2ndSen” regions and low
variability in the motor and sensory cortices. However, the MSGCN model detected higher variability in high-order cognitive areas, especially in the frontal and parietal
regions. (E) Cortical mapping of intersubject variability for the MSGCN model. (F) Cortical mapping of intersubject variability for the MS-HBM. ∗∗p-value < 0.01.

was revealed such that the majority of vertices showed consistent
parcel labels across subjects, with over 75% of cortical vertices
showing a high population probability >0.6. We observed
near-perfect alignment at the center of brain parcels along
with notable variability around the areal borders (Figure 1C).
Second, the reliability of individual parcellation, measured by
the intra- and intersubject similarity (Figure 1A), showed
significantly higher consistency among multiple sessions of the
same subject (dice = 0.889 ± 0.025) than between different

subjects (dice = 0.810 ± 0.021), as revealed by a paired t-test
(p < 0.001). Moreover, the intersubject variability in brain
parcellation (i.e., areal topographic variability), evaluated by
the Cohen’s d effect size among individualized parcellation
maps, was not uniformly distributed in the cerebral cortex,
but rather followed the functional organizational principles
(Figure 1E). After mapping the areal topographic variability
onto the seven functional networks (Ito, 2018), we found
consistent parcellation schemes for the motor and sensory
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cortices (i.e., low variability) and divergent brain parcels for
the association cortices (i.e., high variability) including frontal,
parietal, and temporal areas (Figure 1D). Compared with
another individualized parcellation approach, e.g., the MS-
HBM, our MSGCN model revealed higher areal topographic
variably, in general (Supplementary Figure 4), with a similar
level of areal topographic variability in the primary cortex
but detecting much higher variability in the secondary and
association cortices (Figure 1D).

The reliability of the MSGCN parcellation was further
validated on the test–retest datasets, by revealing reliable cortical
parcellation on the same subject and detecting notable variations
in the areal topographic organization between subjects. We
also found much higher similarity in the parcellation maps
among multiple sessions of the same subject compared with
similarity between different subjects (dice = 0.9122 ± 0.011
and 0.8370 ± 0.012, respectively). The cortical parcellation
maps on two exemplar subjects are shown in Figure 2.
Individual-specific areal topography was revealed, for instance,
in the inferior parietal lobe (the marked region in Figure 2),
indicating a similar topographic pattern across the four test–
retest sessions of the same subject but largely different areal
topography between subjects. Our findings suggest that the
MSGCN individualized parcellation detects reliable individual
differences in the areal topography.

Interpretability of Intersubject Variability
in Brain Parcellation
The intersubject variability of MSGCN parcellation was
biologically meaningful and followed the myelination and
cytoarchitectonic organizational principles of the human
brain. We observed a significant association between the areal
topographic variability and the variability of connectivity
profiles (r = 0.42, p < 0.001, Figure 3B), both of which showed
high variations in the heteromodal and unimodal regions,
along with low variability in the idiotypic and paralimibic
regions, regions specified by an independent atlas of laminar
differentiation (Figure 3D), generally following a sensory-
fugal gradient from sensory–motor and unimodal areas to
heteromodal areas (Mesulam, 1998). By contrast, although
exhibiting a strong association with the functional connectivity
variability as well (r = 0.30, p < 0.001, Figure 3B), the MS-
HBM parcellation showed a very different distribution of areal
topographic variability that weakly aligned with the laminar
differentiation map. For instance, much higher variability
was detected in the idiotypic and unimodal regions rather
than in the heteromodal regions (Figure 3D). Moreover,
the areal topographic variability of the MSGCN parcellation
was significantly associated with the T1w/T2w myelin ratios
as well (r = −0.27, p < 0.001), indicating low variability
in the primary motor and visual cortex, which are heavily
myelinated, and high variability in the association cortices,
which are more lightly myelinated (Glasser and Van Essen,
2011). Such association with the myelination organization was
missing in the MS-HBM parcellation (r = 0.005, p = 0.09).
Our results suggest that the intersubject variability revealed

by the MSGCN model follows the global distribution of
myelo- and cytoarchitecture, as well as the variability in
functional brain organization.

