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The human microbiota heavily influences most vital aspects of human physiology including
organ transplantation outcomes and transplant rejection risk. A variety of organ
transplantation scenarios such as lung and heart transplantation as well as
hematopoietic stem cell transplantation is heavily influenced by the human microbiotas.
The human microbiota refers to a rich, diverse, and complex ecosystem of bacteria, fungi,
archaea, helminths, protozoans, parasites, and viruses. Research accumulating over the
past decade has established the existence of complex cross-species, cross-kingdom
interactions between the residents of the various human microbiotas and the human
body. Since the gut microbiota is the densest, most popular, and most studied human
microbiota, the impact of other human microbiotas such as the oral, lung, urinary, and
genital microbiotas is often overshadowed. However, these microbiotas also provide
critical and unique insights pertaining to transplantation success, rejection risk, and overall
host health, across multiple different transplantation scenarios. Organ transplantation as
well as the pre-, peri-, and post-transplant pharmacological regimens patients undergo is
known to adversely impact the microbiotas, thereby increasing the risk of adverse patient
outcomes. Over the past decade, holistic approaches to post-transplant patient care
such as the administration of clinical and dietary interventions aiming at restoring
deranged microbiota community structures have been gaining momentum. Examples
of these include prebiotic and probiotic administration, fecal microbial transplantation, and
bacteriophage-mediated multidrug-resistant bacterial decolonization. This review will
discuss these perspectives and explore the role of different human microbiotas in the
context of various transplantation scenarios.

Keywords: human microbiota, organ transplantation, hematopoietic stem cell transplantation, kidney
transplantation, lung transplantation, liver transplantation, heart transplantation, fecal microbial transplantation
INTRODUCTION

The human body is home to a vast and immensely complex ecosystem of bacteria, fungi, archaea,
helminths, protozoans, parasites, and viruses, collectively referred to as the human microbiota (1–3).
In fact, it is estimated that the ratio of human cells and microbial cells constituting the human body is
approximately 1:1 (4). Moreover, the human gut metagenome is approximately 150 times larger and
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contains two orders of magnitude more unique genes than the
human genome (5). Although the human microbiota hosts a
diverse variety of microbial life spanning all three domains of
life (bacteria, archaea, and eukarya), bacteria outnumber other
microorganisms by up to three orders of magnitude (4). It is
estimated that between 500 and 1,000 unique species of bacteria
inhabit the human body at any given point in time (6).

The gut microbiota is the most diverse, studied, and densest
microbiota in the human body. Apart from this, several other
locations of the human body such as the oral mucosa, respiratory
tract, genitals, and the ocular surface host their own unique
microbiotas (2, 4, 7–11). Each of these microbiotas possesses its
own intricacies and idiosyncrasies. What is even more interesting
is that several unique insights pertaining to health and disease
can be uncovered from analyzing each of these microbiotas in
isolation and in combination with each other. In fact, studies
accumulating for the past several years suggest that the human
microbiotas can be decomposed into their distinct constituent
subcomponents such as the mycobiome (the fungal and yeast
components of the microbiota), virome (the viral component of
the microbiota), and even the phageome (the bacteriophage
component of the microbiota), each contributing to the overall
nature of the community-level interactions the constituent
microbiota has with host physiology (12–14).

Recent developments in the field of metagenomics and high-
throughput sequencing have potentiated a fast-growing body of
research that suggests that dysbiosis may play a significant role
and act as a biomarker for a host of aberrant pathological
conditions. Broad-scale community-level changes in the
diversity and composition of a microbiota, which often
underlie a diseased or perturbed physiological state, are
referred to as dysbiosis. The human immune system is one of
the key regulators as well as modulators of the human
microbiotas. There is adequate evidence suggesting that a
complex choreography between the commensal microbiota and
the mammalian immune system plays critical roles in the
development of the innate and adaptive immunity as well as
the maintenance of host-microbe symbiosis (15). This complex
choreography is also one of the key determinants as well as
modulators of transplant success and host vs. graft disease in
hematopoietic stem cell transplantation (HSCT) and organ
transplantation. The following sections will explore the
importance of different human microbiotas in the context of
stem cell and organ transplantation. A visual summary of the
components of most human microbiotas (bacteriome,
phageome, virome, and mycobiome), the various human
microbiotas discussed in this review, and how transplantation,
dysbiosis, and therapeutic interventions targeting the two come
together in the big picture is illustrated in Figure 1.
HEMATOPOIETIC STEM CELL
TRANSPLANTATION

Hematopoietic stem cell transplantation (HSCT) is a clinical
procedure involving the infusion of healthy donor multipotent
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hematopoietic stem cells (HSCs) to correct a patient’s damaged/
defective bone marrow/immune system and consequently
reestablish a normal hematopoietic function (16, 17). It is a
standard course of treatment for a variety of fatal malignant and
non-malignant blood disorders such as leukemias, severe aplastic
anemia, multiple myeloma, immune deficiency disorders, and
lymphomas (18–24). Broadly speaking, HSCT has three clinical-
use cases. Firstly, HSCT enables the replacement of malignant or
genetically defective HSCs with healthy fully functional stem
cells. Secondly, HSCT resuscitates the depleted HSC population
in patients receiving high-dose radiation and/or chemotherapy,
thus providing them with a chance of survival and recovery.
Finally, in the case of certain cancers (such as leukemia), HSCT
provides the patient with a readily available pool of
immunocompetent cells capable of eradicating malignant cells.
This is referred to as the graft-versus-leukemia effect (25, 26).

According to a retrospective evaluation of worldwide HSCT
activity trends conducted by the Worldwide Network for Blood
and Marrow Transplantation (WBMT), more than 1,298,897
HSCT procedures were carried out between 1957 and 2016.
WBMT is an association of societies involved in cellular
therapies (stem cell transplantation, stem cell donation, and
cellular therapy) with the mission of promoting excellence in
HSCT (27, 28). In 2016 alone, 89,070 HSCT procedures were
conducted across 1,662 centers across the globe (29). Although
HSCT is the oldest cellular therapy for hematologic
malignancies, it remains, to this day, a high-risk procedure. A
number of transplantation-related complications such as acute as
well as chronic graft-versus-host disease (GVHD), malignancy
relapses, conditioning-related toxicity, immunodeficiency, and
opportunistic infections are perplexing causes of high morbidity
and mortality among allogeneic HSCT recipients (26).

HSCT can be of two types: autologous and allogeneic (25). In
autologous transplantation, the stem cells are harvested and
transplanted back into the same individual. In allogenic
transplantation, the stem cells are harvested from an
immunologically compatible healthy donor (typically sourced
from the public via a national registry) and transplanted into a
patient. Since the donor and recipients are one and the same,
autologous HSCT does not require HLA-matched donors, poses
no risk of GVHD, and does not require immunosuppressive
therapy. GVHD is a systemic disorder that occurs when a graft
recipient’s body cells are recognized as foreign entities and
attacked by the graft’s immune cells (30, 31). It is the most
well-recognized complication observed in HSCT recipients (32).
Autologous transplantation, therefore, presents a much lower
risk of post-treatment life-threatening complications and
opportunistic infections. Moreover, for autologous HSCT,
treatment-related mortality has been documented to be lower
than 5% in most studies (25). Furthermore, elderly and other
high-risk patients can tolerate autologous HSCT relatively well
(33–36). Autologous HSCT, however, has its drawbacks as well.
For example, a transplanted population of autologous HSCs may
inadvertently contain clonogenic tumor cell populations, which
can contribute to relapse (25). Allogeneic HSCT finds
application predominantly in the treatment of leukemias and
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myelodysplastic syndromes, whereas autologous HSCT is
documented more commonly in patients with solid tumors,
lymphomas, and myelomas (25).

