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Abstract: Annexins constitute an evolutionary conserved multigene protein superfamily 

characterized by their ability to interact with biological membranes in a calcium dependent 

manner. They are expressed by all living organisms with the exception of certain 

unicellular organisms. The vertebrate annexin core is composed of four (eight in  

annexin A6) homologous domains of around 70 amino acids, with the overall shape  

of a slightly bent ring surrounding a central hydrophilic pore. Calcium- and  

phospholipid-binding sites are located on the convex side while the N-terminus links 

domains I and IV on the concave side. The N-terminus region shows great variability in 

length and amino acid sequence and it greatly influences protein stability and specific 

functions of annexins. These proteins interact mainly with acidic phospholipids, such as 

phosphatidylserine, but differences are found regarding their affinity for lipids and calcium 

requirements for the interaction. Annexins are involved in a wide range of intra- and 

extracellular biological processes in vitro, most of them directly related with the conserved 

ability to bind to phospholipid bilayers: membrane trafficking, membrane-cytoskeleton 

anchorage, ion channel activity and regulation, as well as antiinflammatory and 

anticoagulant activities. However, the in vivo physiological functions of annexins are just 

beginning to be established.  
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1. Introduction 

Annexins are a widely distributed multigene superfamily of structurally related calcium-dependent 

membrane-binding proteins that show a characteristic tetrad structure of homologous internal repeats. 

They are expressed in many organisms from protists to higher eukaryotes, including plants [1–4]. In 

1999, the nomenclature system for these proteins was accorded based on the molecular phylogeny and 

comparative genomic analysis [5]. They are now named “annexin” followed by a capital letter: A for 

human annexins and their cognate orthologs; B for other animal annexins, mainly invertebrate; C for 

Mycetozoa and fungi; D for plants; and E for Protista. Annexins have diverged significantly, despite 

their gross structural similarity, in terms of their gene regulation, tissue-specific expression patterns, 

subcellular localization of different isoforms, and features peculiar to individual subfamilies. Annexins 

are involved in several cellular functions, like membrane trafficking, exocytosis, endocytosis, 

membrane-cytoskeleton interactions, regulation of membrane protein activities, calcium channel 

activity and signal transduction, among others. Moreover, although annexins are mainly cytosolic, they 

can also be found as extracellular proteins exerting additional functions as anticoagulant and 

antiinflamatory proteins, or mediating the interaction with other extracellular proteins [1,2]. In this 

review, we have focused on the structure and the interaction of annexins, mainly from the A 

subfamily, with phospholipid membranes, and the implication of these interactions on their  

cellular functions. 

2. Annexin Structure 

2.1. The Annexin Core 

All the members of this family of proteins are structurally characterized by the presence of a highly 

conserved core composed of four (eight in annexin A6) homologous domains of about 70 amino acids 

showing a similar three-dimensional structure highly conserved throughout annexin evolution [6]. 

Inside each domain, a sequence of 17 amino acid residues is found which presents an even higher 

degree of conservation. Annexin A5 was the first member of this family to be crystallized and its 

structure to be studied by X-ray diffraction [6,7]. Since then, several other annexins have been 

crystallized, and all of them present an almost identical three-dimensional arrangement in the protein 

core. The overall shape of these molecules is that of a slightly bent disc (Figure 1A) where the four 

repeated domains are arranged around a central hydrophilic hole (Figure 1B); this hole could be 

responsible for the voltage-dependent calcium channel activity reported for several annexins when 

bound to membranes (A1, A2, A5–A7, B12) [8–10]. Each domain contains a four α-helix bundle 

(helices A, B, D & E) organized in a cylindrical way and capped by a fifth α-helix (C) that is located 

on the concave surface of the annexin molecule (Figure 1A; helices are labeled in Domain III). 

Calcium ions bind on the convex side of the molecule. There are up to three possible coordination sites 

per domain, the so-called Type II or “AB” site being the one that shows higher affinity for calcium. In 

this location, calcium binds to carbonyl oxygens in the loop connecting the A and B helices and to a 

bidentate carboxyl group from a glutamic or aspartic acid residue located around 40 residues 

downstream in the loop connecting helices D and E (Figure 1). 
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Figure 1. Three-dimensional structure of rat annexin A5. The three-dimensional structure 

of rat annexin A5 with the four Type II calcium-binding sites saturated with calcium was 

obtained using MOLMOL [11] and is based on the protein data bank (PDB) file  

1A8A [12]. A lateral view (A), a top view of the molecule (B), a detail of the interactions 

in Domain III with calcium and the polar head of phosphatidylserine (PS) (C), and a 

hydrophobicity surface representation (D) are shown. The four domains in the protein core 

are represented in different colors: I, blue; II, cyan; III, orange; and IV, red. The letters 

assigned to the α-helices are shown only in Domain III. Calcium ions are represented by 

yellow spheres. Panel B allows a clear view of the central hydrophilic hole; the different 

domains are indicated. The calcium-dependent binding of glycerophosphoserine (GPS) to 

Domain III of the annexin core is shown in (C) together with the coordinations that bind 

calcium to the protein at the “AB”, “B” and “DE” sites. The carbon atoms of the 

polypeptide backbone and the lateral chains of key residues for the interaction with 

calcium are represented in grey, whereas carbons in GPS are green (oxygen, red; nitrogen, 

blue; phosphorus, magenta). 

 

2.2. The N-Terminal Domain 

In contrast to the annexin core, which shows a clear homology, sequence analysis of annexins 

shows the great diversity acquired by their N-terminal extension during evolution. These domains are 

variable both in length and amino acid sequence. In human annexins, the N-terminus region ranges 

from a few residues to 200 or more amino acids and, based on the length of this region, they can be 

classified into three groups. The first one includes those members with a short extension below 20–21 

amino acids, such as annexins A3, A4, A5, A6, A8, A10 and A13a. A second group includes annexins 

with an intermediate N-terminus, up to 55 residues, such as annexins A1, A2, A9 and A13b. Finally, a 
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third group can be established with annexins that possess a long N-terminus with more than 100 amino 

acid residues (annexins A7 and A11). 

Even though the N-terminus of annexins is significantly smaller than the C-terminal protein core, it 

is essentially involved in the structural and functional peculiarities of each member of this superfamily 

of calcium-binding proteins [13,14]. The N-terminal extension contributes significantly to the stability 

of the overall structure; it is also essential for self-association and mediates the interaction with other 

proteins, mainly from the S100 family (also calcium binding proteins but with the EF-hand motif). 

Moreover, post-translational modifications of this region (phosphorylation, acetylation, myristoylation, 

proteolysis, etc.) modify the structure of key regions of the protein core, even if they are located at the 

opposite side of the molecule. Consequently, the N-terminal domain of these proteins has to be 

considered as the main regulatory element of both annexin structure and function. 