Improved Functional Homogeneity With
Reduced Task Variability
The functional homogeneity at rest measures the internal
functional consistency of brain parcels. As shown in Figure 4A,
the global functional homogeneity on the validation dataset was
gradually improved during the model training process. Besides,
the individualized brain parcellation on the unseen test subjects
also exhibited higher functional homogeneity than the initial
parcellation derived from the group atlas (see Supplementary
Figure 1 for an example), as detected by a paired t-test
(p = 0.0006). The averaged functional homogeneity of the
MSGCN parcellation was 0.137 ± 0.001 (mean ± se), evaluated
on all 928 test subjects from the HCP S1200 dataset, with a
4% improvement at the whole-brain level compared with the
group-registered atlas (Figure 4B).

On the other hand, the regional variability in task activations
(task variability) measures the functional alignment between
the intrinsic brain organization at rest and task-evoked brain
activation during cognitive tasks. Our results showed that the
MSGCN parcellation captured more homogenously distributed
task activations. Overall, MSGCN parcellation showed better
functional alignment at the whole-brain level for the seven tasks
in HCP data, namely, language (math–story), emotion (faces–
shapes), gambling (reward), relational (rel–match), social (tom–
random), motor (rh-avg), and working memory (2BK-tool) tasks,
with significantly reduced task variability compared with the
group atlas [False Discovery Rate (FDR) corrected p-value < 0.05,
as shown in Supplementary Table 1]. For instance, the changes in
the subject-specific activation map of language task followed the
areal borders identified by the MSGCN parcellation (Figure 5B),
e.g., lower regional variability and higher homogeneity in the
inferior parietal regions (Figure 5C). Compared with the group-
registered Schaefer400 atlas, the MSGCN parcellation showed
smaller variability in task activation within the detected region
(p = 0.02) along with higher functional consistency across
subjects (p = 0.04). Moreover, the MSGCN parcellation detected
lower variability in task activations for all seven tasks at the
whole-brain level (Figure 5A). Our findings indicate that the
MSGCN parcellation reveals a better functional alignment across
subjects in both resting state and task activation.

Prediction Cognitive Behaviors Using
Masked Semi-Supervised Graph
Convolutional Neural Network Brain
Parcellation
For each of the 58 cognitive behaviors, we trained a prediction
model based on the parcellation maps of 200 subjects and
evaluated the model on the rest of the 728 subjects. The
models achieved significant predictions (p-value < 0.05) on
25 behavioral scores (as shown in Figure 6A), including
motor (Strength_Unadj, Endurance_Unadj), cognition
(PicVocab_Unadj), language (ReadEng_Unadj), and others (see
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FIGURE 2 | Individualized brain parcellation on two exemplar subjects and four test–retest sessions. The inferior parietal lobe (zoomed-in areas within the red
rectangle) showed a similar topographic pattern across the four sessions of each subject, but detected significantly different areal topography between two subjects.

Supplementary Table 2 for a full list of 25 behavioral measures).
For instance, we found significant associations between predicted
and measured behavioral scores for motor (Strength_Unadj,
r = 0.398, p = 7e-30) and cognition (PicVocab_Unadj, r = 0.1979,
p = 5e-8), as shown in Figures 6B,C. These findings indicated
that the individualized parcellation maps captured meaningful
aspects of individual variability in brain topography and
human cognition.

DISCUSSION

In this study, we propose an individualized cortical parcellation
method that projects the group atlas onto individual brains

