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Maximizing gerrymandering 
through ising model optimization
Yasuharu Okamoto

By using the Ising model formulation for combinatorial optimization with 0–1 binary variables, 
we investigated the extent to which partisan gerrymandering is possible from a random but even 
distribution of supporters. Assuming that an electoral district consists of square subareas and that 
each subarea shares at least one edge with other subareas in the district, it was possible to find the 
most tilted assignment of seats in most cases. However, in cases where supporters’ distribution 
included many enclaves, the maximum tilted assignment was usually found to fail. We also discussed 
the proposed algorithm is applicable to other fields such as the redistribution of delivery destinations.

Gerrymandering is a generic term for methods that rig electoral districts assuming advantage to a specific party. 
As long as geographical districts are adopted, the demarcation of districts is inevitable. Electoral districts are 
also a unit of voters artificially defined by electoral legislation. If this artificial demarcation is intentional, the 
neutrality of being a geographical division will disappear, and the problem of partisan gerrymandering arises. In 
terms of its practical effect on the exercise of voting rights, gerrymandering corresponds to systematic control 
of wasted votes.

There are two techniques widely known in gerrymandering: cracking and packing1. The former means the 
cracking of the opposing party’s voters’ concentration not to form a majority of the district. On the other hand, 
the latter is to pack as many of the opposing party’s voters as possible into the same district when it is unavoid-
able to form a district with most of the opposition. Packing will dilute the number of opponents who may have 
formed a majority in other districts. Thus, cracking and packing is practically equivalent to a combination of a 
narrow victory and a big defeat. Cracking and packing make it possible to minimize the number of wasted votes 
for governing party while maximizing it for the opposition. A voter who is assigned a wasted vote by gerryman-
dering effectively loses the opportunity to elect a representative. In other words, such a voter would enjoy only 
the right to cast a wasted vote, which leads to the danger of distorting the normative imperatives established in 
our time to reflect the people’s diverse will.

Gerrymandering has been studied through jurisprudential or sociological approaches since it occurred in the 
early nineteenth century2–5, however, it has also been studied in mathematical science in recent years6–9. Stud-
ies based on Markov chain Monte Carlo help evaluate districting’s intentionality, which would be necessary for 
gerrymandering certification in court. Puppe and Tasnádi proved that determining whether given geography 
admits an unbiased districting is an NP-complete problem9. Furthermore, in recent years, with the development 
of information and communication technology, information gerrymandering10 and digital gerrymandering11 
have aroused concern. Although there is no clear definition of digital gerrymandering, it suggests that voting 
behavior is biased through social networks12 and public opinion manipulation by extensive data analysis. Thus, 
the concept of gerrymandering is expanding in recent times, and it becomes a research area that requires closer 
integration of social and mathematical science. Such mathematical studies on gerrymandering are still in the 
early stages. Therefore, various approaches from different disciplines are important and worth considering to 
shed new light on it.

The combinatorial optimization based on the Ising model employed in this study means the approach 
where the objective function is formulated by the Ising model with 0–1 binary variables and optimized through 
metaheuristics such as simulated annealing or tabu search13. The approach attains considerable attention recently 
in terms of the development of quantum annealing14. Furthermore, with the progress of quantum anneal-
ing, it is noteworthy that dedicated computers15, and algorithms for Ising models are appearing in classical 
computation16,17. Consequently, the combinatorial optimization based on the Ising model begins to be applied 
to various fields and problems such as logistics (delivery route planning)18, factories (automated guided vehicle 
operation)19, services (nurse scheduling)20, finance (risk management of financial assets)21, materials science 
(metamaterials design)22, and drug design (molecular similarity search)23.
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In this paper, by using combinatorial optimization based on the Ising model13, we investigated the extent to 
which partisan gerrymandering under a two-party system is possible to tilt seats in favor of one party starting 
from a random but even distribution of supporters for both parties. Our model consists of 70 cells that express 
the distribution of supporters. Supporters of either Party A or B govern each cell. All districts consist of 5 cells, 
and the total number of seats in the model is 14. If there is support for three or more cells out of 5 cells in a 
district for either party, the party will get the seat. We observed that both parties could assign the theoretically 
maximum number of seats by gerrymandering in 8 out of 10 cases of random distribution of the equivalent 
supporters when a rook constraint forbade enclaves in a district.