Crystallographic data have revealed that the N-terminal domain determines the structural 

arrangement of protein regions located on the opposite concave region of the annexin molecule 

binding together Domains I and IV [6,12,15–18], at least in annexins with a short N-terminal domain 

such as annexin A5. Interestingly, using circular dichroism and fluorescence spectroscopy, we have 

found that an annexin A5 mutant with a truncated N-terminus also presents a more solvent-exposed 

IIIAB loop [19]. Thus, it seems that the interaction of the N-terminus with Domain IV in the concave 

side is transmitted to the loop located in Domain III at the opposite side of the molecule, as the 

truncation of the N-terminus forces a conformational rearrangement of the loop. Moreover, 

phosphorylation of Thr6 in annexin A4, that involves the displacement of the N-terminus, also impairs 

its ability to induce vesicle aggregation [20]. A similar effect is observed in annexin A1 after 

phosphorylation of Ser27; however, it does not affect binding to membranes and lateral  

self-association [21]. 

The crystal structure of an intermediate annexin with its complete N-terminus in the absence of 

calcium was first determined for annexin A1 [22]. In this protein, as expected from sequence 

homology to other crystallized annexins and from the structure of the truncated form, the N-terminus 

runs first through the concave side of the molecule from Domain I to Domain IV as an extended coil. 

This region is constituted by amino acids 28 to 41, which are preceded by two consecutive 

amphipathic α-helices (Figure 2). The second helix includes amino acids 18 to 27 and interacts with 

Domain IV. It is directed towards Domain III where it turns in position 18. The most N-terminal helix 

(residues 2–17) is inserted into Domain III and displaces Helix IIID, which in turn becomes an 

extended loop over the convex side of the molecule. It has been shown that the interaction of annexin 

A1 with phosphatidylserine (PS) bilayers increases the N-terminal degradation susceptibility and the 

accessibility of disulfide bridges [23]. Calcium binding to annexin A1 induces a conformational 

rearrangement mainly consisting of the refolding of Helix IIID and the release of the N-terminal  

α-helix from the protein core, as deduced from the crystal structure of the entire protein in the presence 

of calcium [24]. The release of the N-terminus allows the binding of S100A11 in a calcium-dependent 

fashion. In this sense, the N-terminus would act as a regulatory region that modulates the possible 

interactions of the protein core with either membranes or other proteins. 
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Figure 2. Crystal structure of full-length pig annexin A1 in the absence and presence of 

calcium. The three-dimensional structure of pig annexin A1 in the absence of calcium (A) 

(PDB file 1HM6) [22] shows the intact N-terminus with the appearance of two consecutive 

α-helices (residues 2–18 and 19–28; green), the most N-terminal one being inserted into 

Domain III (orange) with the consequent disappearance of Helix 3D. The structure of this 

annexin in the presence of calcium (B) (PDB file 1MCX) [24] does not show the 

disordered N-terminus; as observed, Helix 3D is refolded when the N-terminal helix moves 

out of the protein core. Arrows show the most affected region of the protein core after the 

interaction with calcium. Three-dimensional structures were drawn using MOLMOL. 

 

In annexins with a long or intermediate N-terminus, some α-helical stretches can be predicted. 

These α-helical sub-domains could be involved in the interaction with other proteins from the S100 

family, these associations being essential for their function. In annexin A11, with a long unordered  

N-terminus, residues 45–62 are predicted to form an amphipathic α-helix, and it is tempting to suggest 

a similar interaction between this helix and the protein core through Domain III. However, we have 

shown by fluorescence acrylamide quenching that the unique tryptophan residue in Position 23 is 

completely exposed to the solvent suggesting that this region does not interact with the protein core [25]. 
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3. Annexin Binding to Phospholipid Membranes 

3.1. Calcium-Dependent Phospholipid Binding 

As previously mentioned, annexins are mainly characterized by their ability to reversibly interact 

with membranes in a calcium-dependent manner. Although this is true for the vast majority of the 

members of this family of proteins, some members, such as mammalian annexin A9, do not bind 

calcium but still are able to interact with biological membranes through different mechanisms. Human 

annexin A5 was the first annexin crystallized in 1990 [6,26]. From then on, numerous crystal 

structures have been reported and are available through the Protein Data Bank. These structures have 

allowed an extensive analysis of the calcium binding sites in annexins. Figure 1 shows the structure of 

rat annexin A5 saturated with calcium (PDB 1A8A); ten calcium ions are coordinated with  

specific residues in the convex membrane-binding surface of the protein. In fact, calcium-binding 

measurements with annexins in solution indicate that these proteins may bind up to 10–12 Ca2+ ions, 

although with different affinities [27–29]. Differences in the stoichiometry of the binding have been 

associated with the ability of annexins to establish trimers upon membrane binding or not:  

Trimer-forming annexins A5 and B12 bind around 12 mol of Ca2+/mol of protein whereas  

nontrimer-forming annexins A1 and A2 show a lower stoichiometry (3–4 mol of Ca2+/mol of protein). 

In addition, the A5/B12 group of annexins binds to bilayers in the liquid-crystal phase but not in the 

gel phase whereas the opposite occurs in the A1/A2 group, suggesting that there is a complementarity 

between the spacing of the Ca2+-binding sites and the spacing of the phospholipid head groups in the 

bilayers [28]. In any case, most annexins contain two to four Type II (“AB”) high-affinity  

Ca2+-binding sites located in the loop between Helices A and B. In addition, annexins may contain two 

additional calcium binding sites with lower affinity, named Type III, located at the N-terminus of 

Helix B (“B” site) or in the loop between Helices D and E (“DE” site) (Figure 1). Mutagenesis studies 

indicate that the “AB” sites are required for attachment to membranes, while the B or DE sites are not 

sufficient for membrane binding, although their presence increases the binding affinity [30,31].  

Each of the calcium-binding sites shows a structural pattern in which the Ca2+ ion is coordinated by 

seven oxygen atoms forming a more or less regular pentagonal bipyramid. Five oxygens lie in the 

equatorial plane and two in axial positions. In the main “AB” calcium-binding sites, five oxygens 

belong to the protein: A bidentate carboxylate group from an aspartic or glutamic acid side chain 

located 40 residues downstream of a conserved glycine present in the interhelical AB loop (equatorial 

plane) and three oxygens from carbonyl groups form peptides bonds within the loop. The remaining 

two oxygens belong to water molecules in the absence of phospholipids, or to phosphate groups from 

the polar heads of two phospholipid head groups. 

Figure 1C shows a detail of the “AB” calcium-binding site in Domain III of rat annexin A5 

indicating the residues involved in coordination as well as one glycerophosphoserine (GPS) moiety 

that resembles the head group of PS, the main lipidic ligand of annexins in biological membranes. The 

“B” site is close to the “AB” site and collaborates in PS binding, as one of the oxygen atoms of the 

carboxyl group of serine from PS is coordinated with the calcium ion at this position. The annexin AB 

loop conformation is almost identical to that observed in crystals saturated only with calcium or with 

calcium and bound GPS. No other phospholipid, besides PS, has oxygens that may coordinate to the 
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calcium at the “B” site. Moreover, the serine α-amino group appears to stabilize the interaction of the 

phosphoserine head by establishing a hydrogen bond with the hydroxyl group of a conserved threonine 

residue (T187 in Domain III of rat annexin A5; Figure 1C). All these stabilizing interactions can explain 

why PS is the “preferred” phospholipid ligand of annexins, as this calcium binding seems to be 

specifically designed to fit the serine head group. In fact, the crystal structure of this annexin with 

bound glycerophosphoethanolamine (resembling phosphatidylethanolamine (PE); PDB file 1A8B) 

shows that this head group is only coordinated with the “AB” site, but no additional stabilizing 

interactions occur [12]. 