Dramatic compositional changes in the gut microbiota are
observed because of HSCT. Many groups have expressed interest
regarding the nature of these changes for their potential
applicability as the biomarkers of HSCT outcomes and early
indicators of patient treatment response. Several compelling
studies have been reported in this direction (37–43). For
example, in one very comprehensive study, weekly stool
samples from 66 HSCT-recipients were collected and the
relative abundance of bacterial taxa was analyzed starting pre-
transplant and continuing weekly until 100 days post-transplant
(38). The authors observed an association between the GVHD
risk and decreased alpha diversity of the stool microbiota (38), a
finding in agreement with other similar studies (39, 42, 44).
Furthermore, the presence of some species belonging to the
Bacteroides genus was found to be positively correlated with
GVHD (B. dorei), whereas others were negatively correlated
(B. ovatus, B. caccae, and B. thetaiotaomicron), possibly due to
Frontiers in Immunology | www.frontiersin.org 3
varying metabolic, virulent, and inflammation-promoting
capabilities. This study was the first to identify several species
of Actinobacteria and Firmicutes, typically found in the oral
microbiota, to be positively correlated with subsequent severe
GVHD development (38). In the same year, another study
profiling the intestinal microbiota of 541 patients found similar
associations in certain bacterial groups constituting the intestinal
flora (Eubacterium limosum, Anaerofustis stercorihominis,
Pseudoramibacter alactolyticus, and Peptococcus niger) and
disease relapse/progression within 2 years following allogenic
HSCT (41). A recent observational study analyzed the
microbiota composition of 8,767 fecal samples obtained from
1,362 allogeneic HSCT recipients distributed across four centers.
The gut microbiota diversity losses and patterns of single taxa
domination (most commonly Enterococcus and Streptococcus)
were observed to be consistent across all four transplantation
centers, although a fair degree of heterogeneity was observed
among the transplant recipients; not all patients displayed the
same patterns. Furthermore, the authors identified geography-
invariant associations between decreased gut microbiota
FIGURE 1 | Types, location, and relationship with transplantation and human health. The four components of the human microbiomes discussed in the review (top
left). The various human microbiotas and their location mentioned in the review (bottom left). The impact of cell and organ transplantation on the various human
microbiotas and non-pharmacological interventions to ameliorate the same (right).
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diversity and elevated transplantation-related as well as GVHD-
related fatal complications (44).

Aside from microbe-based biomarkers, the search for novel
biomarkers indicative of HSCT outcomes in the gut microbiota
has also yielded interesting biochemical and histological
biomarkers such as decreased urinary 3-indoxyl sulfate levels
and reduced Paneth cell counts (40, 43). Paneth cells are a type of
specialized secretory epithelial cells typically found in the small
intestinal crypts of Lieberkühn. They are known to play a role in
gut microbiota regulation by secreting antimicrobial peptides
such as a-defensins and the antimicrobial lectin RegIIIg (45).
Dietary protein–derived tryptophan is degraded to indole by the
intestinal microbiota, which is subsequently oxidized and
sulfonated in the liver to form 3-indoxyl sulfate. Microbiota-
derived indole and its derivatives are critical for the maintenance
of the human gut microflora due to their bacteriostatic,
antifungal, epithelial function–regulatory and inflammation-
modulating properties (40, 43, 46). In another study, a group
analyzed the fecal microbiota metabolites of 44 hematologic
cancer patients before undergoing HSCT up to 100 days post-
transplant. They reported a correlation between fecal indole and
butyrate concentrations with post-transplantation gut
microbiota diversity. For example, fecal samples enriched with
Clostridiales had high butyrate levels whereas Bacteroidales
enrichment was associated with high indole levels. This study
thereby demonstrated the potential applicability of bacterial
metabolites as surrogate markers of microbial diversity and the
enrichment of specific taxa, which could, in turn, provide vital
insights about transplant outcomes (47). In fact, the influence of
microbial metabolites such as tryptophan, butyrate, propionate,
hexanoate, isobutyrate, riboflavin, 2-propanol, acetaldehyde,
dimethyl sulfide, isoprene, and riboflavin, on HSCT has been
explored in both human and mouse models by several different
groups in considerable detail (48).

As plenty of evidence is accumulated regarding the crucial
role the gut microbiota plays in health, disease, immunity, and
post-HSCT recovery, rethinking standard clinical practices has
become essential. One group compared parenteral nutrition with
enteral nutrition in the context of compositional and functional
recovery of the gut microbiota in pediatric HSCT patients (49).
Enteral nutrition is a modality of clinically assisted nutrition and
hydration in which nutrition in the form of a normal oral diet or
liquid supplements is delivered directly to the small intestine/
stomach. Parenteral nutrition, on the other hand, is another
modality of clinically assisted nutrition and hydration in which
liquid nutrients (carbohydrates, proteins, fats, vitamins,
minerals, and electrolytes) are delivered straight into the
circulation by completely bypassing the gastrointestinal (GI)
tract, thereby decoupling food ingestion with food–gut
microbiota interactions. During the post-HSCT recovery stage,
the gut microbiota structure of the enteral nutrition–fed
individuals were observed to gradually restore to a pre-HSCT
structure. For example, the relative abundance of several
bacterial species belonging to the genera known to populate
the gut microbiota, such as Faecalibacterum, Dorea, Blautia,
Bacteroides, Parabacteroides, and Oscillospira, were observed to
Frontiers in Immunology | www.frontiersin.org 4
stabilize in enteral nutrition–fed individuals. Similar
observations were, however, not made in the gut microbiota of
the parenteral nutrition–fed individuals as a comparable
recovery endpoint was never achieved. Furthermore, the fecal
concentration of small-chain fatty acids such as butyrate was
restored to pre-HSCT levels within 4 months of the procedure
only in enteral nutrition–fed individuals (49). This observation is
of considerable interest as intestinal butyrate levels and,
consequently, the presence of butyrate-producing strains in the
intestine has been documented to improve intestinal epithelial
cell junction integrity, decrease apoptotic activity, and mitigate
GVHD (49, 50).

A fast-growing body of research has emerged over the past
several years exploring various gut microbiota modulation
strategies to improve HSCT outcomes and stabilize HSCT-
associated gut dysbiosis. The first clinical trial involving the
probiotic supplementation of HSCT patients with Lactobacillus
rhamnosus GG, one of the most widely used probiotic strains,
was reported in 2017. Unfortunately, the trial was prematurely
aborted as no appreciable probiotic-induced changes were
observed in the gut microbiota or on the GVHD incidence
rates of enrolled HSCT recipients (51, 52). Moreover, the
safety of probiotic consumption by HSCT recipients is a
matter of contention. Since HSCT recipients experience
chemotherapy- and radiotherapy-induced damage to the gut
epithelia, they are at an elevated risk of developing sepsis and
bacteremia (53–57). For example, Koyama and colleagues report
the cautionary tale of a 54-year-old male acute promyelocytic
leukemia patient who consumed probiotic-enriched yogurt and
developed septic shock due to the L. rhamnosus GG present in
the yogurt (54). Other studies, however, have attested to the
safety of probiotic supplementation in HSCT recipients. For
example, a study aiming to evaluate the feasibility and safety of a
3-week L. plantarum–based probiotic supplementation regimen
in children and adolescent allogeneic HSCT recipients reported
no unexpected adverse effects such as bacteremia (58). Another
study analyzing the blood cultures of 3,796 HSCT recipients for
signs of bloodstream infections occurring within 1 year of the
procedure caused by common probiotic organisms such as
Lactobacillus species, Bifidobacterium species, Streptococcus
species, and Saccharomyces species, found only 0.5% of the
cohort to be positive for the same. Lactobacillus was the most
identified species in the positive blood cultures. On the other
hand, no occurrences of Bifidobacterium species or S.
thermophilus were identified (59). Another study probing the
safety of L. rhamnosus GG–based probiotic administration in a
high-risk pediatric HSCT patient cohort also reported no
occurrences of bacteremia involving Lactobacillus and therefore
endorsed the safe use of probiotics even in high-risk HSCT
patients (57).