Methods of computation
Model of single‑seat district.  The model examined in this study contains Ng single-seat districts, and 
each district consists of Nc cells. Therefore, the total number of cells in the model is Ng × Nc (≡ Ns). As shown in 
Fig. 1, we arrange the Ns cells in a rectangle of length m and width l. The party with a majority of the Nc cells that 
make up a district gets the seat. Both parties control half of the Ns cells. Therefore, the powers of both parties are 
in equilibrium as a whole. Besides, we assume that Ns is even, and Nc is odd to balance the two parties’ power 
and decide which wins in each district. We randomly give the cells’ position where Party A governs in the (m × l) 
rectangle as the initial value. We set Ng, Nc, m, and l as 14, 5, 7, and 10, respectively, unless otherwise stated.

If we can rig the redistricting completely freely in favor of one party from both parties’ even distribution, the 
number of seats won by the party will be 

⌊

Ns/2
⌈Nc/2⌉

⌋

(≡ Nmax) at the maximum, where ⌈x⌉ denotes the ceiling func-
tion and means the smallest integer greater than or equal to x. Similarly, ⌊x⌋ denotes the floor function and means 
the largest integer less than or equal to x.

However, we should note that redistricting is usually not unconditional. Thus, we impose a condition to 
forbid the occurrence of the enclave, called a rook constraint. The rook constraint means that cells in the same 
district share at least one edge with other cells in the district. In the following, we will explain by assuming that 
Party A enjoys an advantage over Party B.

Constrains for districts and cells in the Ising model.  We give the constraints that must be satisfied by 
districts and cells as follows,

where xgs  represents 0/1 binary variables, if we assign cell s (s = 0, 1…, Ns-1) to district g, then xgs  is one. Otherwise, 
it is zero. The first term in RHS means the constraint that the number of cells comprising each district is Nc. The 
second term in RHS means the constraint that each cell belongs to only one district. If these constraints fail, the 
energy of the objective function will increase as a penalty.

Counting the number of governing cells in each district.  Assuming that j is the number of cells in 
which Party A governs in the district g, j must satisfy the following constraints.

where ygj  represents 0/1 ancillary binary variables, if the number of cells where Party A dominates in the district 
g is equal to j, then ygj  is one. Otherwise, it is zero. Besides, f (s) represents that if Party A governs cell s, then 
f (s) is one. Otherwise, it is zero. Note that, unlike other binary variables determined through optimization, we 
give f(s) as the input data that reflect Party A or B supporters’ distribution. The first term in RHS means that ygj  
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Figure 1.   A model of electoral districts with 70 cells arranged in a 7 × 10 rectangle (Case 1) where 1(0) means 
a cell that Party A(B) has an advantage over B(A). Party A controls 35 cells, whereas Party B controls the 
remaining 35 cells. Red or blue dotted rectangle designates the areas where Party B has a significant advantage.
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is a one-hot vector corresponding to 0 to Nc. The second term in RHS is a constraint that the number of cells in 
which Party A governs in the district g is j.

For gerrymandering, we require a driving force to decrease the energy of the objective function during the 
optimization by redistricting Ns cells in favor of Party A. We introduce a driving force as follows.

where p(j) acts to increase the number of districts in favor of Party A. Let j be the number of cells in each district 
where party A governs. If j ≤ ⌈Nc

2
⌉ − 1 , we set p

(

j
)

> 0 to reduce the districts that are disadvantageous to Party 
A. On the other hand, if j ≥ ⌈Nc

2
⌉ , we set p

(

j
)

< 0 to increase the districts that are advantageous to Party A. After 
some trial error, we determined p(j) as follows,

In this setting of p(j), losing a seat raises the energy whereas gaining a seat lowers the energy, especially when 
a party just barely wins at j = ⌈Nc

2
⌉ number of votes, which lowers the energy significantly.

Finally, we introduce the rook constraint. Two cells that share an edge led to decreasing the energy of the 
objective function. We give the rook constraint as follows.