The GPS molecule shown in the crystal structure of rat annexin A5 (Figure 1C) represents the  

so-called “apical” PS molecule that binds to the “AB” site with high affinity [32], and that is present in 

the four domains of almost all vertebrate annexins. In addition, the calcium ion bound to this site may 

coordinate with the phosphate group of an additional PS molecule in the “equatorial” binding site. This 

additional site involves not only the coordination with calcium, but also six or seven protein ligands 

from residues at the C-terminus of Helix A, the CD loop, and Helix D. This consensus sequence is 

found with slight variations in all vertebrate annexins, but only in Domains I and II, not being present 

in Domains III and IV [32]. The existence of this “equatorial” PS binding site was determined by 

molecular modeling, as radiocrystallography or nuclear magnetic resonance (NMR) hardly provide 

essential information at the atomic resolution when a phospholipid bilayer is concerned. Mutation of 

this consensus sequence in annexin A5 did not suppress calcium or PS binding to the “AB” site, but 

required more calcium to compensate for the loss of PS binding in the equatorial site. 

The affinity of the “B” site for calcium is quite low as only three oxygens from the protein 

contribute to calcium coordination: A bidentate carboxyl group and a carbonyl group from a peptide 

bond (Figure 1C). In the absence of PS, four positions are occupied by oxygens from water molecules, 

but when PS is present, one of the water molecules is replaced by a carboxyl oxygen from the 

phosphoserine head group. The establishment of tertiary annexin-Ca2+-PS complexes strongly 

increases the affinity of annexins towards calcium possibly due to the replacement of solvent 

molecules by oxygens from the phospholipid polar head. In fact, crystallographic data as well as 

solution measurements are consistent with an increase in affinity of two or three orders of  

magnitude [33–35]. 

A third possible phospholipid head group may bind to each annexin domain via the “DE”  

calcium-binding site. This additional calcium ion is coordinated with four oxygens from the loop 

between Helices D and E: A bidentate carboxyl group from the lateral chain of an aspartic or glutamic 

acid at the beginning of Helix E, and two carbonyl oxygens from peptide bonds within the loop. The 

remaining three coordinations are occupied by water in the absence of phospholipids (Figure 1C). In 

the presence of phospholipids, two water molecules are replaced by oxygens from the polar head 

group, as suggested by molecular dynamics simulation [36]. 

All in all, up to three phospholipid polar head groups can interact with each domain of the annexin 

core structure. Additional stabilizing interactions can be established between the convex surface of the 

annexin molecules and phospholipid bilayers. Figure 1D shows the molecular surface of rat  

annexin A5 indicating the hydrophobic (yellow) and hydrophilic (blue) regions. When calcium is 

bound to the “AB” sites, hydrophobic lateral chains are exposed in the otherwise mainly hydrophilic 

convex surface. These hydrophobic residues are highly conserved in the AB loops and may contribute 
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to the interaction with bilayers by establishing van der Waals forces with the hydrophobic acyl chains 

of phospholipids. However, these residues do not penetrate deeply into the bilayer as observed from 

the behavior of the fluorescence spectra of the tryptophan residue located in the AB loop of Domain III 

of several vertebrate annexins [35,37]. 

Annexins are mainly cytosolic proteins that bind preferentially to the major phospholipidic 

components of the intracellular leaflet, PS and PE, although they exhibit a marked preference for PS 

over PE [2,38]. In addition, annexins may bind other phospholipids at physiological pH, such as the 

negatively charged ones phosphatidic acid (PA), phosphatidylglycerol (PG) or phosphatidylinositol 

(PI). Some annexins also show further, more specific interactions with membrane lipids; for example, 

annexins A2 and A8 bind phosphatidylinositol-4,5-bisphosphate (PIP2) [39–41]. In general, the net 

charge of the polar head of phospholipids seems to be important for recruiting annexins to the 

membrane. However, the molecular interaction of the lipid head group with specific protein residues 

strongly influences the affinity with which the lipids bind and to which site they do. This could explain 

why PS binds more tightly than PI to annexins even though they have the same negative charge at 

physiological pH, as well as why uncharged PE binds to annexins whereas phosphatidylcholine (PC) 

does not. 

Annexins do not require all four domains from the protein core to interact with phospholipid 

bilayers. In fact, different annexins show preferences for one domain or another in order to establish 

the interactions with membranes. On this idea, mutational analysis has suggested that Domain I in 

annexin A5 plays a prominent role in the lipid-binding process, although the rest of the Ca2+ and 

phospholipid binding sites collaborate to stabilize the interaction. Interestingly, annexin A1 lacks the 

consensus Type II or “AB” calcium binding site at Domain I; moreover, this sequence is lost in all 

repeats of annexin A9, in Domains I and IV of annexin A2, Domains I, III and IV of annexin A10 and 

in Domain III of the C-terminal tetrad of annexin A6 [42]. In addition, the free Ca2+ concentrations 

required to initiate phospholipid binding differ markedly among different annexins and different 

phospholipid head groups. They range from 20 μM for the binding of annexin A5 to PS-containing 

liposomes, through submicromolar Ca2+ concentrations for the PS- and PA-binding of annexins A1 

and A2, to less than 100 nM for the interaction of the annexin A2-S100A10 complex with  

PS-containing membranes [2,38]. This indicates that the annexin family as a whole can respond to a 

large spectrum of Ca2+ concentration changes induced by different stimuli with intracellular 

translocation from the cytosol to the membrane. Moreover, individual annexins are specifically 

designed to react only to stimuli of certain amplitude. Among vertebrate annexins, the only member 

that does not interact with PS-containing liposomes at submillimolar calcium concentrations is  

annexin A9 which lacks the Type II consensus calcium and phospholipid binding sites [43] (no data 

are available regarding annexin A10 that lacks three of the four binding sites). It is worth mentioning 

that around one third of annexin domains in the eukaryotic annexin superfamily has lost the Type II 

calcium binding domains. However, many of these exposed regions present a novel K/H/RGD motif 

(that may also appear at the loop between Domains II and III), that may have a functional role in 

annexin membrane interactions probably via receptor targeting [42]. Interestingly, annexin A9 (as well 

as annexins A1 and A2) possesses two such novel motifs in Repeats III and IV that may be responsible 

for the potential membrane associated physiological functions of annexin A9 [44,45]. 
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3.2. Calcium-Independent Lipid Binding 

Although calcium-dependent phospholipid binding is the main characteristic of the annexin 

superfamily of proteins, additional lipid binding mechanisms have been described in some annexins 

that do not require, at least directly, calcium bridging. Among others, the main parameter regulating 

the calcium-independent binding is the pH value. It has been shown in vitro that annexins A5 and 