In comparison to probiotics, prebiotics are viewed as a safer
dietary intervention since they involve the consumption of gut
bacteria–fermentable dietary fibers such as starches,
fructooligosaccharides, and galactooligosaccharides, which
alters the community structure of microbiota without elevating
the risk of bloodstream infections (53, 60, 61). A combination of
July 2022 | Volume 13 | Article 932228
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glutamine, fiber, and oligosaccharides (GFO) constitutes a
commercial Japanese enteral supplementation product
considered to be beneficial for restoring chemotherapy-induced
GI mucosa damage (62, 63). A group performed a retrospective
study to verify the validity of this claim. The administration of
the prebiotic combination did, in fact, demonstrate mucosa-
protective properties and increase short-term survival rates
following HSCT. The severity of post-chemotherapy diarrhea
was also notably reduced in the prebiotic-supplemented group.
No positive impact on the GVHD relapse rate was, however,
observed. It is also interesting to note that a Lactobacillus-based
probiotic supplement was also provided to all the prebiotic-
supplemented patients, suggesting the potential existence of a
prebiotic–probiotic synergy (63). More studies are, however,
necessary to understand how to optimally introduce prebiotic-
and probiotic-based supplementation protocols in a standard
pre/post-HSCT care regimen. In another study, a resistant
starch-and-GFO mix was administered to allogenic HSCT
recipients starting from pre-transplantation conditioning to 28
days post-transplant. Resistant starch refers to a broad category
of several structurally different starches, all of which resist
digestion by human enzymes, thereby surviving transit to the
colon where they are fermented by the resident microbes. It is
considered to be beneficial for gut health as it promotes the
production of butyrate in the gut (64, 65). Prebiotic intake was
marked by a decrease in the incidence of acute GVHD, the
maintenance of microbial diversity in the gut within brackets and
a decreased duration of oral mucositis and diarrhea (66). Oral
mucositis, characterized by tissue swelling, is a common
complication of anticancer therapy that can impact up to 90%
of cancer patient populations (67). The role of nutritional
interventions such as optimized energy and protein intake in
modifying bacterial diversity, improving allogenic HSCT-
recipient survival, and reducing acute GVHD risk has also
been explored. A recently published secondary analysis of a
randomized, controlled, nutritional intervention trial failed to
find any significant impact of nutritional interventions on the gut
microbiota, acute GVHD risk, markers of gut barrier functions,
or fecal short-chain fatty acid levels of allogenic HSCT
recipients (68).

Aside from dietary interventions, fecal microbiota
transplantation (FMT) is another gut microbiota modulatory
intervention that has been explored in the context of a variety of
disease processes and therapeutic interventions. FMT is the
administration of a fecal matter solution into the intestinal
tract of a recipient to promote microbial community–level
changes in the recipient’s gut microbiota. Over the past seven
years, multiple retrospective and prospective, and one
randomized controlled trial reporting fecal transplantation in
the context of HSCT with varying levels of success have been
demonstrated (56). The first successful FMT procedure was
conducted in 2012 in an immunocompromised HSCT
recipient suffering from a severe C. difficile infection.
Interestingly, standard pharmacologic regimens had failed to
provide any symptomatic relief to the patient, but within 2 days
of undergoing the FMT procedure, the patient’s symptoms were
Frontiers in Immunology | www.frontiersin.org 5
abated (69). Soon thereafter, another successful case of FMT was
reported by another group (70). HSCT recipients suffering from
C. difficile infections have, in general, responded well to fecal
transplantation, although not all patients receiving the treatment
have experienced comparable benefits. For example, in one such
study, seven HSCT recipients were administered FMT, out of
which five were still undergoing immunosuppressive therapy.
After the transplant was administered, none of the patients
demonstrated any adverse reactions and only one patient
experienced an infection relapse, which was remediated by
another round of FMT (71). In another report, however, only
one of three patients undergoing FMT experienced the successful
clearance of a C. difficile infection whereas the other two
presented with symptomatic recurrence (72). FMT has also
been reported to be effective against steroid-resistant acute
GVHD in the gut. For example, in one study, three patients
experiencing steroid-resistant grade IV gut GVHD received fecal
transplants from both related and unrelated donors (73).
Although the repeated cycles of FMT were required to bring
about sustained symptomatic improvement, two patients
experienced a complete resolution of GI GVHD whereas the
remaining patient experienced partial resolution (grade I
GVHD). Furthermore, as observed in many other studies, the
restoration of the depleted gut bacterial richness was associated
with clinical improvement in the patients (73). Several studies
have reported attempts to induce antibiotic-resistant bacteria
decolonization in the gut of HSCT recipients (74–78). In one
such study, five pediatric patients were subjected to one course of
FMT (sourced from the same donor) prior to allogenic HSCT
(78). Although four offive patients tested negative for multidrug-
resistant bacterial strains a week after the fecal transplant, only
one patient tested negative for the same after a month. Therefore,
the study demonstrated that although FMT is a safe and effective
approach for short-term multidrug-resistant bacterial
decolonization, it is subject to temporal decay (78). The safety
of FMT has also been explored in the literature (56). Although
most studies have attested to the safety of FMT in HSCT patients,
some have reported adverse effects. In one study, a patient who
was treated with oral FMT before undergoing allogenic HSCT
developed febrile neutropenia and succumbed soon thereafter to
extended-spectrum beta-lactamase-producing Escherichia coli
bacteremia (75). Postmortem blood cultures revealed that the
extended-spectrum beta-lactamase-producing E. coli strain was
introduced into his body via the oral FMT capsule. Interestingly,
a liver cirrhosis patient enrolled in a different clinical trial
( involv ing the use of FMT for refractory hepat ic
encephalopathy treatment) also presented with extended-
spectrum beta-lactamase-producing E. coli bacteremia since
both the trials involved the same fecal matter donor (75).
Inadvertent FMT-induced viral infections are also a matter of
concern. The presence of Norovirus has been reported in stool
samples used for FMT that subsequently triggered acute GVHD
in an allogenic HSCT recipient. Fortunately, a subsequent virus-
free FMT combined with a course of steroids resolved the
complications (79). More stringent screening protocols, larger
and more geographically diverse clinical trials, and a deeper
July 2022 | Volume 13 | Article 932228
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understanding of the mechanistic underpinnings underlying the
clinical findings of FMT trials are required to promote FMT from
an exper imenta l l ine of treatment to mainstream
clinical practice.

