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Abstract: Tribological properties are important to evaluate the in-service conditions of machine
elements, especially those which work as tandem parts. Considering their wide range of application
areas, metal matrix composites (MMCs) serve as one of the most significant materials equipped
with desired mechanical properties such as strength, density, and lightness according to the place
of use. Therefore, it is crucial to determine the wear performance of these materials to obtain a
longer life and to overcome the possible structural problems which emerge during the production
process. In this paper, extensive discussion and evaluation of the tribological performance of newly
produced spheroidal graphite cast iron-reinforced (GGG-40) tin bronze (CuSn10) MMCs, including
optimization, statistical, graphical, and microstructural analysis for contact zone temperature and
specific wear rate, are presented. For this purpose, two levels of production temperature (400 and
450 ◦C), three levels of pressure (480, 640, and 820 MPa), and seven different samples reinforced
by several ingredients (from 0 to 40 wt% GGG-40, pure CuSn10, and GGG-40) were investigated.
According to the obtained statistical results, the reinforcement ratio is remarkably more effective
on contact zone temperature and specific wear rate than temperature and pressure. A pure CuSn10
sample is the most suitable option for contact zone temperature, while pure GGG-40 seems the most
suitable material for specific wear rates according to the optimization results. These results reveal
the importance of reinforcement for better mechanical properties and tribological performance in
measuring the capability of MMCs.

Keywords: temperature changes; specific wear rate; analysis and optimization; metal matrix
composites (MMCs)

1. Introduction

Investigations about combining the prominent aspects of metals to obtain new and
versatile materials have gained momentum in the metal matrix composite (MMC) material
field [1,2]. For MMC production, several metals can be used as a matrix or reinforcement
material, such as aluminum, steel alloy, magnesium, brass, bronze, and cast irons [3–8].
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Bronze and cast iron, which are selected as the matrix and reinforcement materials, have
received more attention than the other materials thanks to their extraordinary properties
such as good surface integrity, high strength, and good tribological properties. While it is
theoretically possible to combine the good aspects of two or more metals, in practice, all
aspects of these metals need to be studied in detail. In previous works published by the
authors, the mechanical properties (compression [4], impact [7], tensile strength [3], Brinell
hardness, micro-Vickers hardness [9], etc.), machining properties [10], and microstructural
analysis of MMCs used in this study have been reported. However, it is crucial to assess
the tribological properties of the produced MMCs, which are directly intended for the place
of use.

MMCs are designed to achieve a harmonious and good combination of various prop-
erties such as light weight, porosity, and strength [11]. From this point of view, bronze
metal, frequently preferred as a matrix material in MMC systems, can be reinforced with
various metals to eliminate its weaknesses and increase its performance. To overcome
some performance limitations of a Cu-based matrix, different metal-based materials such
as steel, aluminum, titanium and carbide, oxide, and nitride-based structures are employed
as reinforcements [12–15]. A reasonable number of papers on the effects of reinforcement
type and content on the bronze matrix have been published. Gronostajski and Chmura [16]
examined the effect of the addition of aluminum on bronze matrix composites produced
by recycling chips. They reported that ductile aluminum chips penetrate narrow zones
between bronze chips. This interaction provides good structural integrity due to enhanced
diffusion bonding quality between aluminum and bronze chips and resultant enhancement
in the yield strength [17]. Barbosa et al. [18] reported that iron-based alloys are entirely
compatible with copper alloys, and this compatibility is beneficial for improvement in the
strength/hardness of copper matrix composites. Plus, they reported that the content of
cast iron in the bronze matrix composites has a significant impact on strength/hardness.
However, it is emphasized that the cast iron content must be adjusted according to pro-
duction parameters (pressure, temperature, and time) and the usage area since increasing
cast iron content up to a certain amount can cause high strength and hardness, and ac-
companying better structural integrity [4,9]. There is also a direct relationship between the
type of metallic chips and the selection of the production process and parameters. When
a cold pressing and post-sintering method is preferred, low-strength and highly porous
materials can be obtained. On the other hand, fine-grained and high-strength materials can
be achieved if hot pressing and hot extrusion methods are performed [19].

Considering the available studies, it is observed that various researchers have investi-
gated the effect of different reinforcement materials and their types, contents, and several
manufacturing processes on the mechanical properties of Cu-based MMCs [20–25]. In ad-
dition, it has been reported in detail that different mechanical properties, such as hardness,
tensile strength, compressive strength, elongation, toughness, and fatigue life, are severely
affected depending on the proposed methods. However, reinforcement materials in MMCs
affect not only mechanical properties but also tribological characteristics [26]. In this regard,
Wu et al. [27] reveal that adding Ti2SnC particles to Cu-based MMCs significantly decreases
the friction coefficient and wear rate. Additionally, the wear mechanism is changed from
oxidation wear to adhesive wear due to the effect of reinforcement. Gunes et al. [28] exam-
ined the effects of cast iron on weight loss and coefficient of friction values of bronze matrix
composites depending on production parameters. They reported that the most dominant
factor on wear is the reinforcement ratio [28]. The effects of graphene on the lubrication
behavior [29], wear mechanism of graphite-copper composites [30], the surface and tri-
bological aspects of graphene-reinforced copper matrix composites [24], microstructural
and tribological evolution of MoS2-reinforced tin-copper-reinforced composites [31], and
particle size effect on the wear performance [32] have been experimentally investigated by
different researchers.