A13b undergo a conformational change at mildly acidic pH (midpoints around pH 4.1 and 5.8, 

respectively) that resembles that observed after calcium binding (the so-called “open conformation” 

with exposure of the tryptophan residue located at the AB loop of Domain III) [37,46,47]. These pH 

values can be reached inside the cell as it is well known that pH can decrease around 1.6 units in the 

proximity of the membrane in regions rich in anionic phospholipids as PS [48]. The N-terminal half of 

annexin A6 (highly similar to annexin A5) also undergoes a conformational change at acidic pH, but it 

involves a partial denaturation of the protein core with exposure of hydrophobic regions [49]. This 

conformational change seems to be an intermediate state for the calcium-independent binding of 

annexin A5 to PS-liposomes at pH 4.0 [50], and induces leakage from PS vesicles [51]. Interaction 

with acidic phospholipid vesicles at slightly low pH has also been described for annexin A4, which 

induces leakage from these vesicles [52], and for annexin A6, suggesting that this insertion is a 

prerequisite for the formation of calcium channels [53]. A pH-driven calcium-independent insertion 

into PS-rich monolayers has also been observed in annexin A1 [54] and has been suggested for 

annexin A5 [55]. These observations led to postulate that annexins could penetrate into the bilayer, in 

contrast to the preferred location at the vesicle surface at neutral pH, possibly adopting different 

conformations under the two conditions. 

The introduction of site directed spin labeling for the study of calcium-independent  

annexin-membrane interactions has allowed further advances in understanding the molecular 

mechanisms by which annexins interact with acidic bilayers. These studies have been carried out with 

annexin B12 from Hydra by engineering protein mutants with specific derivatized cysteines with a 

paramagnetic nitroxide chain. These experiments revealed that annexin B12 inserts into the lipid 

bilayer after undergoing a profound structural reorganization [56–60]. Electron paramagnetic 

resonance analysis of the loop between Helices D and E in Domain II showed that this region refolded 

and formed a continuous amphipathic α-helix after calcium-independent binding to membranes at 

mildly acidic pH. At pH 4.0, this helix assumed a transmembrane topography, while at pH around  

5.0–5.5, it was peripheral and approximately parallel to the membrane; this form was reversibly 

converted into the transmembrane helix by lowering the pH and returned to the surface upon 

increasing pH [61]. These observations suggest the presence of a proton-dependent switch in annexins 

that harbors the information to induce membrane insertion. This insertion could explain some of the 

physiological properties of these proteins, such as calcium channel activity, and could also underlie its 

pathway of secretion.  

Annexin A13 deserves a special mention regarding calcium-independent binding to membranes. 

This protein is the founder and most ancient member of mammalian annexins [62]. A short “a” 

isoform was first identified as a gut-specific annexin highly similar to annexin A5 [63]. Later on, an 

alternative splicing form with an insertion of 41 residues at the N-terminus was described: The “b” 

isoform [64]. Another peculiar feature of this annexin is the presence of an N-terminal sequence that 
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leads to the N-myristoylation of the terminal glycine residue. This post-translational modification is 

unique among vertebrate annexins and is present in both isoforms allowing the direct interaction of 

these proteins with biological membranes in a calcium-independent manner. Moreover, the 

myristoylated form of the A13b isoform interacts better with PC and vesicles with a raft-like 

composition than with acidic phospholipids [37]. In addition, annexin A13 can interact with acidic 

phospholipid bilayers in the presence of calcium as described for other members of the annexin 

superfamily. Although the core of the long A13b isoform is quite similar to that of annexin A5, its 

requirements for calcium binding are higher (around 10-fold) probably due to the interaction of the 

relatively long N-terminus with the protein core [37]. On the other hand, a truncated form of annexin 

A13b lacking the first 48 amino acid residues (quite similar to the annexin A13a isoform) presented a 

behavior almost identical to annexin A5 regarding calcium-dependent phospholipid binding [37]. 

3.3. Annexin-Induced Vesicle Aggregation 

In addition to their ability to interact with membranes, several vertebrate annexins are able to 

mediate vesicle aggregation, among them annexins A1, A2, A4, A6 and A7, whereas others, such as 

annexins A3, A5, A11 and non-myristoylated A13b, do not promote aggregation [2,25,37,65]. 

Interestingly, although mammalian annexin A5 lacks the ability to aggregate vesicles, we have 

reported that its highly similar chicken ortholog induces aggregation of vesicles containing acidic 

phospholipids even at low protein and/or calcium concentrations [66]. Chicken annexin A5 shows a 

high sequence and structural similarity with mammalian annexins absent in chicken, such as annexins 

A3 and A4. Thus, some of the physiological functions exerted by these proteins may be carried out by 

chicken annexin A5, even those that could require calcium-dependent membrane aggregation. 

Vesicle aggregation is negatively regulated by phosphorylation of the N-terminal domain at 

serine/threonine and tyrosine residues [13,20,67,68] or by proteolysis of the N-terminal extension [69]. 

In addition, the aggregation process may finally lead to fusion processes as described for annexin A7 

regarding its involvement in exocytosis of lung surfactant, catecholamines, and insulin [70]. 

Phospholipid composition and calcium sensitivity for this aggregation activity significantly varies 

among individual annexins [2,38,65]. Moreover, the lipid composition and organization regulates the 

Ca2+-sensitivity of certain annexins for membrane bridging by modulation of membrane fluidity [71].  

How do annexins induce membrane aggregation? Several mechanisms have been proposed and are 

depicted in Figure 3: (A) self-association/dimerization of annexins bound to separate membranes;  

(B) establishment of heterotetramers formed by two annexins and two S100 proteins; or (C), the 

appearance of a second phospholipid-binding site after the interaction of specific annexins with 

membranes via the calcium-dependent type II sites located on the convex surface of these annexins.  

Cryo-electron microscopy of aggregated lipid vesicles in the presence of wild-type annexin A4 

shows a separation compatible with two layers of membrane-bound annexin A4 [20], in accordance 

with the first mechanisms described for vesicle aggregation. We have also demonstrated that chicken 

annexin A5 induces vesicle aggregation via establishment of protein dimers between molecules on 

different vesicles through the concave surfaces based on the kinetic analysis of the aggregation process 

together with cross-linking experiments at low-membrane occupancy and inhibition of vesicle 

aggregation by blockage of the concave annexin surface with heparin tetrasaccharide. Moreover, the 
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essential role of the N-terminus of this protein for aggregation was put forward using chimeras with 

human annexin A5 (that does not aggregate vesicles) and truncation mutants [66].  

Figure 3. Proposed mechanisms for annexin-mediated membrane-vesicle aggregation. 

Several mechanisms have been proposed to explain the annexin-mediated induction of 

vesicle aggregation. Essentially, the mechanism depends on the molecular characteristics 

of the annexin involved in the process. In all cases, calcium seems to be essential to 

induce the process. (A) Aggregation induced by annexin-annexin interactions through the 

concave side of the molecules (probable involvement of the N-terminus); (B) Aggregation 

induced by the formation of heterotetrameric annexin bridges. Annexin A2 does not 

require calcium to interact with S100A10 as this small S100 molecule is permanently in 

the “activated” form without binding calcium. Other annexins require calcium for the 

formation of the complex with S100 proteins that are found in an “inactivated” form at low 

calcium concentrations (i.e., annexin A1 with S100A11); (C) Vesicle aggregation induced 

by the appearance of a second phospholipid- binding site in the N-terminus after 

calcium-dependent binding to one membrane and consequent annexin structural 

rearrangement. (Part of the figure is based on the model proposed in [1] for annexin A1). 