Since the gut microbiota is the densest and most well-studied
human microbiota, it is unsurprising that a significant body of
research has found notable associations between changes in the
gut microflora and HSCT. However, several interesting
connections between HSCT and the human microbiotas aside
from the gut have also been reported. There is evidence that the
oral microbiota is a contributor as well as severity modulator of
oral mucositis in HSCT patients (80–83). Ulceration is a stage of
oral mucositis during which there is a high risk of oral
microorganisms infiltrating submucosal vessels, leading to
bloodstream infections (67, 84). Bloodstream infection is a
common albeit serious HSCT complication associated with
increased patient mortality (85). Due to the concerning lack of
established bloodstream infection–reducing strategies from oral
microorganisms, a group conducted a single-center, randomized
controlled trial in pediatric HSCT recipients to evaluate whether
a xylitol wipe–based intervention could modulate the oral
microbiota and decrease the occurrence of infections. The
authors reported that the addition of xylitol to a standard oral
care regime substantially improved oral health by decreasing the
oral pathogen abundance and, consequently, the risk of
bloodstream infections from oral microorganisms (7). In
addition to the effectiveness of xylitol in reducing bloodstream
infections, it has also been reported to reduce dental plaque,
gingivitis, and oral ulcerations in patients undergoing HSCT
(86). The dental biofilm microbiota is a rich and diverse
component of the oral microbiota. It is known to regulate
innate oral defenses, communicate with host cells, and
modulate immune homeostasis. However, very little is known
abou t d en t a l b i ofi lm dy sb i o s i s i n d i s e a s ed and
immunocompromised states (87, 88). Heidrich and colleagues
were the first to characterize changes in the dental biofilm
microbiota of 30 allogenic HSCT-recipients using high-
throughput 16S rRNA sequencing. For this s tudy,
supragingival biofilm samples were collected from patients at
three distinct phases of the HSCT procedure: before
preconditioning, during aplasia, and during engraftment. The
patients were subject to standard antibacterial (oral levofloxacin),
antiviral (acyclovir or valacyclovir), and antifungal
(echinocandins or azoles) prophylaxis as well as pre-HSCT
conditioning regimens. Additionally, cephalosporin and
antibiotics for anaerobic bacteria (metronidazole, meropenem,
or piperacillin/tazobactam) were administered to a subset of
patients. The commensal dental biofilm bacteria belonging to the
Streptococcus and Actinomyces genera were observed to decrease
alongside increases in potentially pathogenic bacterial genera,
such as Enterococcus, Lactobacillus, and Mycoplasma. The high
relative abundance of some bacterial species was associated with
a decrease (Veillonella) in GVHD risk, whereas others
(Streptococcus, Corynebacterium) were associated with an
increase. The occurrence of Enterococcus faecalis blooms was
also strongly associated with an elevated risk of GVHD. A bloom
Frontiers in Immunology | www.frontiersin.org 6
is the sudden expansion of a particular genus from a relative
abundance of lesser than 1% during the preconditioning stage to
a staggering relative abundance of over 30% at the aplasia or
engraftment phase of HSCT (87). This study, therefore,
presented evidence suggesting that the dysbiosis of the dental
biofilm microbiota, a component of the oral microbiota, may be
indicative of a post-HSCT GVHD risk. The dysbiosis of the
tongue microbiota, another component of the oral microbiota, of
HSCT recipients has also been reported. A group reported an
analysis of the tongue microbiota composition of 45 patients
suffering from hematological disorders on the day of
transplantation. They identified 34 uncommon taxa in the oral
cavity, among which the presence of Staphylococcus haemolyticus
and Ralstonia pickettii was significantly associated with an
elevated post-transplantation period mortality risk (89). A
recent study exploring the correlation between HSCT-recipient
oral microbiota changes and treatment outcomes reported
comparable findings; a decline in the species diversity of the
oral microbiota was associated with elevated relapse risk and
increased mortality. Interestingly, in the same study, the diversity
of the salivary microbiota, yet another component of the oral
microbiota, was found to be uncorrelated with allogenic HSCT
outcomes (90). A much older study conducted by a different
group reported that the oral microbiota of not all but only the
HSCT recipients developing post-transplantation respiratory
complications demonstrated notable changes (91). The impact
of HSCT on the lung microbiota and its potential implications on
therapeutic outcomes is, in fact, an area of growing interest. A
group explored the role of the lung microbiota in post-HSCT
pulmonary complications using human HSCT recipient-sourced
bronchoalveolar lavage samples (92). The lung microbiota was
found to correlate with several features of post-HSCT pulmonary
complications and was also found to be significantly associated
with alveolar inflammatory cytokine concentrations (92).
Bronchoalveolar lavage samples from HSCT recipients also
demonstrated a significantly elevated relative abundance of
Proteobacteria. Interestingly, an enrichment of Proteobacteria
in the gut microbiota has been previously documented to be a
major predictor of the development of pulmonary complications
in HSCT recipients (92, 93). There is, in fact, evidence that the
gut microbiota plays a pivotal role in moderating pulmonary
immunity as well as conferring protection against viral and
bacterial pathogens (94–96). For example, an enrichment of
butyrate-producing gut bacteria has been associated with
enhanced resistance to lower respiratory tract viral infections
in allogenic HSCT patients (95).

Research exploring the link between the human microbiotas
and HSCT has been disproportionately focused on the role of the
bacterial microbiota (bacteriome). The role of the virome is
understudied and therefore presents a promising area for
deeper investigation. A group characterizing the gut virome of
44 HSCT recipients observed the most frequently observed viral
families to be Anelloviridae, Polyomaviridae, Picobirnaviridae,
and Herpesviridae, among which picobirnaviruses were
predictive of GVHD development (12). Moreover, the higher
fecal levels of two biomarkers (calprotectin and a1-antitrypsin)
July 2022 | Volume 13 | Article 932228
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associated with corticosteroid response and severity in GVHD
were observed in stool samples positive for picobirnaviruses.
This is suggestive of a potential connection between
picobirnaviruses and gut inflammation. The authors also
observed a notable increase of persistent DNA viruses
(polyomaviruses, anelloviruses, papillomaviruses, and
herpesviruses) alongside a decline of phage richness in the
fecal samples of HSCT recipients suffering from enteric
GVHD. Interestingly, persistent DNA virus reactivation in the
gut was observed in the first 3 weeks after transplantation in
individuals who were not experiencing any symptoms of enteric
GVHD. In fact, the individuals developing enteric GVHD
experienced viral reactivation 3–5 weeks after HSCT,
suggesting that GVHD-associated inflammation and/or
corticosteroid therapy–mediated immunosuppression may have
functioned as a DNA virus reactivation trigger (12, 97). This
finding also suggests that persistent DNA virus replication may
confer a protective role against gut inflammation and the
development of enteric GVHD, as already suggested in
inflammatory bowel disease mouse models (12, 97, 98).

The blood and CSF virome have also been explored in the
context of HSCT. A group obtained plasma samples from 40 1-
month post-transplant allogenic HSCT patients to study the
plasma virome. The most frequently detected DNA viruses were
polyomaviruses, anelloviruses, herpesviruses, human
papillomaviruses, and adenoviruses. The most frequently
detected RNA virus family was pegivirus. Interestingly, the
human pegivirus was found to be persistent in the allogenic-
HSCT blood virome up to a year after transplantation although
no associations between human pegivirus infection and HSCT
outcomes were uncovered (97, 99). Another group comparing
the cerebrospinal fluid virome of patients demonstrating post-
HSCT neurological complications with healthy (non-
transplantation) controls found elevated levels as well a higher
genetic diversity of Torque teno virus (TTV) and related
anelloviruses (97, 100). The finding of this study is in
agreement with several other more recent studies exploring the
suitability of utilizing TTV viral titers as a biomarker for post-
HSCT immune function and immunological monitoring
(101–105).

The mycobiome has also been investigated in the context of
HSCT. In a first-of-its-kind proof-of-concept study, a
metagenomic analysis of the gut mycobiota composition of ten
children with thalassemia undergoing allogeneic HSCT was done
at four different time points (transplant day, 15 days post-
transplant, 30 days post-transplant, and 90 days post-
transplant) to evaluate how HSCT impacts the diversity of the
human gut mycobiota (106). No notable changes in the gut
mycobiome were observed up to a month following
transplantation, and the dominating phylum was Ascomycota.
Three months post-transplant, alongside the members of
phylum Ascomycota, the members of phylum Basidiomycota
were also observed, although Ascomycota was still dominant.
Out of the ten children enrolled in the study, three presented
with GVHD. The analysis of the gut mycobiota on day 90
revealed that only one child (presenting with acute skin and
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gut GVHD) had a significantly increased abundance (84%) of
Malassezia restricta and M. globosa while the other two
demonstrated no mycobiome alterations. This is an interesting
finding as Malassezia is among the most abundant members of
the skin mycobiota and has been documented to play important
roles in the development of skin diseases such as atopic
dermatitis, pityriasis versicolor, and psoriasis. Furthermore, the
Malassezia genus is documented to be among the most abundant
genus in human stool samples with M. restricta and M. globose
being the most abundant species within the genus. The
mechanistic underpinnings underlying mycobiome dysbiosis or
its pathological implications, as observed in the study, are
unclear and require further investigation. However, more
focused future investigations into the relationship of
Malassezia spp. and GVHD in HSCT patients may help in the
development of novel microbial biomarkers as well as targeted
therapeutic interventions involving this genus (106). Although
the bacteriome, virome, and mycobiome individually provide
interesting insights with potential clinical relevance, a siloed
understanding of these individual biomes may not be
representative of the community dynamics at play. This is
attributed to the fact that the various kingdoms of
microorganisms inhabiting the microbiota are engaged in
constant crosstalk with each other. Although expansive cross-
kingdom microbiota analyses are currently very limited, one
such study has been reported by Robinson and colleagues
wherein the authors characterized the oral mycobiome as well
as oral mycobiome–bacteriome interactions in acute myeloid
leukemia pat ients undergoing remiss ion induct ion
chemotherapy (13). Remission induction chemotherapy aims
to reduce the leukemic burden of an individual by means
of intensive cytotoxic chemotherapy to ideally achieve a state
of complete remission. Following this, further administration of
cytotoxic chemotherapy or HSCT is considered to potentially
achieve long-term cancer remission (107). In the first
longitudinal mycobiome study of its kind, the authors reported
the existence of highly dynamic mycobiome–bacteriome
interactions and highlighted the need for expansive, holistic
studies analyzing interkingdom functional interactions and
dynamic changes in the microbial community structure in
response to chemotherapy, antibiotic treatment, and their
clinical implications (13).