Here, Srook designates a set in which the two cells s and s’ share an edge. Thus, the Hamiltonian (HIsing) of the 
Ising model is given by

A, B, C, and D represent hyperparameters that regulate the strength of the constraints and objective function. 
We determined them by Bayesian optimization (BO) using a Gaussian process24. The method is suitable for global 
optimization of black-box functions with low variable dimensionality but high function evaluation cost, such as 
the problem treated here. It is also advantageous in that no derivative of the function is required for optimization.

We can find the minimum of HIsing by optimizing the Hamiltonian. We used tabu search (TS)25,26 to optimize 
it because TS gave better results than simulated annealing in our preliminary tests. We used Qbsolv for TS; an 
application program interface supported in D-Wave Ocean (software development kit developed by D-Wave Sys-
tems)27. Note that Qbsolv is a quantum–classical hybrid solver for quadratic unconstrained optimization problems 
with binary variables (QUBO), however, in this paper it is simply used as a classical solver that solves QUBO by 
TS. Although HIsing consists of four partial Hamiltonians ( HIsing = A×H1

cst + B×H2
cst + C ×Hgerr + D ×Hrook ), 

the division is for the purpose of explaining the formulation, and Qbsolv actually solves one QUBO correspond-
ing to HIsing, which is the sum of these terms.

Although Hrook favors cells that share an edge, we observed that this alone did not prevent the district from 
containing enclaves. If we regard a district as a graph, the absence/presence of enclaves corresponds to the con-
nected/disconnected graph. It is easy to determine whether a graph is connected or not by using graph theory 
algorithms. We count the number of districts that have enclaves among Ng districts and use the number (Ndis) 
as a penalty to the objective function of BO (HBO) expressed as,

N1
cst represents the expectation value of H1

cst by the solution vector xopt obtained from optimizing HIsing by 
TS, namely N1

cst = �xopt |H
1
cst |xopt� . If the solution vector satisfies the constraint given by H1

cst , then N1
cst will be 

zero. Consequently, this value is an indicator of how much the constraint is not satisfied. The same is true for 
N2
cst = �xopt |H

2
cst |xopt� . Ndis also becomes zero if there are no enclaves in all Ng districts. Nseat is the number of 

seats won by Party A, calculated from the solution vector xopt. Note that HBO will be -Nmax if gerrymandering 
could assign seats completely tilted manner. However, due to the rook constraint, the value may not be reached 
depending on the supporters’ initial distribution. It is noteworthy that BO takes care of the adjustment of hyper-
parameters in HIsing and the prohibition of enclaves in the districts. We observed that the prohibition of enclaves 
was difficult to achieve by simply optimizing the Ising model. In this study, we have updated BO a thousand times, 
and we optimize HIsing by TS of 1250 or 5000 trials in each BO update. We carried out BO by using gp_minimize 
in scikit-optimize28. The parameters for gp_minimize was set as n_calls = 1000 (number of function calls), and 
acq_func = ’EI’ (negative expected improvement).

Results and discussion
Rook constraint.  Fig. 1 shows an example of supporters’ distribution. Hereafter, we refer to this example 
as Case 1. It requires at least 33 governing cells to set the number of assigned seats (Nseat) to Nmax(= 11 [in this 
study]) with 3 to 2 hard-won victories (in other words, the seat is won by one vote). Due to the even distribution 
in the initial condition, the number of cells where each party governs is 35 among 70 cells; thereby, the allowed 
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number of wasted votes for the governing party is at most two. Only three districts fail to secure seats in Ng 
districts. When the number of wasted votes is 2 for the governing party, there are two cases: two districts los-
ing 0 to 5 and one losing 2 to 3, or a combination of one district losing 0 to 5 and two losing 1 to 4. Concerning 
the distribution of supporters of Case 1 (Fig. 1), under the condition that Party A has an advantage (left side in 
Fig. 2), it has lost seats in districts 0, 6, and 9. In districts 0 and 6, it lost 0 to 5, whereas, in district 9, it lost 2 to 
3. On the other hand, under the condition that Party B has an advantage (right side in Fig. 2), it has lost seats in 
districts 0, 4, and 6. In districts 0 and 4, it lost 1 to 4, whereas, in district 6, it lost 0 to 5.