 

Annexins A1 and A2 seem to be able to induce membrane aggregation via different mechanisms in 

which the N-terminal domain also plays an important role: (i) membrane bridging through 

heterotetramers (or octamers) with proteins of the S100 family (S100A11 and S100A10) [72,73],  

(ii) formation of dimers via interaction through the N-terminal domains of monomeric annexins,  
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as suggested for annexin A4 and chicken annexin A5 [74], or (iii) interaction of one molecule with two 

adjacent membranes simultaneously [24,75,76]. Annexin A2 is more prone to form heterotetramers 

due to a constitutive dimeric active conformation of S100A10 under physiological conditions. 

However, at mildly acidic pH, this protein does not undergo the proposed structural rearrangement 

described for annexin B12 but experiments conformational changes that allow interaction with 

membranes in a calcium-independent manner. This leads to vesicle aggregation via exposure of a 

secondary hydrophobic binding site that allows membrane bridging as a monomer [76]. On the other 

hand, annexin A1 interacts with S100A11; this protein requires calcium binding to adopt an active 

conformation to form heterotetramers with annexin A1. The crystal structures of annexin A1 in the 

absence [22] and presence of calcium [24] (Figure 2) suggest a calcium dependent relocation of the  

N-terminal helices. Upon calcium binding, the N-terminal domain is exposed acquiring a very flexible 

conformation, as confirmed by molecular dynamics [77]. In the proximity of phospholipid membranes, 

the N-terminal domain refolds into α-helical structures that allow favorable direct interactions with the 

membrane providing a peripheral membrane anchor for vesicle aggregation [75]. 

Additional membrane aggregation mechanisms have been suggested for annexin A6. As we have 

previously commented, this protein is unique in the annexin superfamily as it consists of two annexin 

core modules connected by a 40 amino acid loop. Crystallographic data reveal that the two annexin 

cores are tilted with respect to each other in such a way that none of the two cores can bind to a 

membrane with its convex surface parallel to the membrane [78]. However, phosphorylation of a 

threonine residue in the connecting loop seems to increase the flexibility of the molecule, as deduced 

from the crystal structure and biochemical analysis of the phosphorylation-mimicking mutant  

T356D [79]. In fact, electron microscopic studies of membrane-bound annexin A6 2D crystals have 

determined that the two annexin cores reorient and become coplanar upon membrane binding [80,81]. 

More recently, and based on quartz crystal microbalance with dissipation monitoring, cryo-electron 

microscopy and atomic force microscopy techniques, a new model for the association of this annexin 

with membranes has been proposed. Authors suggest that at low calcium concentration (<150 μM), 

annexin A6 binds to membranes via the two coplanar annexin cores and cannot induce vesicle 

aggregation. However, at higher calcium concentration (~2 mM), a conformational switch allows 

annexin A6 to bind two adjacent phospholipid membranes due to the appearance of a dormant 

phospholipid binding sequence in the interconnecting loop, adopting a conformation similar to that 

observed in the crystal structures [82].  

4. Functional Implications of Phospholipid Binding 

Annexins have been proposed as membrane-membrane or membrane-cytoskeleton linkers, being 

implicated in Ca2+-regulated exocytosis events, endocytosis, cell signaling and stabilization of specific 

domains of organelle membranes and the plasma membrane. Moreover, annexins are thought to act 

themselves as Ca2+ channels although it is yet not clear how calcium permeability is achieved. 

However, other potential functions have been suggested taking into account that some of these proteins 

can migrate to the nucleus or be secreted to the extracellular space, acting as important regulators of 

several physiological processes, such as coagulation or inflammation. The cellular mechanism by 

which some annexins are secreted remains controversial. Annexins have no hydrophobic signal 
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peptide and it has been suggested that annexin A1 may be secreted via ATP-binding-cassette (ABC) 

transporters [83,84]. On the other hand, annexin A5 circulating in the plasma may arise from damage 

of endothelial cells or trophoblasts [85]. Here we will briefly summarize different functions which are 

closely related to the ability of annexins to interact directly or indirectly with phospholipid membranes 

within the cell or at the extracellular space (Figure 4). 

Figure 4. Intra- and extracellular functions of annexins. Annexins can be found in different 

intracellular compartments, including the nucleus, in equilibrium between soluble and a 

membrane-bound or cytoskeleton-bound forms depending on local intracellular calcium 

variations and lipid composition. In addition, acidification in the close proximity of the 

membrane due to acidic phospholipids can induce a conformational rearrangement of 

specific annexins with insertion of the annexin helices into the membrane. Although they 

lack signal sequences for secretion, they can be localized on the outer plasma membrane or 

soluble as circulating proteins where they can interact with biological membranes that 

expose PS, such as activated platelets.  

 

4.1. Intracellular Functions 

4.1.1. Annexin Interactions with the Cytoskeleton 

Several members of the annexin superfamily have been described to interact with the cytoskeleton, 

mainly with actin. Annexin A2 was the first annexin shown to bind to actin filaments in a  

Ca2+-dependent manner. Moreover, this annexin possesses the ability to bundle F-actin filaments and 

plays an important role in their polymerization [86,87]. Another annexin that binds to F-actin is 

annexin A1, which also interacts with profilin, a G-actin binding protein and regulator of actin 

polymerization [88–90]. Interaction of annexin A5 with actin has also been reported in platelets, where 

it represents a key regulator of the coagulation process [91]. Finally, interaction of annexin A6 with 
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actin has been described to be required for the dynamic reorganization of the sarcolemma during  

Ca2+-controlled smooth muscle contraction [92]. Regarding microtubules, a colocalization of annexin 

A11 with α-tubulin during mitosis has been described in COS-7 cells [93]. Migration of annexin A11 

towards the nucleus is calcium-dependent and probably requires its interaction with calcyclin 

(S100A6). Once in the nucleus, annexin A11 plays an essential function for midbody formation and 

completion of the terminal phase of cytokinesis [94]. 

4.1.2. Annexins as Membrane Scaffolds 

It is well known that annexins are not only able to interact with membranes and cytoskeleton, but 

also to form lateral assemblies leading to the formation of two-dimensional crystal structures on the 

bilayers. In this regard, annexin A5 has the ability to bind in a calcium-dependent manner to PS 

membranes and to form a two-dimensional crystal lattice through the lateral interaction of protein 

trimers. It has been proposed that these structures may be involved in stabilizing certain  

plasma-membrane structures and in changing membrane curvature and cell shape. It is also well 

established that this type of membrane coating plays an essential role in the anticoagulant role of 

annexin A5 [95]. On the other hand, annexins A1 and A2 seem to associate into a different type of 

assembly when bound to PS:PC bilayers. It has been observed that the establishment of these annexin 

assemblies is accompanied by the segregation of membrane lipids, with certain negatively charged 

phospholipids accumulating underneath the annexin clusters, and that these annexins may even adsorb 

irreversibly to PS-enriched microdomains at high-calcium concentrations [96]. This activity could be 

responsible for an annexin-mediated formation of certain phospholipid domains in cells [38].  