Although the interrelationship between stem cells and the
human microbiotas is well established in the context of HSCT,
other interesting connections have also been reported. It is a
well-known fact that the stem cell factor plays a pivotal role in
the activation, expansion, differentiation, and survival of mast
cells. Furthermore, mast cell progenitors are known to settle in
the skin as well as other tissues once they enter the circulation
after leaving the bone marrow (108–110). In one study, a
predominant component of the bacterial cell wall named
lipoteichoic acid was observed to induce the expression of the
stem cell factor in keratinocytes. The lipoteichoic acid–
stimulated keratinocytes, in turn, effected the recruitment and
maturation of mast cells residing within the dermis, thereby
establishing a link between the commensal bacterial population
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of the skin microbiota and mast cell immunobiology (108). The
roles played by adipose tissue in modulating the immune system
have been explored in the literature for nearly a decade (111,
112). Studies exploring the immunological role of adipose tissue
and its interrelationship with the gut microbiota have also
surfaced in recent years (111, 112). For example, obesity has
been documented to be associated with altered gut microbiota
composition as well as aberrant gut barrier function, which, in
turn, may potentiate the development of insulin resistance and
type 2 diabetes (113). Like the observations reported in the
context of the stem cell factor, the stem cell growth factor-beta
has been reported to have notable effects on granulocyte/
macrophage progenitor cells alongside other cytokines such as
the macrophage colony–stimulating factor and granulocyte
macrophage colony–stimulating factor (114). A recent study
aimed to investigate the presence of any notable associations
between the stem cell growth factor-beta, inflammation markers,
and insulin resistance in obese male non-alcoholic fatty liver
disease or hepatic steatosis patients (114). It was found that C-
reactive protein and interleukin-6 levels were predictive of stem
cell growth factor-beta concentrations in male patients (114).
The role of the gut microbiota has been studied in the context of
adipocytes and metabolism regulation. The role of gut
microbiota–derived metabolites in regulating host metabolic
homeostasis and its contribution to various disease processes
have also been investigated (115). For example. one group
reported the role of tryptophan-derived gut microbiota
metabolites in the regulation of energy expenditure and insulin
sensitivity by controlling the expression of a highly conserved
miRNA family (miR-181 family) in the white adipocytes of mice
(116). Deeper studies exploring clinically translatable
relationships between the host metabolism, immunity, and the
resident microflora of the microbiotas are expected to surface in
the upcoming years. Our current understanding of the complex
interaction patterns between the various human microbiotas and
the human body as well as its potential implications for HSCT is
still in its infancy. However, as more studies accumulate,
Frontiers in Immunology | www.frontiersin.org 8
significant developments in this domain can be expected in the
upcoming years. A visual summary of some of the key highlights
discussed in this section is illustrated in Figure 2.
RENAL TRANSPLANTATION

Chronic kidney disease (CKD) is one of the prominent causes of
suffering and death around the globe. In the year 2016, CKD was
responsible for approximately 1.18 million deaths worldwide, a
200% increase over a span of less than three decades (117). In
2017, over 697 million cases of CKD were reported, out of which
approximately 1.2 million patients lost their lives to the disease
(118). CKD is classified into five stages based on the severity of
the dysfunction and, consequently, the magnitude of clinical
interventions required to stabilize the patient. End-stage renal
disease (ESRD) is the terminal stage of CKD that is characterized
by the cessation of normal kidney function, resulting in the need
for renal replacement therapy (RRT) (119, 120). RRT refers to
the entire repertoire of clinical interventions aimed at artificially
compensating for compromised kidney function in renal failure
patients (121). RRT modalities include conservative approaches
not involving dialysis, extracorporeal (hemodialysis) and
paracorporeal (peritoneal) dialysis, and kidney transplantation
(121, 122). Although there is no unified consensus with regard to
the number of individuals receiving RRT, with estimates ranging
between 1.9 million and 2.6 million for the year 2010, the
numbers are expected to rise. In fact, it is estimated that the
number of individuals receiving RRT will exceed 5 million by the
year 2030 (123–125).

Despite having a higher initial risk of death, kidney
transplantation has several advantages over dialysis such as a
significantly improved quality of life, a lower risk of long-term
mortality, and a decreased risk of cardiovascular events (126,
127). It is, therefore, the best clinical intervention for end-stage
kidney failure. Renal allografts are, however, reliant on the
lifelong administration of immunosuppressants to suppress T-
FIGURE 2 | A visual summary of some of the key highlights discussed in the context of hematopoietic stem cell transplantation and the human microbiotas.
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cell-mediated responses, thereby preventing transplant rejection
(128–131). Immunosuppressants like cyclosporine, tacrolimus,
and mycophenolic acid revolutionized organ transplantation in
the 1980s and 1990s by lowering acute rejection rates and
consequently improving short-term graft survival (132, 133).
Other drugs such as leflunomide, mycophenolate mofetil,
brequinar sodium, and deoxyspergualin also demonstrate a
diverse range of inhibitory effects on the immune system and are
therefore used as adjunctive therapeutic immunosuppressants. Aside
from drugs, monoclonal antibody–based immunosuppressive
treatments targeting cytokines, costimulatory signals, cell-surface
receptors, and various B-cell epitopes involved in allograft rejection
are also used as an adjunct to the maintenance immunosuppression
in adult kidney transplant recipients and are commonly referred to as
antibody induction therapy (134, 135). For example, alemtuzumab, a
humanized CD52-specific antibody, has been shown to achieve a
rapid depletion of peripheral and secondary lymphoid T cells as well
as B cells, NK cells, monocytes, and dendritic cells in kidney
transplant recipients (136, 137). Despite the administration of
immunosuppressive treatments, long-term survival rates are
unsatisfactory. Approximately 40% of kidney transplants are
documented to fail within a decade of transplantation (138, 139).
In fact, a study comparing long-term kidney graft survival outcomes
in Europe and theUnited States during the period from2005 to 2008
found that the 5-year and 10-year graft survival rates among
European recipients were 77% and 56%, respectively (140). This is
perhaps unsurprising as a constellation of demographic,
physiological, and immunological factors alongside clinical
interventions such as immunosuppression and prophylactic
antimicrobial agents are responsible for determining the outcome
of kidney transplantation. Although the clinical repertoire of
immunosuppressive treatments has expanded significantly since its
inception, the underlying immunomodulatory strategies havemostly
remained the same at a mechanistic level.

Given the complex crosstalk that occurs between the immune
system and the various microbiotas of the human body, more
holistic approaches to immunosuppression and graft rejection
prevention are warranted. Over the past several years, there has
been a prominent increase in interest surrounding the various
human microbiotas and their respective roles in kidney allograft
maintenance as well as rejection (141). Furthermore, in addition
to the five types of non-invasive chronic kidney transplant
rejection biomarker technologies (transcriptomic, cellular,
epigenetic, proteomic, and metabolomic) currently utilized, the
human microbiota may also become an insightful biomarker to
predict allograft outcomes, therapy responsiveness, and patient-
specific susceptibilities/sensitivities to specific drugs such as
antimicrobials and immunosuppressants (130, 139, 142, 143).