by taking into account the variations in brain topography
and functional connectivity. The proposed MSGCN parcellation
generated highly consistent parcellation maps on multiple
sessions of the same subject (intrasubject similarity = 0.89) while
capturing reasonable topographic variations between subjects
(intersubject similarity = 0.81). Compared with other baseline
approaches including the group-registered atlas and MS-HBM,
our method generated more homogeneous parcels on individual
brains that strongly aligned with the intrinsic brain organization
at rest and task-evoked brain activation of cognitive tasks.
Moreover, the MSGCN parcellation revealed higher intersubject
variability in the association cortices while keeping a stable
parcellation on the primary cortex, indicating a sensory-fugal
gradient from primary and unimodal areas to heteromodal
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FIGURE 3 | Distribution of intersubject variability in the masked semi-supervised graph convolutional neural network (MSGCN) parcellation and its association with
functional, myelination, and cytoarchitecture organization. (A) Cortical mapping of intersubject variability in the functional connectivity profiles, with the red colors
indicating high variability among subjects and blue indicating low variability. (B) Associations of the areal topographic variability with the variability of functional
connectivity profiles. We found a strong association in the MSGCN model (r = 0.42, p < 0.001), which was much higher than multisession hierarchical Bayesian
model (MS-HBM) (r = 0.30, p < 0.001). (C) Cortical mapping of the T1w/T2w myelin ratio map, with the red colors indicating high myelination content in the areas.
(D) Associations of the areal topographic variability with the distribution of the myelin ratio map. We found a significant negative association in the MSGCN model
(r = −0.27, p < 0.001), but not in MS-HBM (r = 0.005, p = 0.09). (E) Cortical mapping of laminar differentiation, with different colors representing one of the four
cortical types, namely, paralimbic, heteromodal, unimodal, and idiotypic areas. (F) Distribution of the intersubject variability in both functional connectivity profiles and
individual parcellation. The intersubject variability was evaluated by using Cohen’s d. Both functional connectivity profiles and MSGCN individualized parcellation
showed relatively higher variability in the heteromodal and unimodal areas than the paralimbic and idiotypic areas. By contrast, the MS-HBM parcellation identified
much higher variability in the idiotypic areas.
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FIGURE 4 | Functional homogeneity of individualized brain parcels in the masked semi-supervised graph convolutional neural network (MSGCN) parcellation.
(A) The changes in functional homogeneity were evaluated in the validation dataset during the training processes. (B) Significantly higher functional homogeneity was
detected in the MSGCN model (0.137 ± 0.001) than the group-registered Schaefer400 atlas (0.132 ± 0.001), as revealed by a paired t-test (p = 0.0006).
∗∗∗p-value < 0.001.

FIGURE 5 | Functional alignment of the masked semi-supervised graph convolutional neural network (MSGCN) parcellation with task activations in the Human
Connectome Project (HCP) tasks. (A) Task variability of MSGCN parcellation and Schaefer400 atlas on the seven tasks. We observed significantly lower (FDR
corrected p-values < 0.01) regional variability in task activations by using the MSGCN parcellation (in orange) compared with the Schaefer400 atlas (in blue).
(B) Representative activation map of the language task on a single subject, with the areal borders identified by the group-registered Schaefer400 atlas and MSGCN
individualized brain parcellation, respectively. The visual assessment suggested that the fluctuations in the subject-specific task activation map went along the areal
borders identified by the MSGCN parcellation but not the Schaefer400 atlas. (C) Task variability and homogeneity of the rectangular area marked in panel (B).
Quantitative comparisons suggested significantly lower variability and higher homogeneity of task activation in the detected region by using the MSGCN parcellation
compared with the Schaefer400 atlas, as detected by paired t-tests (p-value = 0.02 and 0.04, respectively). ∗p-value < 0.05; ∗∗p-value < 0.01.

areas. Such topographic variability in individualized parcellation
strongly associated with the variability of functional connectivity
profiles and cognitive behaviors, and generally followed the
myelination, cytoarchitecture, and functional organization of
the human brain.