Furthermore, the two most important parameters which give essential insight into
the tribological performance of MMCs are specific wear rate and temperature changes.
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Unlu and Atik [33] conducted a study investigating temperature changes of tin-bronze
and zinc-bronze by a radial journal bearing wear test unit. They reported that the highest
temperature and specific wear rate occur in CuSn10 and CuZn30 compared to pure metals.
Wang et al. [34] indicated that specific wear values of MMCs can be reduced with SiC
particle reinforcement. Another study reports that increasing the reinforcement material
leads to improved specific wear rate values [35]. Kozma [36] investigated the effects of
iron content on the tribological properties of Al-based MMCs and reported that as the iron
content decreases, the specific wear rate increases.

Based on the above discourses, materials’ mechanical, tribological, and other prop-
erties, especially MMCs produced by the powder metallurgy route, are greatly affected
by several concurrent factors: matrix and reinforcement type, sintering temperature, time,
pressure, interfacial bonding, etc. [37]. In addition, different researchers state that there is
a reciprocal relationship between specific wear rate and temperature in MMCs. It can be
observed that the wear rate of MMCs decreases with increasing temperature; then, it rises
with elevated temperatures [38,39]. On the other hand, temperature and wear rate can be
controlled with reinforcement materials and their ratio [40]. For instance, the wear rate can
be decreased or increased for the same specimen depending on the experimental parame-
ters and reinforcement ratio [41]. Thus, the determination of a tribological characteristic of
MMCs can be quite complicated. This sophistication stems from not only the tribological
parameters but also production parameters (pressure, temperature, and mixture ratio) of
MMCs. Therefore, statistical evaluation and optimization of the results are essential [42–45].
Taguchi [46,47], ANOVA [48,49], artificial neural network (ANN) [50], response surface
methodology (RSM) [51], and grey relational analysis (GRA) [52] methods could be used
in order to evaluate wear parameters in MMCs.

Considering published studies in the current literature, it was found that various
studies reported the tribological properties of Cu and different metal-based MMCs. How-
ever, there was no available work about the tribological performance of recycled waste
metallic chips consisting of CuSn10 and GGG-40, which are often found as waste mate-
rials in different industries. In this context, this study paves the way for the recycling
of materials consisting of these and other similar systems and the use of these materials,
which are obtained as a result of recycling, as plain bearing machine elements. These
hypotheses are an essential point that the present study offers as a different solution to
those in the open literature, which still remains a blank spot in the available works. The
main subject of this paper is the production of MMCs by combining waste metal chips
with an unconventional method and the determination of the tribological behavior of this
material and its association with other known properties. In the present study, bronze
(CuSn10) matrix reinforced with spheroidal graphite cast iron (GGG-40) composites was
produced. CuSn10 and GGG-40 metallic chips were hot pressed at four different mixture
ratios (90 wt%, 80 wt%, 70 wt%, and 60 wt%), three production pressures (820, 640, and
480 MPa), and two temperatures (400 and 450 ◦C). CuSn10, which is common in industry
as waste metallic chips and is used as a self-lubricating bearing material, was chosen as
the matrix phase. In addition, GGG-40 metallic chips, abundant in industry, were em-
ployed as reinforcement material to strengthen the bronze matrix. Two important wear
parameters, specific wear rate and temperature changes of produced MMCs after a wear
test, were experimentally measured and statistically analyzed. In addition, the findings
were further evaluated using the Taguchi S/N ratio, which gives reliable results on wear
test parameters for optimization of production parameters. Tribological parameters and
production parameters were associated, and the best MMC specimens for each condition
were examined.

2. Materials and Methods

In this study, MMCs, consisting of waste metallic chips, were produced by a double-
acting hot pressing method. The chemical compositions of the reinforcement (GGG-40) and
matrix (CuSn10) materials are given in Table 1. Production stages and more detailed infor-
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mation are available in the authors’ prior works [4,53]. The superior mechanical properties
of GGG-40 reinforcement and the high corrosion resistance, superior electrical and thermal
properties of the CuSn10 matrix phase, and, most importantly, their suitableness as bearing
materials played an essential role in selecting these materials [28]. Plus, GGG-40 was
employed as the reinforcement element due to the lubricating effect of the dense spheroidal
graphite found in its structure. In this way, it was aimed to gain a significant advantage
in MMC systems with self-lubricating bearing properties. The general view of this study,
comprising the production process of composite materials, the preparation stages of the
produced composite materials for wear tests, instruments used for wear tests, and the
optimization of outputs, i.e., temperature changes and specific wear rate, is presented in
Figure 1.