It is noteworthy that 87.5% of the cells surrounded by the red dotted lines in Fig. 1 belong to Party B. Packing 
contributes to Party A by decreasing the own wasted vote and ensuring that Party B’s power does not extend out-
side the area. All three districts where party A was defeated are related to the part surrounded by the red dotted 
lines. On the other hand, although 75% of the cells surrounded by the blue dotted lines in Fig. 1 belong to Party 
B, proper cracking of the area is helpful for Party A to win 3 to 2 by controlling the concentration of supporters 
of Party B. By controlling the wasted vote in this way, the governing party achieves hard-won victories and great 
defeats, which maximizes the number of seats won. Note that it would be possible that the number of wasted 
votes for the governing party could be zero or one, but we had not observed such cases in the present study.

In the above example, the number of seats (Nseat) won by both A and B reached Nmax. However, there were 
cases where the value was less than Nmax. Figure 3 shows such examples. In Case 2, the setting that favors Party A 
results in a Nseat of only 9. In this case, cells (1,0), (0,2), and (0,5) are enclaves away from the other cells governed 
by Party A. Similarly, cells (3,5), (4,6), and (5,8) are also enclaves because although they share vertices with other 
cells governed by Party A, none of them share the edges needed to satisfy the rook constraint. Comparing these 
six enclaves with the assigned seats, five cells other than the cell (1,0) result in wasted votes. Due to a large number 
of wasted votes, the Nseat of Party A remains at 9. As another example, we show Case 3, where Nseat remains at 
10 in the setting in which Party B has an advantage. It is noteworthy that five cells (1,0), (0,2), (1,3), (1,5), and 
(0,6) are enclaves, and cells (1,0) and (1,5) become wasted votes. These results suggest that whether or not the 
number of seats won reaches Nmax depends on the number of enclaving cells for a governing party. It appears 
difficult for enclaves to form a majority because there are no own party cells around them. To verify this, we 
examined seven more cases. We show a figure similar to Fig. 3 as Fig. S1 in Supplementary Information (SI). In 
a total of 20 optimizations for these 10 cases, the number of times Nseat = Nmax was 16, whereas the number of 
times Nseat < Nmax was 4. The average values of the enclaves were 1.94 (Nseat = Nmax) and 5 (Nseat < Nmax), respec-
tively. However, although it appears to be a rare example, it is noteworthy that Nseat is possible to reach Nmax even 
from a distribution with many enclaves as in Case 6 (Party A) of Fig. S1 in SI. Besides, the Ising model-based 
approach does not guarantee optimality, thereby even in the examples where Nseat < Nmax, the possibility exists 
that the true optimum is Nseat = Nmax.

In this study, we optimized the Hamiltonian of the Ising model by TS with every BO update, but its accuracy 
depended on the number of TS trials (NTS). When NTS was 1250, Nseat reached Nmax in 11 out of 20 BOs. When 
we increased NTS to 5000 for nine distributions that did not reach Nmax with an NTS of 1250, Nseat reached Nmax in 
five of them. Consequently, Nmax was reached 16 times out of 20 BOs. Table 1 shows the change in the number 
of feasible solutions obtained during 1000 BO updates by increasing NTS from 1250 to 5000. The result indicates 

Figure 2.   Calculated result of maximizing the number of seats so that party A or B has an advantage with 
imposing the rook constraint concerning the supporter’s distribution shown in Fig. 1 (Case 1). The top panels 
show the calculated correspondence between the cells and the 14 districts indexed from 0 to 13. The bottom 
panels show the assignment of seats based on the calculated districting.
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that the improvement of the probability of finding a feasible solution by increasing NTS led to the improved the 
entire solution’s accuracy, including BO.