Individualized brain parcellation has played a more and
more important part in neuroscience research and clinical
studies, which not only better predicted human cognition,
behaviors, personality, and emotion (Kong et al., 2021), but also
captured reliable and inheritable variability in the topographic

organization of the human brain (Anderson et al., 2021), as
well as more precise diagnosis and treatment of neurological
disorders (Mueller et al., 2015; Wang et al., 2020). Yet, due to the
inevitable contamination of fMRI signals by physiological noises
and head motions, the traditional individualized parcellation
approaches usually suffer from low generalizability on new
datasets and low consistency among repeated scans. To address
this issue, we applied a high-order graph convolution along
with a multilayer deep learning architecture in this study. As
a generalization of the conventional convolutional operations
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FIGURE 6 | Prediction cognitive behaviors using masked semi-supervised graph convolutional neural network (MSGCN) individualized brain parcellation.
(A) Prediction accuracies on 25 behavioral scores measured by the Pearson correlation of predicted and measured behavioral scores, with accuracy ranging from
0.07 to 0.4 (p-values < 0.05). (B) Significant associations between the predicted and measured behavioral scores for motor (Strength_Unadj, r = 0.398, p = 7e-30)
and (C) cognition (PicVocab_Unadj, r = 0.1979, p = 5e-8), as indicated by red triangles in (A).

onto nongrid structures, graph convolution applies a series of
low-frequency filters on the graph modes, also known as using
multiple smoothing kernels on the cortical surface, and detects
low fluctuations of functional connectivity along the vertex-level
brain graph. The smoothing effect was controlled by the order
of ChebNet graph convolution. Using this graph convolution
architecture, the model generated very stable parcellations on
a large population with over 75% of cortical vertices following
the global topographic organization by assigning them to
the same parcels among different subjects. Besides, highly
consistent parcellation maps (Figures 1, 2) were generated on
the multiple sessions of the same subject (dice = 0.89), along

with lower consistency between subjects (dice = 0.81). Yet,
high-order kernels and deep architectures may introduce over-
smoothing issues in GNN, which tends to generate identical
parcellation maps on all subjects. We have also observed
such over-smoothing effect in our MSGCN model such that
the functional homogeneity of individualized brain parcels
gradually reduced when using higher-order graph convolutions
(K > 3 in Supplementary Figure 3). Considering the tradeoff
between the intersubject variability and intrasubject reliability
in individualized brain parcellation, we used the third-order
graph convolution along with two layers in our model, which
not only revealed high consistency among test–retest sessions
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but also captured notable variability of brain parcellation
between subjects.

The separation of intersubject variability from the randomly
appearing noise components have also been considered in
previous individualized parcellation models, for instance, using
a hierarchical Bayesian model to quantify the variability
of functional connectivity at multiple levels (Kong et al.,
2021). However, by treating each area equally through a
global concentration parameter on all regions, the MS-HBM
approach revealed similar levels of topographic variability
and heritability among the primary and association cortices
(Anderson et al., 2021), which is in congruence with the
well-known sensory-fugal gradient in brain organization. To
avoid this effect, we chose a data-driven approach to learn
the functional characteristics of each brain parcel inferred
from a large group of subjects and to encode the intra- and
inter-region heterogeneity of functional connectivity through a
large set of graph convolutional kernels. The detected region-
specific connectivity fingerprints have been proven to be highly
generalizable and reliable when inferring the areal probability
on unseen subjects (Figures 1, 2). The main reasons that drive
this effect include (1) integrating the local connectivity context
of each vertex instead of treating each vertex independently,
(2) detecting the fluctuations in functional connectivity profiles
within a small neighboring area in the cortical surface, and
(3) indicating the areal borders on individual brains by using
the gradients of function connectivity fluctuations at multiple
levels. As a result, the model revealed large intersubject variability
in brain parcellation, and such topographic variability was not
randomly or uniformly distributed across the cerebral cortex,
but rather followed the global distribution of myelination,
cytoarchitecture, and functional organization of the human brain
(Figure 3). The model demonstrated low variability in the
primary and unimodal cortices that are heavily myelinated and
large variations in the heteromodal and association cortices that
are lightly myelinated. Similar associations with the myelination
and cytoarchitecture organization have also been reported in both
brain anatomy and function (Huntenburg et al., 2018; Demirta
et al., 2019), suggesting a sensory-fugal gradient in the individual
developmental and evolutionary expansion of the cerebral cortex
(Glasser and Van Essen, 2011).