Table 1. Chemical composition of matrix and reinforcement materials at wt% [28,53].

Materials C Si Mn S Mg P Cu Sn Zn Pb

CuSn10 - - - - - - 89.2 9.3 0.41 0.01

GGG-40 3.4 2.5 0.13 0.01 0.046 0.08 - - - -
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2.1. Composite Material Production Process

The double-acting hot pressing method was used to fabricate composite materials.
During the production, 5 different mixing ratios, 3 different pressures, and 2 different
temperatures, which are specified in Table 2, were used. Reinforcement content and
other production parameters were determined by our previous knowledge, preliminary
examination, and literature surveys [4,54,55]. Firstly, cylindrical CuSn10 and GGG-40
bars were machined in a conventional lathe with the same cutting parameters to produce
metallic chips. Then, the differently sized metallic chips were sieved with 1–2 mm sieves,
and the chips remaining between the sieves were used in this study. The metallic chips
were mixed homogeneously via a double-cone mixer [56]. After the mixture process of
the metallic chips, they were poured into a male mold, and they were kept for 15 min at
different production temperatures (400 and 450 ◦C) to achieve homogeneous temperature
distribution. Finally, the metallic chips were consolidated by synchronistical movement of
upper and lower molds under different pressures (480, 640, and 820 MPa) for 10 min. Thus,
both a homogeneous temperature distribution and the formation of the desired plastic
deformation between the metallic chips can be achieved [9]. More detailed information
about the utilized reinforcement and matrix materials and production process of MMCs
has been reported by the authors [9,56]. The diameter of the composite materials removed
from the mold was 19.6 mm, and their lengths varied from 32–36 mm depending on the
applied temperature and pressure parameter. As the temperature or pressure parameter
increased, their length shortened due to the decrease in the spaces between the chips.

Table 2. Composite material production parameters.

Specimen Code Temperature (◦C) Pressure (MPa) Mixture Weight Ratio (wt%)

60C40G 400, 450 480, 640, 820 %60 CuSn10-%40 GGG-40

70C30G 400, 450 480, 640, 820 %70 CuSn10-%30 GGG-40

80C20G 400, 450 480, 640, 820 %80 CuSn10-%20 GGG-40

90C10G 400, 450 480, 640, 820 %90 CuSn10-%10 GGG-40

100C 400, 450 480, 640, 820 %100 CuSn10-%0 GGG-40

2.2. Wear Tests

To determine the mechanical properties of the produced composite materials, many
experimental studies were carried out before the wear tests, and it was observed that the
produced MMCs exhibited satisfying microstructural and mechanical properties [4,7,9].
Then, to investigate their usability as a self-lubricating bearing material, wear tests were
carried out by a block-on-disc test device. In these experimental studies, the unprocessed
composite materials removed from the mold were first sliced with the help of a 10 cm wide
jigsaw device and then divided into two down the middle. During this division process, the
gray-colored part of the composite material (as shown in Figure 2a) showed the losses after
cutting with a 2 mm jigsaw. The white parts remaining in the interior region showed the
losses that occurred during the formation of the bedding gaps. To ensure proper bedding
in the wear tests after the cutting process, the inner parts of the composite materials were
machined with the help of CNC, and 69.05 mm radiuses were formed in the inner parts.
In the application of this process, an abrasive disc was a 69 mm diameter was employed,
and a bedding gap of 0.05 mm was formed. During these processes, no refrigerant was
used to prevent any manipulating effect on the surface structure of the composite material.
Afterward, an ultrasonic bath was applied to the abrasion test specimens for approximately
180 s to remove unwanted residues from the surface [57]. In addtion, after the wear tests,
the microstructural evolution of some MMCs produced by different production parameters
was analyzed using a scanning electron microscope (SEM, Zeiss EVO LS 10) at 20 kV.
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The block-on-disc test device shown in Figure 2b, which was designed according to
the ASTM (G77-05) standard, was used to perform the wear tests. The wear behavior of the
produced MMCs was monitored in a specific area rather than point contact abrasion due
to the macrodimensions (1–2 mm) of the metallic chips used [33]. By doing so, the whole
wear behavior of CuSn10 and GGG-40, and possible micro- or macroscale void regions, can
be investigated. For wear tests, the abrasive disc speed was set at 400 rpm (1.06 m/s) under
a 30 N load regarding preliminary test outcomes, and it took nearly 31 min to accomplish
a total wear distance of 2000 m [28]. AISI-4140 steel with a 54–56 HRC surface hardness,
obtained by cementation treatment, was used to erode the composite materials during the
wear tests. During wear tests, the abrasive disc was altered for each test, and 3 samples
were tested from each set to verify the accuracy of the data. On the upper part of the
wear test setup, a sample holder provided the abrasion of MMCs. The sample holder was
fixed, and there was a disc rotating at the bottom with a shaft powered by a 2.2 kW electric
motor and a 2.5 kW speed adjuster. The movement of the disc occurred in the clockwise
direction, and the horizontal forces created by the friction force were recorded instantly
on a computer with the help of load cells. The ratio of the vertical force to the horizontal
friction force gave the friction coefficient. These values were regularly monitored during
experimental studies. The friction coefficient measurements started from the first contact
of the specimen with the abrasive disc. This area may vary depending on the environment
and test conditions with the further stages of wear. In addition, no sudden changes were
observed in surface roughness values thanks to the constant applied load and wear rate.
The friction coefficient was measured with a Squirrel brand data logger with 8 analog
inputs and recorded using the Squirrel View interface program. After three repetitions,
weight loss that occurred during the experimental process was determined by measuring
it with the “Precisa XB-220A” Swiss-made precision scale, with an accuracy of ±0.0001 g,
before and after the experiments [28,53].