Queen constraint.  In addition to the rook constraint where cells share edges, the queen constraint where 
cells share vertices is a representative constraint for districting. We observed that the latter constraint makes it 
more difficult for Nseat to reach Nmax than the former constraint starting from even distribution. We subsequently 
considered why the computation with the queen constraint being difficult. As shown (A) in Fig. 4, both the 
rook and queen constraints have four adjacent cells that satisfy the constraints. However, at the boundary (B) 
and corner (C), the number of adjacent cells satisfying the constraints is 3 and 2, respectively, in the case of the 
rook constraint. On the other hand, in the case of the queen constraint, the number of adjacent cells is 2 (at the 
boundary) and 1 (at the corner). The decrease of the number of adjacent cells at the boundary and the corner in 
the queen constraint results in an energy disadvantage. Although this is a little ad hoc approach, we changed the 
energy decrease due to vertex sharing in the partial Hamiltonian of Hrook at boundaries and corners to twice as 
much for the queen constraint. As shown in Fig. 5, we observed districts that give the maximum number of seats 
(Nmax) to party A with the queen constraint.

Moreover, although this is a mathematical model that deviates from reality, if we assume that there are peri-
odic boundary conditions on the arrangement of cells (distribution of supporters and districts) to eliminate the 
effect of boundaries and corners, we can calculate the districts that allow the maximum number of seats (Nmax) 
to one party with the queen constraint starting from even distribution (Fig. S2 in SI).

Figure 3.   Two cases of gerrymandering with rook constraint. In each case, the top panel shows the distribution 
of the dominant cells where 1(0) means a cell that Party A(B) has an advantage over B(A). Middle panels show 
the calculated correspondence between the cells and the 14 districts indexed from 0 to 13. The bottom panels 
show the assignment of seats based on the calculated districting.

Table 1.   Comparing the number of times we obtained a feasible solution during 1000 BO updates by TSs with 
1250 or 5000 trials. The number in parentheses indicates the number of seats assigned (Nseat). The TS with 1250 
trials was run three times with different random number seeds for the initial value.

Case Governing party

NTS = 1250

NTS = 50001 2 3

1 B 46(10) 96(10) 30(10) 53(11)

2 A 40(9) 36(9) 27(8) 75(9)

3 B 28(9) 28(10) 13(10) 47(10)

4 B 57(10) 63(10) 64(10) 84(11)

5 A 83(10) 91(9) 93(10) 97(11)

6 A 46(10) 46(10) 51(10) 69(11)

6 B 51(10) 50(10) 49(10) 110(10)

7 A 101(10) 71(10) 90(10) 150(10)

8 A 46(10) 32(10) 42(10) 71(11)
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Multiple votes per cell.  In the simulations so far, the number of votes in each cell (Nv) has been set to one. 
However, it is easy to extend the formulation to treat the number of votes per cell to Nv(> 1). In this case, the total 
number of votes in each district changes from Nc to Nc × Nv (≡ Nt). Therefore, in the partial Hamiltonian related 
to the total number of votes per district, we must change Nc to Nt. Specifically, we change Nc to Nt in H2

cst and 
Hgerr. This is a trivial change in terms of formulation, but we found that it was quite difficult to get the correct 
result because of the expansion of search space through the increased total number of votes.

An example of the calculation is shown below. In a model of eight districts containing a total of 40 cells, each 
district consists of five cells, and the number of votes per cell is Nv = 3. The left panel of Fig. 6 shows the number 
of votes in each cell supporting Party A. The sum of these values in all cells is 60. Since the total number of votes 
is 120 (= 3 × 40), the number of votes supporting Party B is also 60, and the distribution is even in the initial 
condition. Since the total number of votes in one district is 15 (= 3 × 5), if either party gets eight or more votes, it 
will be the winner in that district. Therefore, the maximum number of acquired seats without the constraint of 
prohibiting enclaves is 7 (= ⌈ 60

8
⌉ ). The center of Fig. 6 shows the redistricting results obtained from the optimiza-

tion with rook constraint, and the right panel shows the results of the allocation to Party A and Party B based 
on the redistricting. We observed Party A has acquired the maximum number of seats that can be allocated.

Figure 4.   (A) The blue and red arrows point to adjacent cells with the rook and queen constraints, respectively. 
(B) At the boundary, the number of adjacent cells under the rook constraint is 3, whereas the number of 
adjacent cells under the queen constraint is 2. (C) At the corner, the number of adjacent cells under the rook 
constraint is 2, whereas the number of adjacent cells under the queen constraint is 1.

Figure 5.   Gerrymandering with queen constraint. The left panel shows the distribution of the supporters 
where 1(0) means a cell that Party A(B) has an advantage over B(A). Middle panel shows the calculated 
correspondence between the cells and the 14 districts indexed from 0 to 13. The right panel shows the 
assignment of seats based on the calculated districting.