4.1.3. Annexins in Vesicle Traffic 

The key role of annexins in vesicle traffic is well known since the discovery and isolation of 

annexin A7 (synexin) that resulted to be essential in Ca2+-regulated chromaffin granule  

exocytosis [97]. Several additional annexins, including A1, A2, A3, A6, A7, A11, A13, and B7, have 

been linked to exocytotic processes, more specifically to post-trans-Golgi network events in the 

biosynthetic pathway [1]. For instance, annexin A2 has been proposed to promote the formation of 

lipid microdomains, which are essential for Ca2+-regulated exocytosis [98]. Regarding the endocytic 

pathway, some of the best-characterized annexins involved in this process are annexins A1, A2 and  

A6 [99]. Annexin A2 has been identified as an important element in the formation of early  

endosomes [87] and annexin A1 seems to participate in the internalization of multivesicular 

endosomes and epidermal growth factor receptor (EGFR) [100]. Besides annexin A1, other annexins 

are also involved in different steps that control the endocytic transport and signaling of the EGF 

receptor, such as annexins A2, A6 and A8 [101]. Annexin A6 is also involved in the regulation of the 

transport of cholesterol and, indirectly, the export of caveolin from the Golgi [102–104]. Finally, 

annexins A1 and A2 are considered important in phagocytosis, although other annexins, such as A6, 

A7 and A11, seem to be also involved in this process [105]. 
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4.1.4. Annexins and Intracellular Signaling 

Annexins act as intracellular sensors discriminating incoming signals contributing in this way to the 

response of eukaryotic cells to the changing environment. Annexins interact with membranes at 

specific microdomains that are characterized by their lipid composition and structure [106,107]. As 

previously discussed, annexins preferentially associate with PS, but they also interact with other 

phospholipids, such as PA, PI, PIP2, PE, fatty acids (i.e., arachidonic acid), ceramides and  

lipid-derived metabolites [108]. Most of these molecules participate in lipid-mediated signaling 

pathways that regulate key cellular processes [109]. Thus, PIP2 is a major phosphoinositide of the 

plasma membrane that comprises about 1% of the plasma membrane phospholipids. Annexin A2 binds 

with high affinity to PIP2, which is often found in cholesterol-rich membrane domains, providing a 

link with actin cytoskeleton [40,41,99]. Since PIP2 is the precursor of the second messengers IP3 and 

diacylglycerol, annexin A2 could be involved not only in the regulation of membrane-cytoskeleton 

dynamics but also in other cell signaling events [110].  

Acid sphingomyelinase converts sphingomyelin to ceramide under certain conditions in the 

presence of sustained elevated calcium concentrations. Upon its genesis, ceramide self-associates into 

platforms, promoting gross reorganization of the plasma membrane structure involving clustering of 

signaling molecules and an amplification of vesicle formation, fusion and trafficking. Thus, ceramide 

is considered a key lipid mediator in cellular processes such as differentiation, proliferation, growth 

arrest, and apoptosis [111]. Annexin A1 has been reported to be involved in the calcium-dependent 

production of ceramide and promotes its clustering into the membrane platforms. These effects are 

restricted to this annexin as they depend on its specific N-terminal domain [112]. 

Protein kinase C-α (PKCα) phosphorylates annexins A1, A2 and A4 modifying their calcium- and 

phospholipid-binding properties. Although annexin A6 interacts directly with PKCα, it is not 

phosphorylated. This annexin acts as a new scaffold for recruiting PKCα to the plasma membrane, 

which promotes PKCα/EGFR complex formation with consequent downregulation of ligand-induced 

EGFR signaling [110,113]. Annexin A5 has also been described as a negative regulator of PKC 

activity; this inhibition is not due to a direct interaction but is a consequence of phospholipid 

sequestration [114]. 

Several annexins have been reported to modulate the EGFR/Ras signaling pathway through 

different mechanisms. For example, annexin A6 inactivates Ras by recruiting p120GAP (GTPase 

activating protein) to the plasma membrane of breast cancer cells [115]. Other annexins involved in the 

regulation of the EGFR/Ras signaling and trafficking are annexins A1, A2 and A8. Annexins A1 and 

A2 are phosphorylation substrates of EGFR. In addition, these annexins may interact with several 

proteins involved in this and other signaling pathways [101,116,117]. 

4.1.5. Annexins and Membrane Repair 

Cell membrane repair is an active process that requires extracellular calcium, intracellular vesicles 

and calcium-dependent exocytosis. Besides calcium and cytoplasmic vesicles, several families of 

proteins (soluble NSF attachment protein receptors (SNAREs), synaptotagmins, ferlins and annexins) 

have been identified as part of the repair/resealing machinery [118]. For example, dysferlin, MG53, 
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AHNAK, caveolin-3 and calpain-3 have been described to participate in skeletal muscle repair. The 

relevant role of annexins in plasma membrane repair and protection against membrane damage is 

beginning to be unraveled [119]. The first annexins known to be involved in this process were 

annexins A1 and A2, which interact with dysferlin [120,121]. More recently, it has been reported that 

the self-assembly of annexin A5 into two-dimensional arrays on membranes upon calcium activation 

promotes cell membrane repair [122]. In fact, the antiinflammatory, profibrinolytic and  

anti-thrombotic activities of these three annexins (A1, A2 and A5) have been related to the repair 

machinery that protects cells against damage derived from membrane rupture [123–125]. It has also 

been described that annexins may participate in the repair process with other activities, such as 

facilitating the transport of cytoplasmic vesicles along actin filaments or in the step of vesicle 

aggregation preceding fusion events. Annexin A6 is also involved in membrane repair forming part of 

a scaffold linking membrane microdomains with the cytoskeleton [126] and providing membrane 

permeability protection against chemical and physical stresses [119]. In summary, plasma membrane 

repair requires the formation of a complex array of protein-protein interactions as that described for the 

three-dimensional multiprotein complex that includes S100A10, annexin A2, and AHNAK, which 

along with dysferlin, functions in muscle and cardiac tissue repair [127]. 

4.1.6. Annexins as Calcium Channels and Ion Channel Regulators 

Although the precise mechanism remains unknown, annexins exhibit calcium channel activity in 

plasma membranes and in matrix vesicles. Annexin A7 was the first one related to this function, 

followed by annexin A5, although it has been suggested that all annexins could act as calcium 

channels due to their central hydrophilic hole (Figure 1B), that is an structural feature common to all 

the members of this family of proteins [1,38]. However, in vivo data are scarce and it is complicated to 

explain how annexins can induce calcium permeability mainly taking into account the peripheral 

interaction of these proteins with membranes and the dimensions of the annexin monomers, which 

cannot expand the bilayer. It has been proposed that annexin monomers may destabilize the 

phospholipid bilayer inducing electroporation of the membranes and thus promoting ion permeability 

(Figure 5A) [128]. The analysis of Hydra annexin B12 has suggested two additional mechanisms. 