2.3. Thermal Camera

During the wear tests, instantaneous temperature changes in the wear zone were
measured by a calibrated thermal camera (FLIR Systems’ Therma-CAMTM P65). The
temperature changes in the disc and MMCs were observed with the thermal camera placed
directly opposite the wear zone. The vertical curve seen on the thermal camera screen
shows the change in temperature from top to bottom, and the temperature changes in
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the upper–lower parts of the contact area were followed there. The temperature range of
the thermal camera was −40 ◦C to +2000 ◦C with an accuracy of ±2% or 2 ◦C, and the
image frequency was 60 Hz. The camera had a thermal sensitivity of 0.08 ◦C at 30 ◦C and a
spectral range of 7.5–13 µm with a resolution of 320 × 240 pixels [58]. The measurement of
temperatures in the thermal camera was carried out throughout the vertical line from the
contact point, and the changes were observed with the graphic shown on the instrument.
Then, the temperatures of the contact point for each composite material were determined
and assessed.

2.4. Specific Wear Rate

The specific wear rates of MMCs were calculated from the following specific wear
equation (Equation (1)); where Ws is the specific wear rate, ∆V is volumetric material loss,
∆m is weight loss, ρ is density, Fn is applied normal force, and L is total wear distance.

Ws =
∆V
FnL

=
∆m

ρFnL
(1)

It can be seen in the relevant equation that there is a relationship between the density
and wear rate of each composite material. The pressure created by force applied to the
material surface during wear can change depending on the surface structure. Excessive
pores on the abraded surfaces affect the specific wear rate; even if there is the same amount
of wear, the existing pores in the structure can change the sample’s specific wear rate [59].

3. Results and Discussion

Results of the experiments, including experiment number, the specimen codes, inputs,
and outputs, are presented in Table 3. As seen in the table, five different reinforcement
contents, two different temperatures, three different pressures, and two non-waste samples
(i.e., pure CuSn10 and pure GGG-40) compose the full 32 experimental lines [28] for the
temperature change and specific wear rate. In this section, the microstructural evolution of
samples is analyzed, and then parametric optimization is presented; lastly, ANOVA results
of the specific wear rates and temperature changes are reported.

3.1. SEM Images/Microstructures

From the wear tests, the SEM images of some MMCs produced with different reinforce-
ment contents are shown in Figure 3. To precisely observe the effect of the most dominant
parameter (i.e., reinforcement ratio) on the wear aspects, these MMCs were fabricated by
the same production parameters (i.e., 450 ◦C and 820 MPa). In the SEM images, the direc-
tion of wear is indicated from left to right, and it is observed that microstructures changed
depending on the reinforcement ratio. As the reinforcement content was decreased, more
adhesive wear behavior was observed in the progressive wear processes of the MMCs, as
shown in Figure 3b–f. In addition, the deterioration of the surface structures caused by
abrasion was less in the MMCs produced at high temperature and pressure parameters [28].
Additionally, it is seen that CuSn10 is exposed to significant plastic deformation due to the
increased temperature in the surface region. Especially in the 100C sample, the plastering
of CuSn10 in the direction of wear is evident (Figure 3a). Moreover, it has been observed
that the porous structures in the MMCs’ structure play a vital role in reducing friction on
the surface, both by closing with the wearing particles and by the lubricating effect of the
eroded spheroidal graphite (Figure 3b–f). Thus, less wear occurs in the friction area, which
is one of the most critical parameters that increases the lifetime of the bearing material
under harsh service conditions [60–62].
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Table 3. Experimental results.

Experiment
Number Specimen Code

Temperature
T

(◦C)

Pressure
P

(MPa)

Reinforcement
Ratio

R
(%wt.)