One of the early attempts to evaluate the effect of long-term
allograft tolerance–promoting immunosuppression using a high-
throughput approach was carried out on the oral bacterial
microbiota by Diaz and colleagues (144). The authors noted
that although the most commonly and abundantly occurring
bacterial species were unimpacted due to immunosuppression,
the detection frequency and relative abundance of several
bacterial taxa known to behave as opportunistic pathogens in
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immunocompromised individuals had increased considerably.
This finding is in agreement with older reports wherein bacterial
species such as Acinetobacter baumannii, Klebsiella pneumoniae,
P. fluorescens, P. aeruginosa, S. aureus, and E. faecalis were
observed in the oral microbiota of individuals with weakened
immune systems such as hospitalized patients and the bedridden
elderly (145). The authors also discussed how differences in
administered drugs, drug combinations, and drug dosages
between different immunosuppression regimens can impact the
resulting oral microbiota changes (144). The impact of
immunosuppression on the oral microbiota is, in fact, well
documented. A study published as early as 1983 discussed an
association between gingival hyperplasia (an oral condition
character ized by gum tissue overgrowth) and the
immunosuppressant cyclosporin; transplant-driven microbiota
changes in immunosuppressed renal transplant recipients can
potentiate bacteria-induced inflammation (132, 146). Other
studies studying the oral, dental, and periodontal implications
of immunosuppression have reported comparable supportive
findings. For example, a large study reported that 2 out of
every 3 participating kidney transplant recipients had at least
one type of oral mucosal ulcer whereas other reports have
highlighted the noticeably higher prevalence of oral candidiasis
in immunosuppressed patients (132, 147–149). A 31% higher
incidence of developing oral lesions was reported in
immunosuppressed renal transplant recipients as compared to
control subjects in a 2-year long cohort study with a sample size
of 100 (150).

Tacrolimus is an immunosuppressant responsible for
inhibiting T-lymphocyte signal transduction as well as
interleukin-2 (IL-2) transcription and is one of the most
common immunosuppressive drugs administered to kidney
transplant recipients (141, 151–154). It belongs to a class of
immunosuppressive agents referred to as calcineurin inhibitors.
Calcineurin is a calcium- and calmodulin-dependent serine/
threonine protein phosphatase that dephosphorylates and
consequently activates the NFAT transcription factor (155).
Tacrolimus forms a complex with the members of a class of
proteins referred to as FK506-binding proteins in the cytoplasm,
and its immunosuppressive activity is mediated by complexes
formed with the FKBP12 isoform, a 12-kDa FK506-binding
protein (156, 157). The formation of the tacrolimus-FKBP12
complex results in the inhibition of calcineurin, thereby effecting
the downstream deactivation of T-lymphocyte signal
transduction as well as IL-2 transcription (157–159).
Tacrolimus has a narrow therapeutic range as subtherapeutic
levels can lead to immune rejection whereas supratherapeutic
doses are nephrotoxic and neurotoxic (160). It is therefore
essential to optimize the tacrolimus dosage to minimize the
risk of suboptimal transplantation outcomes in kidney allograft
recipients. This is, however, a complicated undertaking. Apart
from a range of physiological and genetic factors that influence
tacrolimus blood concentration in patients, multiple commensal
gut bacteria are known to metabolize tacrolimus (161–163).
Therefore, intraindividual gut microbiota differences in kidney
transplant recipients can potentially result in differential
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tacrolimus exposure and, consequently, therapeutic efficacy. One
insightful murine model–based study has revealed that high-dose
tacrolimus treatment results in notable changes in the
composition of the gut microbiota denoted by an increase in
the beta diversity, a numerical representation of the variation in
community composition (141, 154). For instance, compared to
the control mice, the tacrolimus-treated mice demonstrated an
increase in the abundance of Bacteroides, Allobaculum, and
Lactobacillus alongside a concomitant decrease in the
abundance of Oscillospira, Ruminococcus, Rikenella, and
Ruminococcaceae (154). It is interesting to note that these
genera alongside many others have been reported in diverse
yet clinically relevant contexts such as constipation,
autism spectrum disorder, and obesity in both murine-
based and human studies (164–168). A reduction in
numerous microbiota-associated metabolic functions
(protein degradation, bioenergetics, xenobiotic breakdown,
carbohydrate, and lipid metabolism), some of which are
documented to impact immune function (such as glyoxylate
metabolism), were also observed in the same study, thereby
demonstrating evidence of a complex relationship between
immunosuppressant drugs, the gut microbiota, and the
immune system (154). Furthermore, mice treated with a
combination therapy of low-dose tacrolimus and fecal
microbiota transplantation (using fecal matter obtained from a
high-dose tacrolimus-treated mouse donor) had a significantly
improved allograft survival rate in comparison to mice receiving
any one of the interventions. A rich body of fast-growing
evidence is suggestive of the fact that gut bacterial richness and
diversity are potential indicators of health and proper
physiological function. Therefore, the transplanted fecal matter
is generally obtained from a donor with a more favorable gut
composition relative to the transplant recipient (169). The
combination therapy–treated mice also demonstrated an
increased Treg population; decreased IL-2 levels in the CD4+,
CD8+, and Treg

+ cells; and regulated proinflammatory cytokines
such as TNF-a and IL-17 (154). This study illustrated how a
deeper understanding of the gut microbiota’s impact on
immunosuppressant pharmacokinetics can serve as a valuable
clinical datapoint capable of enhancing short-term as well as
long-term transplantation success.

Current renal transplantation prophylaxis regimens involve an
assortment of immunosuppressants such as mycophenolate
mofetil, sirolimus, prednisone, and azathioprine, often
with concomitant corticosteroid administration (132, 170, 171).
Aside from immunosuppressant drugs, antimicrobials
are an integral part of the standard post-transplantation
pharmaceutical regimens to abate opportunistic infections in
transplant recipients. To complicate matters even further, some
immunosuppressant drugs such as tacrolimus and sirolimus can
function as a macrolide antibiotic (132, 172). In fact, there is a
significant degree of heterogeneity in the administered
pharmaceutical regimens among the different patient cohorts
reported in recent clinical studies investigating different human
microbiotas in the context of renal transplantation (132, 141, 143).
Therefore, it is unsurprising that the effects of immunosuppression
Frontiers in Immunology | www.frontiersin.org 10
on the microbiotas of transplant recipients can be confounded by
the effects of antimicrobials as well as the cocktail of other
concurrently prescribed drugs. For example, Rani and colleagues
reported a shotgun metagenomics-based approach to study the
urinary microbiota of kidney transplant patients, wherein the
transplant recipients were treated with four doses of rabbit
antithymocyte globulin for antibody induction, a calcineurin
inhibitor (either tacrolimus or cyclosporin), mycophenolate (an
antimetabolite immunosuppressant), and prednisone. The authors
reported decreased bacterial diversity in the urinary microbiotas of
transplant recipients, a finding in agreement with numerous
investigations with comparable objectives (173). In the same
report, the authors also expressed their concern surrounding the
inadvertent selection of bacterial species capable of expressing
antibiotic inhibition–bypassing metabolic pathways in the
microbiotas of antibiotic-treated renal transplant recipients
(173). Another group aimed to study the impact of
immunosuppressant drugs on the gut microbiota–treated mice
with prednisolone, mycophenolate mofetil, tacrolimus, a
combination of these 3 drugs, everolimus, or water, respectively,
for 2 weeks. As expected, the authors observed modifications in
the composit ion of the microbiota in response to
immunosuppression. Interestingly, single drug-treated mice and
drug combination-treated mice demonstrated different
modifications, suggesting that the effect of different drugs on the
microbiota may not be additive in nature (174). Another study
compared the rectal, oral, urinary, and blood microbiotas of renal
allograft recipients before receiving the transplant as well as after 1
and 6 months of the same (175). Some of the patients participating
in the study received antibody induction, whereas others did not.
Over 90% of the patients undergoing antibody induction therapy
were treated with Campath (alemtuzumab), a humanized anti-
CD52 monoclonal antibody (137). Notable persistent changes in
the pre-transplant and post-transplant microbiotas were observed.
The most significant changes were observed between the pre-
transplant and 1-month post-transplant microbiotas. An elevation
in the numbers of Firmicutes, Bacteroidetes, Proteobacteria,
and Actinobacteria was observed. This finding was indicative
of the strong modulating effects the pre-, peri- and
post-operat ive chemotherapeutic regimens such as
immunosuppression have on patient microbiotas. The authors
of the study also noted that the specific pre-transplant microbiota
differences in certain patients were indicative of adverse post-
transplantation consequences such as infections and even
transplant rejection, thus corroborating the diagnostic, clinical,
and therapeutic value of patient microbiota analyses (175). Studies
exploring how the gut and, consequently, fecal microbiota could
provide nephrologists with a treasure trove of actionable data
points, enabling improved allograft health monitoring and
maintenance, have also been reported (176, 177). Reports
exploring the urinary microbiota in the context of renal
transplantation have also yielded comparable insights (178, 179).