There are two main goals for the individualized brain
parcellation, including (1) functional homogeneity of brain
parcels on individual brains, and (2) consistent topographic
organization across multiple sessions and different subjects. The
tradeoff between these two goals was addressed by using a semi-
supervised learning framework with subject-specific confidence
masks. Specifically, during model training, a subject-specific
confidence mask was used for the guidance of topographic
alignment across subjects, indicating the true labels for a small
portion of cortical vertices, i.e., the labels extracted from the
group atlas (see Supplementary Figure 1 for an example). These
true labels were then used to learn the association between brain
topography and functional connectivity profiles and to predict
the parcellation of unlabeled data in the training subjects as
well as for unseen test subjects. Similar to previous approaches
(Wang et al., 2015), we started from an initial parcellation

(see Supplementary Figure 1 for an example) that had the
highest functional homogeneity by grouping cortical vertices
according to their functional connectivity profiles to ensure
the functional homogeneity of brain parcels (Supplementary
Figure 2). Additional modifications on this parcellation map, i.e.,
excluding vertices that were misaligned across sessions of the
same subject or with the group atlas, introduced the important
features of topographic alignment in individualized parcellation.
By implementing the resulting confidence map with the semi-
supervised learning, the model captured homogenous parcels
on individual subjects that also followed the global topographic
organization of the group atlas. It is worth noting that the
MSGCN parcellation not only generated the full parcellation
of half-labeled training subjects but also made predictions over
unseen test subjects where no labeled data were included. The
generalizability of the model barely impacts by the size of training
set such that labeling all subjects from the dataset, i.e., both
training and testing data were drawn from the same sets of
subjects, only achieved 2% of improvement on the functional
homogeneity but showed much lower intra- and intersubject
reliability (Supplementary Figure 2).

The MSGCN individualized brain parcellation not only
generated replicable parcels on individual brains but also
captured meaningful individual variability in brain topography
and human cognition. The topographic variability generally
followed a sensory-fugal gradient from primary and unimodal
areas to heteromodal areas, with high variations in the association
cortices while keeping a stable parcellation on the primary
cortex. Such topographic variability strongly associated with
the variability of functional connectivity profiles, and generally
followed the myelination, cytoarchitecture, and functional
organization of the human brain. More importantly, the
topographic variability was highly predictive to individual
variability of cognitive behaviors ranging from motor to language
to cognition. However, not all behavioral scores showed a
strong association with the predicted scores (only 25 out of 58
behaviors with p-value < 0.05). This is probably due to the
implementation of the Dice coefficient as the kernel function in
the prediction model, which was a global measure of similarity in
brain parcellation and had limited power to detect the variability
in specific brain regions and networks. Other kernel functions,
for instance, resting-state functional connectivity and regional
morphological statistics, as well as other prediction models, could
be explored in the future.

LIMITATIONS

In the current study, we used the Schaefer cortical parcellation
with 400 regions as the referenced group atlas. Yet, the proposed
model is not limited to a specific atlas or specific resolutions per
se, but rather easily generalized to other parcellation schemes
including functional, anatomical, or multimodal atlases. It is
worth noting that, in order to balance between the internal
homogeneity in connectivity profiles and consistent topographic
organization across subjects, the optimal setting of the graph
convolution architecture should be tested when applying to new
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datasets and atlases, including the order of graph convolution, the
number of convolutional layers, as well as the confidence masks.

CONCLUSION

We proposed a masked semi-supervised GNN model for
individualized brain parcellation taking into account the
homogeneity of functional connectivity profiles, alignment of
topographic organization across subjects, as well as the reliability
of test–retest data on individual brains. Compared with other
individualized approaches, the MSGCN parcellation generated
more homogenous brain parcels at rest and during cognitive
tasks. The model captured high topographic variability that
was mainly distributed in the associated cortices while keeping
a stable parcellation in the primary and unimodal areas,
and generally followed the myelination, cytoarchitecture, and
functional organization of the human brain. Moreover, the
topographic variability strongly associated with the functional
connectivity variability and significantly predicted a series of
cognitive behaviors ranging from motor to language to cognition.
This study provides new avenues for precise mapping of cortical
areas onto individual brains, and shows potential applications
in locating personalized functional areas in the diagnosis and
treatment of neurological disorders.
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