Initially, and based on the crystal structure of a hexamer of this annexin in the presence of calcium, the 

potential insertion of the hydrophilic hexamer into phospholipid bilayers was proposed. This insertion 

could induce a local reorientation of the bilayer phospholipids allowing a transmembrane structure that 

may be responsible for the calcium channel activity (Figure 5B) [129]. Later on, as previously 

discussed, the same group suggested the insertion of annexin B12 at mild acidic pH after undergoing a 

considerable conformational change. The hypothetical membrane-inserted annexin would have seven 

transmembrane domains and would therefore adopt the topology of a more conventional channel 

(Figure 5C) [56–60]. 
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Figure 5. Proposed interactions of annexin B12 with cell membranes. Annexin B12 is 

quite similar to annexin A5 and it can interact with cell membranes in a superficial manner 

in response to an increase in calcium concentration. This interaction may induce alterations 

in the membrane and allow electroporation of calcium ions (A). It has also been proposed 

that a hexamer of annexin B12 (PDB file 1AEI; [129]) may integrate into the membrane in 

the presence of calcium (B), and could function as a calcium channel due to the existence 

of a central hydrophilic pore in the hexamer (ribbon and surface representations are shown 

from an upper view showing the hydrophilic pore). At low calcium concentration but in the 

presence of mild acidic pH in the proximity of the membrane, annexin B12 may 

experiment an overall structural rearrangement with formation of seven transmembrane 

helices that may allow the calcium channel activity (the helix distribution is based on a 

scheme in [1] and the work of Langen and coworkers [56–60]) (C). 

 

The role of annexins in the regulation of ion channels is less controversial than their activity as 

calcium channels. There is ample experimental evidence that annexins A2, A4 and A6 are modulators 

of plasma-membrane chloride channels and sarcoplasmic reticulum Ca2+-release channels [1,38]. 

Additionally, annexin A2 complexes with S100A10 are involved in the regulation of several other ion 

channels, as a neuron-specific Na+ channel, the TASK-1 K+ channel, or the epithelial Ca2+ channels 

TRPV5 and TRPV6. The complex S100A10-annexin A2 seems to be required for the trafficking of 

these ion channels from their intracellular sites to the plasma membrane [38]. 
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4.2. Extracellular Annexin Activities 

4.2.1. Interaction with Virus and Extracellular Matrix Components 

In a similar way to their ability to interact with the cytoskeleton within the cells, annexins are also 

able to bind extracellular elements thus affecting important cell functions and regulating different 

processes. One example is their ability to interact with viruses with the subsequent involvement in the 

infection process. The first annexin found to be involved in virus docking was annexin A5, which 

specifically interacts with the small hepatitis B virus envelope protein [130] and with influenza  

viruses [131]. Later on, annexin A2 was described to play an essential role in the production of 

infectious hepatitis C virus particles not only affecting their assembly [132], but also the formation of 

their replication complex [133]. Moreover, this annexin has also been shown to interact with the capsid 

protein VP1 of enterovirus 71, enhancing viral infectivity [134], and with HIV-1 Gag protein at the 

phosphatidylinositol 4,5-bisphosphate-containing lipid raft membrane domains at which Gag mediates 

viral assembly, favoring HIV-1 virus replication and production [135]. Annexin A5 has been identified 

in the exosomal compartment of HIV-1-infected and -uninfected lymphocytic H9 cells showing 

differential protein expression patterns. In addition, this annexin is associated with HIV-1 p24 and Tat 

proteins [136]. Interestingly, it has also been demonstrated that annexin A2-mediated enhancement of 

cytomegalovirus infection opposes inhibition by annexin A1 or annexin A5 [137]. The latter are not 

the only annexins described to inhibit virus infection, as human annexin A6 has also been 

demonstrated to interact with influenza A virus protein M2, negatively modulating infection [138].  

On the other hand, annexins can also interact with other extracellular targets, including different 

extracellular matrix (ECM) elements. Thus, annexin A5 was described to interact with Type II and X 

collagens [139] and it was demonstrated that chondrocytes attach to Type II collagen using this  

annexin [140]. It was further revealed that this interaction is essential to regulate cartilage 

mineralization due to the calcium channel activity of annexin A5 (enhanced after interaction with 

collagen) present in matrix vesicles secreted by hypertrophic chondrocytes [141]. Cell surface annexin 

A2 also interacts with ECM components, as it was described as a high affinity receptor for the 

alternatively spliced segment of tenascin-C [142]. Another example is annexin A6. This protein 

contributes to the invasiveness of breast carcinoma cells by influencing the organization and 

localization of functional focal adhesions affecting the location of cadherins [143]. 

4.2.2. Annexins and Inflammation 

One of the best-characterized biological processes regulated by annexins is inflammation.  

Annexin A1 is able to inhibit different enzymes involved in the inflammatory process, including 

phospholipase A2 (PLA2), cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS). 

Moreover, once secreted, annexin A1 (or its cleaved N-terminal domain) binds to the formyl peptide 

receptor (FPR or ALXR), promoting cell detachment and inhibition of leukocytes migration, with the 

subsequent reduction in the inflammatory response. In addition to affecting the migration of leukocytes 

through FPR activation, extracellular annexin A1 is involved in apoptosis. It can trigger pro-apoptotic 

responses in neutrophils, and can function as an engulfment ligand that is presented on the surface 

when cells become apoptotic [144]. Moreover, cell-surface annexin A1 seems to be required for the 
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clearance of the apoptotic cells, which can be mediated by PS receptors on the engulfing cells that 

possibly recognize annexin A1 or annexin A1-PS complexes [145]. Annexin A5 has also been 

described to inhibit PLA2 [146] and, taking into account its ability to interact with PS, it is able to 

inhibit the phagocytosis of apoptotic bodies by macrophages [147]. Annexin A6 also inhibits the 

cytoplasmic activity of PLA2. This activity is involved in Golgi vesiculation events and its  

inhibition in cells overexpressing annexin A6 interferes with caveolin export from Golgi  

membranes [148]. 

4.2.3. Annexins in Coagulation and Fibrinolysis 

An anticoagulant role has been proposed for extracellular annexin A5 based on its ability to form 

2D crystalline shields on the surface of activated platelets that express PS on the outer leaflet of their 

membrane. This shield effectively sequesters PS from procoagulant factors that use this phospholipid 

in the clotting cascade [38]. In this regard, antibody-mediated inhibition of the anticoagulant property 

of annexin A5 has been proposed to occur in recurrent pregnancy losses observed in patients with 

lupus erythematosus and antiphospholipid syndrome [149]. Moreover, annexin A5 effectively unmasks 

the procoagulant surface of the placental syncytiotrophoblast to create a prothrombotic 

microenvironment. Thus, in patients with antiphospholipid syndrome it has been observed that the 

presence of anti-annexin A5 antibodies promotes placental thrombosis [150]. 