Over the past half-decade, explorations into the human
urinary mycobiome and virome in the context of kidney
transplantation have been reported. Wu and colleagues studied
the urinary microbiotas of both male and female kidney
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transplant recipients suffering from chronic allograft
dysfunction, a prelude to most graft failures (180, 181). The
study reported notable urinary microbiota differences between
chronic allograft dysfunction patients and their healthy
counterparts. This study was also the first to explore the
urinary mycobiome in graft dysfunction patients, instigating
the research community engaged in human microbiota
research to look beyond the bacteriome into other kingdoms
(181). In another study, the authors performed a liquid
chromatography–mass spectrometry/mass spectrometry (LC-
MS/MS) analysis on urine samples sourced from a cohort of
142 kidney transplantation patients and normal healthy controls.
The authors found 37 unique viruses such as Psittacid
herpesvirus 1, Spodoptera frugiperda, Pseudocowpow virus,
multiple nucleopolyhedrovirus, Japanese yam mosaic virus,
and Cowpea mottle virus, 29 of which were never previously
identified in human urine samples. Interestingly, some viral
signatures were observed exclusively in the healthy control
group, indicating the potential existence of viral commensals,
some of which may even assist in immune adaptation (182).
Another study detected multiple subtypes of BK polyomavirus,
JC virus, and TTV in the urine samples of kidney transplant
recipients. BK polyomavirus and JC virus infections are
concerning for kidney transplant recipients as they can cause
kidney and urinary tract infections, which can potentially lead to
impaired renal function and even graft rejection (183). Although
these viruses normally remain latent in the infected host, they
can potentially reactivate in an immunosuppressed background.
There is even evidence that BK polyomavirus infections undergo
donor-to-recipient transfer during transplantation, thus further
highlighting the clinical implications surrounding the
aforementioned findings (184). Aside from the BK
polyomavirus and JC virus, the Epstein–Barr virus also lies
dormant inside the B cells of infected individuals with minimal
symptomatic presentation, only to be reactivated after the onset
of immunosuppression in kidney transplant recipients. The
Epstein–Barr virus is responsible for approximately 90% of
post-transplant lymphoproliferative disease cases, a well-known
post-kidney transplant complication (185). Overall, much
remains to be understood about the viromes of the different
human microbiotas. Furthermore, since bacteriophages are the
most prevalent component of the human virome, deciphering
the complex bacteriophage–bacteria interaction dynamics of the
different microbiotas may galvanize the development of
bacteriophage cocktails, which can supplement or, in some
cases, replace existing antibiotic therapy in immunosuppressed
patients (186).

Pharmaceutical interventions are not the only factors
triggering changes in the human microbiotas. A recent study
demonstrated post-transplantation gut dysbiosis in murine
kidney transplantation models in the absence of any form of
pharmaceutical intervention (131). In the study, the authors
demonstrated the allograft-protective properties of fiber-rich
diets and short-chain fatty acids (sodium acetate or sodium
butyrate) in murine kidney transplantation models, suggesting
the alloimmunity-retarding role of gut-derived acetate. Since
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acetate exhibits preferential binding to metabolite-sensing G-
protein coupled receptors such as GPR43, the alloimmunity-
retarding role of gut-derived acetate was further illustrated by the
ablation of the dietary intervention–promoted survival
advantage in GPR43−/− mice. This study demonstrated the
immunomodulatory capabilities of the gut microbiota in
response to dietary interventions, therefore providing evidence
in favor of combination therapies over strict pharmaceutical
regimens for allograft maintenance (131). In fact, dietary
modifications are known to have a modifying effect on the
health of kidney transplant recipients (187–189). The
Mediterranean and DASH (Dietary Approaches to Stop
Hypertension) diets have been demonstrated to be the most
beneficial dietary patterns for renal transplant recipients due to
their emphasis on increasing fresh plant-based food intake as
well as decreasing processed food and meat intake (187). For
example, a recent single-center cohort-based clinical study
involving 632 adult kidney transplant recipients reported in
2020 by Gomes-Neto and colleagues demonstrated the
improved kidney function outcomes in renal transplant
recipients following the Mediterranean diet plan (188). In fact,
the mechanistic underpinnings underlying changes in the gut
microbiota due to dietary interventions such as the
Mediterranean and DASH diets as well as their impact on host
physiology and various disease processes are active areas of
investigation (190–194). The effect of specific dietary
interventions on the various microbiotas of renal transplant
recipients and its impact on allograft maintenance, however,
remains to be investigated.

Kidney transplant recipients have been documented to be at
an up to fourfold higher risk of cancer and cancer-associated
death than healthy individuals (195). Observational evidence also
suggests an association between CKD and elevated cancer risk as
well as unsatisfactory cancer outcomes (185). Several risk factors
such as donor-transmitted malignancies, donor type (living vs.
deceased), recipient age, dialysis time before transplantation, a
history of cancer prior to transplant, viral infections, and the
immunomodulatory effects of immunosuppressive therapy have
been identified to elevate cancer risk in kidney allograft
recipients (195–197). Interestingly, the most common type of
cancer observed in kidney transplant recipients is skin cancer.
The most reported forms of skin cancer reported in renal
transplant recipients include basal cell carcinoma, malignant
melanoma, cutaneous squamous cell carcinoma, and Kaposi
sarcoma. In fact, renal transplant recipients are at an up to 250
times higher risk of developing squamous cell carcinoma than
the general population (185, 198). The pathogenesis of skin
carcinoma is precipitated by a constellation of risk factors, as
discussed above. Of course, the elevated risk of skin cancer is
applicable to all solid organ transplantation scenarios as they all
require immunosuppression for graft maintenance (198). Kidney
transplant recipients are also at an up to seven-fold higher risk of
developing renal cell carcinoma, the most common form of
kidney cancer (185). A recent study aimed to temporally
characterize the treatment-related compositional changes
occurring over the course of checkpoint inhibitor therapy by
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analyzing the stool samples of metastatic renal cell carcinoma
patients undergoing therapy. Checkpoint proteins such as PD-L1
are a class of proteins that bind to T-cell surface receptors to
downregulate their activity and prevent damage to a body’s own
cells. Checkpoint inhibitor therapy is a type of cancer
immunotherapy that targets and binds to key immune
checkpoint proteins, thereby blocking T-cell inhibitory
responses, restoring immune function, and consequently
directing the immune system against malignant cells (199–
201). The authors reported an association between higher
microbial diversity and optimistic treatment outcomes, a
finding in agreement with observations made in studies
investigating allograft maintenance outcomes in the context of
different human microbiotas (141, 143, 202–204). The
metagenomic implications of different chemotherapeutic as
well as dietary interventions in renal cell carcinoma patients is
an area of active investigation. A recent clinical study reported
that gut microbiota composition is influenced by the
administration of antibiotics and tyrosine kinase inhibitors,
thereby impacting the success of renal cell carcinoma immune
checkpoint inhibitor therapy (205). In the same year, a
prospective randomized study demonstrated the probiotic
supplementation–induced gut microbiota modulation of
metastatic renal cell carcinoma patients receiving vascular
endothelial growth factor tyrosine kinase inhibitor therapy, the
primary line of treatment for patients with advanced renal cell
carcinoma. Although the study failed to demonstrate anticancer
effects in human subjects, it revealed interesting insights such as
the increased relative abundance of A. muciniphila, B. caccae, F.
prausnitzii, and B. intestinihominis in the patient group
responding well to immunotherapy. Since there are currently
no biomarker-based approaches to metastatic renal cell
carcinoma treatment selection, these insights may serve as
starting points for future investigations focusing on the
identification and validation of microbial signature–based
biomarkers (206).