Temperature
Change

T
(◦C)

Specific Wear
Rate
SWR

1 60C40G 400 480 40 60.06 6.33
2 70C30G 400 480 30 57.90 7.97
3 80C20G 400 480 20 56.41 8.51
4 90C10G 400 480 10 54.67 10.62
5 100C 400 480 0 48.96 16.81
6 60C40G 400 640 40 58.61 7.32
7 70C30G 400 640 30 57.03 7.51
8 80C20G 400 640 20 56.22 8.29
9 90C10G 400 640 10 54.29 10.05
10 100C 400 640 0 45.96 15.18
11 60C40G 400 820 40 56.22 6.53
12 70C30G 400 820 30 54.93 8.18
13 80C20G 400 820 20 53.54 8.84
14 90C10G 400 820 10 52.45 11.19
15 100C 400 820 0 47.35 14.67
16 60C40G 450 480 40 58.83 5.69
17 70C30G 450 480 30 56.22 7.05
18 80C20G 450 480 20 53.96 8.89
19 90C10G 450 480 10 50.64 11.59
20 100C 450 480 0 44.96 16.37
21 60C40G 450 640 40 60.16 5.97
22 70C30G 450 640 30 58.38 7.53
23 80C20G 450 640 20 54.90 9.01
24 90C10G 450 640 10 52.90 10.86
25 100C 450 640 0 46 15.02
26 60C40G 450 820 40 53.74 7.76
27 70C30G 450 820 30 50.87 9.60
28 80C20G 450 820 20 51.54 9.88
29 90C10G 450 820 10 51.29 10.81
30 100C 450 820 0 46.09 13.87
31 Pure CuSn10 450 820 * 1 42.83 14.29
32 Pure GGG-40 450 820 * 2 64.77 4.01

* 1 shows the pure bronze, * 2 shows the pure cast iron.

The lubrication effect of dense spheroidal graphite in GGG-40 is also beneficial for
the temperature differences in the contact area during wear. The surface structure of
composites can be adversely affected due to more adhesive wear of CuSn10 with increasing
temperature. However, the adhesive effect can be minimized due to the lubricating effect
of GGG-40 during wear, and heat conduction can be improved in the wear area [18,63].

To better evaluate the wear behavior and surface structure of the MMCs, SEM and
energy dispersive spectroscopy (EDS) analyses were performed. The SEM image of the
70C30G sample produced at 450 ◦C and 820 MPa is shown in Figure 4a. Figure 4b shows
the elemental distribution of the corresponding region in Figure 4a (as indicated by a
yellow circle). Such a large area was chosen to reflect the wear properties of the composite
homogeneously.

After the wear test of the 70C30G composite, 38.60 wt% copper, 59.58 wt% tin,
2.10 wt% tin, and 2.86 wt% graphite, along with other several minor alloying elements
with low contents, were detected according to the scanned area, as shown in Figure 4b.
Considering EDS results, it can be said that the abrasion wear mode occurs on the surface
of the abrasive disc since more iron is detected than it contains in its structure. In addition,
the presence of the graphite phase is desirable in self-lubricating bearing conditions since a
certain amount of this phase can provide lubrication between the shaft and the bearing
during operation. In addition, the 1.83 wt% oxygen found shows that the oxidation in the
environment influences the composite. The existence of oxidation is a common situation
since wear tests are performed in ambient conditions. Increasing temperature in the contact
area during the experiment is also effective in this formation. The detection and elimination
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of the oxidation’s source(s) is another crucial point that negatively affects the material’s
service life [28,64].
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Furthermore, the SEM images and corresponding EDS analysis of the 60C40G com-
posite’s abraded particles, randomly selected around the abrasion zone, are presented in
Figure 5a,b, respectively. According to EDS results seen in Figure 5b, 55.80 wt% copper,
33.30 wt% iron, 5.75 wt% oxide, and 1.36 wt% graphite are detected in the abraded particles.
Since these values are close to the content of the composite material, it can be deduced that
the wear occurs homogeneously.
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3.2. Interpretation of Experimental Results and Parameter Optimization for Specific Wear Rate

Figure 6 shows the specific wear rates of MMCs as a function of production parameters
and sliding distance. The specific wear rate, related to the density and weight loss, was
assessed according to the equation described in Section 2.4. Considering Equation (1), the
pressure created by force applied to the material surface during wear varies depending
on the surface structure, and it directly or indirectly affects the p.V factor. In addition, the
pores on the worn surfaces exceeding a certain number influence the specific wear rates. In
other words, the pore numbers, sizes, and shapes can affect the wear performance of the
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product. According to the specific wear rate results, as seen in Figure 6, the results vary
significantly depending on the reinforcement content. As the reinforcement ratio increases,
the specific wear rate decreases. Such a decrement is attributed to more volumetric erosion
in less porous structures depending on the reinforcement content. Plus, the pure GGG-40
specimen shows the lowest specific wear rate compared to others (as shown in Figure 6) due
to the initial iron chips having higher hardness than bronze chips. This situation leads to
the iron chips preserving their shapes by exhibiting severe resistance to plastic deformation
during the hot pressing process. The observed results in a previous work by the authors
regarding the influence of production parameters on the mechanical properties [4] also
confirm this case. Similar observations were also reported by different researchers [65,66]
investigating the effect of porosity and reinforcement content on the tribological behavior
of Cu-based MMC systems. In another study by the authors about the same material
system [28], it was observed that abraded particles gradually filled the pores on the exterior
surface of the MMCs with increasing reinforcement ratio, accompanying a decrement in
weight loss and therefore wear rates. While the wear rates in composite materials produced
at different production pressures generally exhibit similar behavior, the amount of abraded
material in unit volume increases in composites produced at 450 ◦C, depending on the
decreasing pore number.