Annexin A2 plays an important role in fibrinolysis. It has been described that extracellular annexin 

A2 also forms heterotetramers with S100A10 on the cell surface. This cell surface complex acts as a 

co-receptor for plasminogen and tissue plasminogen activator (tPA), promoting the production of 

plasmin with the subsequent degradation of fibrin [151,152]. 

5. Annexin A5: A Tool in Research and Diagnostic 

Labeled annexin A5 is currently used for apoptosis detection in cell cultures, and also for in vivo 

molecular imaging. The plasma membrane of living cells is a highly organized asymmetric  

three-dimensional system. The electrically neutral PC, sphingomyelin (SM) and glycosphingolipids are 

mainly located on the outer leaflet of the plasma membrane, whereas aminophospholipids such as PE 

and anionic PS and PA are exclusively present in the cytoplasmic or inner leaflet [153,154]. Local or 

global changes in lipid asymmetry are critical for several cellular events like membrane biogenesis, 

cell cycle progression, apoptosis, platelet coagulation and injury. The asymmetrical phospholipid 

location yields a strong distribution of electrostatic charge between the two membrane surfaces. The 

movement of phospholipid molecules between the two leaflets is maintained by the action of specific 

lipid-translocating proteins [153,155]. Thus, the membrane ATP-dependent flippases and floppases 

facilitate the translocation of lipid molecules from one leaflet to the other against their concentration 

gradient. In addition, the lipid exchange can be mediated by energy-independent scramblases being 

coupled to the translocation of calcium ions. Scramblases translocate the phospholipids bidirectionally 

over the two leaflets thereby collapsing PS asymmetry.  

Apoptosis is a programmed type of cell death involved in a wide variety of physiological and 

pathological processes. The mechanisms involved in apoptosis have been extensively described in 

detail elsewhere [156,157]. Apoptosis can be triggered by different stimuli leading to loss of plasma 
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membrane asymmetry, release of several mitochondrial factors, activation of cytoplasmic caspases, 

loss of mitochondrial membrane potential, condensation of chromatin, internucleosomal degradation of 

DNA and cell shrinkage with subsequent membrane blebbing. All these processes occur with the 

maintenance of cell integrity; when the cell is disintegrated, its cytoplasm is not released but is 

maintained in apoptotic bodies. The recognition and engulfment of the apoptotic cells by phagocytes 

involves “find-me” signals released by apoptotic cells and the exposure of “eat-me” signals that allow 

the clearance of such death cells [158,159].  

The loss of phospholipid asymmetry in the plasma membrane, due to a redistribution of anionic PS 

from the inner membrane leaflet to the outer one, is one of the most remarkable features occurring 

during early apoptosis without compromising the barrier function of the cell membrane [160]. 

Different methods have been developed to detect the early PS expression on the extracellular face of 

the plasma membrane of apoptotic cells. This phospholipid can be detected by dye-labeled PS-binding 

proteins. One of the most popular noninvasive tools for the detection of apoptosis is the use of  

annexin A5 (commercially known as annexin V) labeled with a fluorescent dye [161–164]. The 

efficiency of annexin A5 as apoptosis marker is due to: (i) its high affinity for PS (nanomolar range) in 

the presence of calcium, (ii) the successful expression in bacterial systems of the recombinant protein 

which allowed the generation of commercially available assay kits [165], and (iii) the description of 

methods of conjugation of this protein to fluorescein isothiocyanate (FITC) and similar  

fluorophores [166]. Furthermore, this assay is able to discern between apoptotic cells and necrotic 

cells, which have compromised plasma membrane integrity, after propidium-iodide DNA staining. In 

this way, viable, apoptotic, and necrotic cells can be discriminated by either fluorescence microscopy 

or flow cytometry. 

Molecular imaging of both apoptosis and necrosis is useful to understand the cell death process in 

several pathologies such as acute myocardial infarction, cerebral stroke and atherosclerosis, as well as 

for the measurement of drug response in cancer patients. The detection of PS is the biological property 

by which the development of several radiolabeled derivatives of annexin A5 has been described as a 

diagnostic tool. Thus, radioisotopes (i.e., technetium and halogens), their conjugation methods, and 

quality control of the radiopharmaceuticals have been described [161,167,168]. In fact, radionuclide 

labeling of annexin A5 has allowed to image apoptosis in vivo and therefore its use as a tool in 

diagnostic techniques, treatment evaluation, and therapy approaches monitoring cell death-inducing or 

cell death-preventing therapies [161,169]. 

Recently, annexins (i.e., A1, A2, A5 or A6) have been reported to be present in exosomes  

from different cellular origins being mainly involved in exosomal uptake or recycling  

mechanisms [136,170–172]. Independently of the roles of these proteins in exosomes, annexin A5 has 

been used as a research tool to demonstrate the requirement of PS exposure for exosome uptake. For 

example, blockage of PS from neuron-derived exosomes (which are associated with extracellular 

amyloid β-peptide) using this annexin not only prevented exosome uptake but also suppressed amyloid  

β-peptide incorporation into microglia [173]. 
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6. Conclusions 

Annexins comprise a multigene superfamily of calcium-regulated membrane binding proteins 

expressed widely throughout the animal and plant kingdoms. Humans express twelve different 

annexins, some of them with splicing variants, which exert differential functions. But all of them 

contain a conserved homologous calcium-membrane binding core that allows the peripheral docking of 

these proteins to membranes. This docking can occur at high density with establishment of  

two-dimensional arrays of annexins that condition membranes by formation of phospholipid 

microdomains with specific chemical and structural properties. On the other hand, when interacting at 

lower density, they can modulate membrane permeability or trigger or regulate important intracellular 

signaling events. In addition, annexins may be secreted or released from damaged cells to exert 

important extracellular functions as the regulation of inflammatory reactions, coagulation or the 

fibrinolytic homeostasis. In any case, although the major common feature of annexins is their 

homologous protein core, the variable N-terminal extension plays key roles in the regulation of the 

specific functions of individual annexins or may even be responsible of additional features of some of 

these proteins. 

The existence of this wide variety of homologous annexins in one organism allows the redundancy 

of cellular functions by some members of this superfamily of proteins, as revealed by knockout 

experiments. However, specific annexins respond to a large variety of different stimuli, mainly related 

to changes in calcium concentration, allowing a fine tuning of each annexin to respond only under 

certain circumstances. Although a lot is known regarding the in vitro activities of annexins mainly 

related to calcium-driven membrane interactions, in vivo functions are just beginning to be understood 

thanks to experiments using live cell imaging and targeted gene disruption in cells or in mice. Thus, 

roles have now been unequivocally established for annexin A1 in inflammation, annexin A2 in vesicle 

traffic and annexin A7 in regulation of cell growth. Additional important physiological functions may 

still arise as this family of proteins has been highly conserved during evolution and most organisms 

contain multiple members of the family that may act as potential functional backups. However, there is 

still a long way to go to understand the precise functions of individual annexins and it may prove a 

difficult job taking into account the potential redundancy of annexin functions, their involvement in 

multicomponent membrane-associated scaffolds and their interaction with several signaling pathways.  
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