Figure 6.   Gerrymandering in a multiple votes case (3 votes/cell) with rook constraint. The left panel shows the 
number of votes in each cell for Party A. Center panel shows the calculated correspondence between the cells 
and the eight districts indexed from 0 to 7. The right panel shows the assignment of seats based on the calculated 
districting.
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Application to other fields.  The essence of the algorithm proposed here is to redistribute the disjointed 
small parts into a compact form according to a set of rules. There appear to be various fields to which such fea-
tures can be applied. As an example, we will discuss the redistribution of delivery destinations. Company 0 and 
Company 1 deliver the same product to their customers. Figure 7 (left) shows which company is in charge of 
each delivery destination at present. Here, the number of delivery destinations handled by company 0 and com-
pany 1 is 49 and 21, respectively, so the share ratio is 7:3. The scattered delivery destinations in the figure cause 
poor efficiency and long transportation distance, increasing carbon dioxide emissions.

Therefore, we group several destinations to form a group, and one of the companies is in charge of all the 
destinations in a group. The distribution of the group to each company should reflect its current share as much 
as possible. Within a group, we do not allow enclaves to reduce the transportation distance and increase the 
delivery efficiency. Besides, we assign each group to the company having more delivery destinations at present. 
The rule is important because they do not want to give up their trade area to their competitors. If we combine 
the five destinations into one group, we get a total of 14 groups. We divide the 14 groups into 10 and 4 groups—
i.e.,70 cells into 50 and 20 cells, for companies 0 and 1, respectively. The allotment is the closest to the current 
share ratio of 7:3. If we denote the number of groups allocated to Company 1 determined by the Ising model 
is Ng

1, we can use |Ng
1—4| as a component in the objective function of Bayesian optimization (HBO) instead of 

-Nseat. By redistributing the delivery destinations, we can create 14 compact groups with no enclaves in each 
group (center and left panels in Fig. 7).

Returning to the subject of electoral redistricting, as the delivery destination optimization example above, 
the proposed algorithm can also allocate seats in proportion to the total (assumed) number of votes in a state. 
However, this seemingly fair approach of allocating seats may not be upheld by the U.S. Supreme Court with 
respect to the U.S. House of Representatives elections, where gerrymandering is most notable. According to 
Rucho v. Common Cause29, the US Constitution does not require proportional representation, and it cannot be 
said that each voter has the right to ensure that the party he/she supports wins a number of seats commensurate 
with its statewide support. Besides, it is impossible to find a clear and court-operable standard as to whether a 
given districting is excessive partisan gerrymandering or not. The judgement indicated that the U.S. Supreme 
Court was reluctant to intervene because gerrymandering was a nonjusticiable political question.

Conclusion
We examined the problem of redistricting 70 cells into 14 electoral districts that consist of 5 cells, where the 
number of cells in which party A or B governs is equal. Besides, a cell in one district must share at least one edge 
with the other cells in the district (rook constraint). Consequently, enclaves are forbidden. With this assumption, 
a combined approach of the Ising model optimization by TS and BO maximizes the seats’ biased assignment. 
BO adjusts the hyperparameters in the Ising model and penalizes the formation of enclaves in each district. 
The approach reached the theoretical upper limit without the rook constraint in 16 out of 20 trials. However, 
we observed that it was difficult for a party to reach the limit when the cells that the party governed had many 
enclaves. The essence of this algorithm that redistributing the disjointed small parts into a compact form accord-
ing to a set of rules appears to have various fields of application. As such an example, we also discussed the 
redistribution of delivery destinations.

The problem addressed in this paper may be regarded as a kind of puzzle and be included in constraint 
optimization problem (COP) in the more general category. It has been proposed to solve COP as Boolean satisfi-
ability problem (SAT)30. However, although SAT is a very general approach, it appears to be difficult to express 
all constraints of this problem in propositional logic formulas efficiently. If the related hardware and software’s 
ability to combinatorial optimization based on the Ising model consistently proceeds, it will be possible to handle 
more realistic models such as larger districts and multiple votes per cell soon.
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