Parametric optimization utilizing the S/N approach was applied to observed out-
comes to verify our interpretation of the experimental results. As shown in Figure 7, the
first level of temperature, 400 ◦C, and the mid-range of pressure, 640 MPa, appear to be the
best option for the specific wear rates regarding the main plots of S/N ratios. As for the
effect of reinforcement, pure GGG-40 (2) supplies the most appropriate specific wear rate
conditions. After this influence, gradually increasing the reinforcement ratio from 10 to
40 wt% is beneficial for wear rate characteristics. Based on both experimental results and
statistical approaches, the influence of reinforcement content is the most significant factor
manipulating the specific wear rate compared to other production variables. However,
the other parameters (i.e., temperature and pressure) do not exert such an apparent effect
on the wear rates. As mentioned regarding ANOVA results, the production parameters,
namely temperature and pressure, have no discernible effects on the specific wear rates.
Statistical results support experimental interpretations.

3.3. Interpretation of Experimental Results and Parameter Optimization for Temperature Change

During the wear tests, the temperature changes in the contact area were instanta-
neously monitored via the thermal camera. Temperature change curves were obtained by
recording each one-minute interval during the 31 min test period. For the temperature
measurements of the thermal camera, the emissivity value was chosen as 0.7 according to
preliminary examination and literature surveys [4]. Temperature variations in pure CuSn10
and GGG-40 materials are also presented in graphs.

Variations in the temperature are generally related to the thermal conductivity coeffi-
cients of materials. The temperature value reached during operation in materials with a
high thermal conductivity coefficient is relatively low compared to materials with a low
thermal conductivity coefficient. Using the curves in Figure 8, the minimum temperature
(52 ◦C) is observed in pure CuSn10 material, which has higher thermal conductivity, while
the maximum temperature is measured as 82 ◦C for pure GGG-40. These values measured
by the thermal camera are defined as the average temperature of the contact zone. The
temperature values, which are instantaneously reached during wear and described as the
flash temperature, are considerably higher than the average temperature values of this
contact zone. This causes the bronze to exhibit a significant amount of adhesive behavior
in the later stages of wear and finally to plaster the bronze to the surface [24,61,67].
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Figure 7. S/N ratios of specific wear rate.

The temperature distribution curves of composites produced at 400 ◦C and three
different pressures (i.e., 480, 640, and 820 MPa) are shown in Figure 8. Depending on the
reinforcement ratio, the temperatures of composite materials generally display a steady-
state trend after 25–26 min throughout the wear test. In general, the achievement of better
structural integrity in the MMC structure with decreasing reinforcement content, which
has been described in detail in our previous studies [4,9,28], and the improvement of heat
conduction, reduces the temperatures at the contact point. The maximum temperature
values for MMCs produced at a 400 ◦C sintering temperature are 69 ◦C and 70 ◦C for
60C40G and 70C30G, respectively. However, the temperature value of 90C10G composite
is measured as 54 ◦C. This remarkable change is similar to the results of our previous
study [28], which examined the effect of production parameters on the friction coefficient;
depending on the amount of reinforcement material, the increase or decrease in the friction
coefficient affects the temperature of the contact zone. Rougher surface quality, which
increases the friction coefficient, also elevates the temperature of the contact zone. Different
studies [67,68] have reported such an interaction between surface quality and coefficient
of friction.

On the other hand, Figure 9 shows the temperature curves of the MMCs produced
at 450 ◦C with different reinforcement ratios and production pressures. The changes in
the temperature entered a stable region during the wear tests after approximately 20 min,
and no observable change was found. As can be seen in Figure 9c, this period decreases to
15 min at a 820 MPa production pressure due to the achievement of better consolidation
between the matrix and reinforcement particles with the effect of increasing pressure. The
quality of structural integrity of the material system and concomitant tribological and
other performances of MMCs can vary during different process- and material-induced
variations due to multiple phase structures of MMCs [2]. In addition, while the maximum
contact zone temperatures measure from 68–71 ◦C for MMCs produced at 480 and 640 MPa,
this range decreases to 60–62 ◦C in composite materials produced at 820 MPa, as seen
in Figure 9c. The realization of the temperatures reached in the contact zone shows that
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the porous structures in the composite material and the strong interfacial bonding quality
between the chips significantly affect the heat conduction ability [62].
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The S/N ratio approach is performed to evaluate the temperature differences in the
contact zone similar to specific wear rates. However, the opposite tendency is observed for
the temperature changes. The first levels of temperature and pressure and unreinforced
ones are the most suitable for decreasing temperature in the contact zone. As mentioned
in the description of the experimental results, the measured temperature is elevated with
increasing reinforcement content due to significantly harder GGG-40 reinforcement than
the CuSn10 matrix. Considering the weight loss results in our prior work [28], it is an
expected condition that the temperature differences show such a trend since it is more
difficult to remove the material from the harder region. As the increasing temperature and
pressure provide better structural integrity, it is difficult to erode the metallic chips from
the surface due to increasing resistance to the plastic deformation mechanism, causing
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an increase in temperature in the contact area. However, these influences are quite low
compared to the reinforcement ratio effect.
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Tribological characteristics such as surface roughness, weight loss, coefficient of fric-
tion, specific wear rate, and temperature differences in the contact zone are crucial for
end-product quality and power consumption [69]. However, the effect of these properties
on the tribological performance is a highly complex matter. In this context, controlling the
part quality can be achieved by assessing and optimizing the tribological properties and
other material aspects, such as physical, chemical, and mechanical properties. The me-
chanics behind the tribological performance are very dynamic, complicated, and confused
topics due to various process-induced variations [70]. Hence, it is arduous to evaluate it
using experimental and theoretical approaches. However, the source(s), detection, and
elimination of these variables need extra attention to monitor microstructural evolution
and to determine final product quality. For this reason, a diverse community of a wide
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range within academia and industry often opts for a “trial and error” way to achieve the
desired end-product characteristics. In this regard, to obtain the best specific wear rates and
temperature differences, this work was designed and performed both experimentally and
statistically. According to Figure 10, optimum parameters for the minimum temperature
change are lower temperature, higher pressure, and a pure CuSn10 material system.
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3.4. ANOVA Evaluation for Temperature Change and Specific Wear Rate

ANOVA provides a critical evaluation approach about the experimental results in
engineering applications due to its reliable and broad examples for many areas. Table 4 out-
lines the ANOVA analysis for specific wear rate and temperature change. Before evaluating
the results, it is important to mention here that the total percentage contributions of the two
results are 97.8 and 96.9, respectively. This shows that the selected inputs or production
parameters are sufficient to determine the important sources of the outputs. In addition,
when looking at the statistical values, reinforcement is the most influential parameter on
both specific wear rate and temperature changes according to contribution rates. Except for
this, temperature and pressure seem ineffective with low percent contributions. Moreover,
F values confirm these results, indicating the superiority of reinforcement (248.5 and 166.14).
According to P values, reinforcement is significant on both outputs (0.000 < 0.05), and
according to temperature changes, temperature (0.01 < 0.05) and pressure (0.002 < 0.05) also
have importance. Therefore, the temperature and pressure parameters in the production
process of composite materials should be considered for controllable temperature changes.
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Table 4. Analysis of variance for S/N ratios of experimental results.

Source Degree of
Freedom

Sum of
Squares

Mean
Square F-Value p-Value Percent

Contribution (%)

Specific Wear Rate
Temperature 1 0.057 0.057 0.15 0.706 0.0001

Pressure 2 1.171 0.5856 1.49 0.241 0.2
Reinforcement 6 585.969 97.6615 248.50 0.000 97.6
Residual error 32 12.576 0.3930 - - 2.2

Total 41 599.773 - - - 100
Temperature Change

Temperature 1 0.3886 0.38862 7.53 0.010 0.7
Pressure 2 0.7629 0.37143 7.39 0.002 1.4

Reinforcement 6 51.4356 8.57260 166.14 0.000 94.8
Residual error 32 1.6512 0.05160 - - 3.1

Total 41 54.2382 - - - 100

4. Conclusions

In this study, GGG-40-reinforced CuSn10 metal matrix composites were successfully
produced by the hot pressing method. Cu-based samples were produced with five dif-
ferent GGG-40 contents (0 wt%, 10 wt%, 20 wt%, 30 wt%, and 40 wt%), three production
pressures (820, 640, and 480 MPa), and two temperatures (400 and 450 ◦C). Two non-waste
samples (i.e., pure CuSn10 and pure GGG-40) were also utilized for comparison purposes.
Additionally, the tribological performance of produced MMCs was experimentally and
statistically assessed, consisting of a parametric optimization point of view utilizing the
Taguchi and ANOVA methods. In this regard, specific wear rate and temperature differ-
ences in the contact zone, which directly or indirectly affect component life, were examined
as outputs while production parameters, namely temperature, pressure, and reinforcement
content, were handled as inputs. The experimental outcomes of this study are summarized
as follows:

1. The SEM observations show that wear behavior changes depending on the rein-
forcement content in the MMC system. In the beginning, abrasive wear behavior is
observed with decreasing reinforcement content; however, in the following process,
the adhesive wear behavior occurs with elevated temperature.

2. Considering both S/N ratio and ANOVA statistical analysis outcomes, it is seen that
reinforcement is the most dominant production parameter on specific wear rate and
temperature changes in the contact zone with 97.6 and 94.8 total percentage contribu-
tions, respectively. Plus, F values verify this situation (248.50 and 166.14, respectively).

3. After the wear test, the maximum temperature is measured as 82 ◦C in a pure GGG-40
sample. However, the minimum temperature (52 ◦C) is observed in a pure CuSn10
specimen due to the higher thermal conductivity of the matrix phase. Naturally, an
increment in reinforcement content elevates the temperature of the contact zone due
to the increased friction coefficient induced by harder GGG-40 chips.

4. A better structural integrity is achieved by increasing production temperature (from
400 to 450 ◦C) and production pressure (from 480 to 820 MPa). This achieved better
structural integrity and increased the resistance to plastic deformation and made it
difficult to erode the material from the surface during wear, causing an increase in
temperature. On the temperature changes, it should be noted that temperature and
pressure seem to be important, along with reinforcement, according to F values.

5. According to the S/N ratio analyses for the specific wear rates, the first temperature
level, 400 ◦C, and the middle range of pressure, 640 MPa, are the best conditions.
Considering the influence of reinforcement content, it is observed that pure GGG-40
samples demonstrate the lowest specific wear rate compared to the other samples
because the initial iron chips are harder than bronze chips. In addition, a gradually
increased reinforcement ratio from 10 to 40 wt% improves wear rate characteristics.
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After this sample, the 60C40G composite produced with 450 ◦C and 480 MPa shows
the lowest specific wear rate.

6. As seen from the graphical, statistical, and optimization charts, production parame-
ters exhibit unique importance, and have a determinative effect on the tribological
properties. Hence, the selection and application of the proper production parameters
are crucial points that should be considered, as they directly or indirectly influence
the final product’s performance.

7. The proposed method in this study offers an efficient way to manufacture Cu-based
MMCs recycled from waste metallic chips.
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4. Aslan, A.; Güneş, A.; Salur, E.; Şahin, Ö.S.; Karadağ, H.B.; Akdemir, A. Mechanical properties and microstructure of composites
produced by recycling metal chips. Int. J. Miner. Metall. Mater. 2018, 25, 1070–1079. [CrossRef]

5. Gronostajski, J.; Kaczmar, J.; Marciniak, H.; Matuszak, A. Direct recycling of aluminium chips into extruded products. J. Mater.
Process. Technol. 1997, 64, 149–156. [CrossRef]

6. Pul, M. Investigation of effects of MgO ratio on the surface quality and tool wear in turning Al–MgO composites. Proc. Inst. Mech.
Eng. Part B J. Eng. Manuf. 2017, 232, 2122–2131. [CrossRef]

7. Şahin, Ö.S.; Güneş, A.; Aslan, A.; Salur, E.; Karadağ, H.B.; Akdemir, A. Low-Velocity Impact Behavior of Porous Metal Matrix
Composites Produced by Recycling of Bronze and Iron Chips. Iran. J. Sci. Technol. Trans. Mech. Eng. 2017, 43, 53–60. [CrossRef]

8. Wagiman, A.; Mustapa, M.S.; Asmawi, R.; Shamsudin, S.; Lajis, M.A.; Mutoh, Y. A review on direct hot extrusion technique in
recycling of aluminium chips. Int. J. Adv. Manuf. Technol. 2020, 106, 641–653. [CrossRef]

9. Aslan, A.; Salur, E.; Gunes, A.; Sahin, O.; Karadag, H.; Akdemir, A. The mechanical properties of composite materials recycled
from waste metallic chips under different pressures. Int. J. Environ. Sci. Technol. 2019, 16, 5259–5266. [CrossRef]

10. Salur, E.; Aslan, A.; Kuntoglu, M.; Gunes, A.; Sahin, O.S. Experimental study and analysis of machinability characteristics of
metal matrix composites during drilling. Compos. Part B Eng. 2019, 166, 401–413. [CrossRef]

11. Kumar, J.; Singh, D.; Kalsi, N.S.; Sharma, S.; Pruncu, C.I.; Pimenov, D.Y.; Rao, K.V.; Kapłonek, W. Comparative study on the
mechanical, tribological, morphological and structural properties of vortex casting processed, Al–SiC–Cr hybrid metal matrix
composites for high strength wear-resistant applications: Fabrication and characterizations. J. Mater. Res. Technol. 2020, 9,
13607–13615. [CrossRef]

12. Sap, E. Microstructural and mechanical properties of Cu-based Co-Mo-reinforced composites produced by the powder metallurgy
method. J. Mater. Eng. Perform. 2020, 29, 8461–8472. [CrossRef]
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44. Kuntoğlu, M.; Aslan, A.; Sağlam, H.; Pimenov, D.Y.; Giasin, K.; Mikolajczyk, T. Optimization and analysis of surface roughness,
flank wear and 5 different sensorial data via Tool Condition Monitoring System in turning of AISI 5140. Sensors 2020, 20, 4377.
[CrossRef]
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