The gut microbiota is, however, not the only human
microbiota under active investigation in the context of renal
cell carcinoma. Heidler and colleagues were the first to
investigate and contrast the renal microbiota of healthy and
tumor-bearing kidney parenchyma using biopsy samples
obtained from patients undergoing laparoscopic nephrectomy
for renal carcinoma. The authors observed a heterogenous
distribution of microorganisms colonizing the benign and
malignant tissue. For example, Thermicanus aegyptius,
Anaerococcus nagyae, Leuconostoc garlicum, Neisseria
bacilliformis, Corynebacterium vitaeruminis, L. mesenteroides,
and Ethanoligenens harbinense were observed to only colonize
the benign tissue whereas Mycoplasma vulturii, Phaeocystis
antarctica, Spirosoma navajo, Euglena mutabilis , and
Cyanophora paradoxa were observed to exclusively colonize
the malignant tissue (207). Another group studying the renal
tumor microbiota reported renal tumors to have more diverse
microbiotas as compared to benign tissue (208). The discovery of
exotic microbiotas such as the renal microbiota directly
contradicts the traditional overestimates of the sterility of
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various human organ systems. The urinary bladder and,
consequently, urine were also once considered to be sterile in
healthy individuals but have since been demonstrated to host the
urobiome (the urinary microbiota), the alterations in which have
been associated with different urinary pathologies (179, 181, 186,
207). Emerging evidence across multiple domains is indicative of
the existence of numerous complex microbiotas in various
locations of the body that are in constant bidirectional
crosstalk with each other as well as our organ systems. For
example, the crosstalk between the gut and kidney, referred to as
the gut–kidney axis, has been implicated in a wide range of renal
disorders such as hypertension, nephrolithiasis, immunoglobulin
A (IgA) nephropathy, and CKD (209, 210).

The role of the various human microbiotas, especially the gut
microbiota, as a biomarker and modulator of therapeutic
outcome has been well established both in the context of renal
transplantation and cancer. Numerous groups have also viewed
the gut microbiota as a therapeutic target and attempted to
modulate it using dietary as well as prebiotics- and probiotics-
based interventions. A more direct approach to targeted gut
modulation, that is, FMT, is a promising new category of
therapeutic interventions targeting gut dysbiosis that may yield
superior clinical outcomes as compared to the current
alternatives. For example, FMT-based treatment has been
documented to be a superior line of treatment for recurrent C.
difficile infection (89.6% remission rate) as compared to
conventional antibiotic-based therapeutic interventions
typically involving metronidazole, vancomycin, rifaximin, and
fidaxomicin (211). Several clinical trials evaluating the viability of
fecal transplantation and its impact on renal transplantation as
well as cancer outcomes have been conducted, are currently
underway, or are slated to start soon. Translating insights derived
from murine model–based research, as well as human clinical
trials into robust and effective standardized clinical therapeutic
protocols, will require both a depth-first and breadth-first
expansion of microbiota surveillance under different
pharmaceutical, physiological, pathological, and genetic
backgrounds (212). Expanding the scope of studies beyond
metagenomics to include metabolomic, proteomic, and
transcriptomic insights will also help in elucidating the
mechanistic underpinnings of the host–microbiota interaction
dynamics. A visual summary of some of the key highlights
discussed in this section is illustrated in Figure 3.
LUNG TRANSPLANTATION

An unsubstantiated presupposition pertaining to the sterility of
the lungs was extant for a considerably long period of time till the
first culture-independent report of the healthy lung microbiota
in 2010 conclusively debunked its absence (9, 213). Soon
thereafter, another group reported a study in which the
microbial population colonizing the transplant patient
respiratory tract was comprehensively characterized using
unbiased high-density sequencing (214). In the study, the
authors carried out bacterial (16S rRNA) and fungal (internal
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transcribed spacer) gene sequencing to identify the organisms
present in bronchoalveolar lavage and oropharyngeal wash
samples sourced from transplant recipients as well as healthy
controls. Bronchoalveolar lavage is a procedure in which a saline
solution is passed through a bronchoscope to wash the airways
and extract a fluid sample from the lungs for testing (215).
Notable differences in the community structure and composition
between the healthy and transplanted lungs were observed.
Compared to the control samples, lung transplant recipient–
sourced bronchoalveolar lavage was observed to have higher
bacterial loads, lower microbial richness as well as diversity, and
more taxonomically distinct populations. The oropharyngeal
wash samples were rich in bacterial taxa that are typically
associated with the oral cavity such as Streptococcus, Prevotella,
Veillonella, Porphyromonas, Neisseria, and Rothia. Although the
bacterial profiles found in bronchoalveolar lavage and
oropharyngeal wash samples had significant overlaps, specific
bacterial populations were observed to dominate the lung
transplant recipient–sourced samples. The presence of Candida
and Aspergillus was also observed in bronchoalveolar lavage
samples. Although this study provided several interesting
insights regarding the transplanted lungs and their resident
microbiota, the authors did not establish any causal
relationships between graft failure, bronchiolitis obliterans
syndrome, and the presence or absence of individual genera/
species in the lung microbiota (214). Bronchiolitis obliterans
syndrome, a form of chronic lung allograft rejection, is
among the most common noninfectious transplant–related
complications. It is characterized by bronchiolar smooth
muscle hypertrophy, peribronchiolar inflammatory infiltrates,
mucus accumulation in the bronchiolar lumen, bronchiolar
scarring, and even complete bronchial lumen occlusion in
some cases (216).

Other studies have reported findings in agreement with that
reported by Charlson and colleagues. For example, one group
analyzed the bacterial sequences in the bronchoalveolar lavage
fluid samples of four lung transplant recipients and found that the
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transplanted lungs had a higher richness as well as diversity of
bacterial sequences. Furthermore, the healthy lung microbiota was
mostly predominated by the members of the phylum
Proteobacteria (class Gammaproteobacteria) and Firmicutes
whereas the transplanted lung microbiota was predominated by
the members of phylum Proteobacteria (class Betaproteobacteria)
(217). Another study comparing bronchoalveolar lavage samples
sourced from lung transplant recipients with and without
bronchiolitis obliterans syndrome as well as healthy controls
(individuals with no history of lung transplantation) revealed
that transplanted patients had notable differences in the
community composition but similar bacterial diversities when
compared to the healthy controls. Furthermore, according to the
findings of the study, lung transplant recipients are more likely to
harbor Staphylococcus, Pseudomonas, Proprionobacterium, and
Veillonella, which were the typical genera (218, 219).

Although post-transplant changes have been established by
several reports, the underlying mechanics of the lung microbiota
changes occurring post-transplant is still under investigation. In
addition to surgical factors such as vagal denervation (resulting
in compromised afferent stimulation and, consequently,
aberrant cough reflex), the post-transplant administration of
immunosuppressive and antimicrobial drugs are potential
culprits. Based on the notable effects antimicrobial administration
has on the gut microbiota, it is natural to assert that antimicrobials
have a notable impact on the microflora inhabiting the lung
microbiota (220, 221). In a study aiming to understand the
comparative relative influence of gut and lung bacteria on the
baseline lung immune tone, ceftriaxone was demonstrated to
reduce the relative abundance of Proteobacteria while at the same
time increasing the relative abundance of Firmicutes in mice (222).
On the other hand, another study aiming to decipher the influence
of azithromycin, a macrolide drug possessing immunomodulatory
and antibacterial properties, on lung allograft rejection as well as
the post-transplant lung microbiota found no notable effects of the
drug on the post-transplant lung microbiota community
structure, composition, or diversity (223, 224). Similarly, much is
FIGURE 3 | A visual summary of some of the key highlights discussed in the context of kidney transplantation and the human microbiotas.
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not currently known about the impact of systemic
immunosuppression on the lung microbiota as it has not been
reported directly. It is an active area of investigation. Even though
our understanding of the lung microbiota is currently incomplete,
it is sufficient to derive clinically translatable insights. A recent
study analyzed bronchoalveolar lavage samples sourced from lung
transplant recipients a year after the procedure and found that the
bacterial biomass of the lung microbiota was a strong predictor of
chronic lung allograft dysfunction development as well as death
(225, 226). Chronic lung allograft dysfunction refers to a collection
of pathological conditions that prevent a transplanted lung to
achieve or maintain typical function.

The study conducted by Charlson and colleagues back in
2012, as already discussed, presented evidence pertaining to the
existence of a distinct fungal populace in the lung also referred to
as the mycobiome. Two years later, the same group published a
study focused on characterizing clinically relevant fungal lineages
present in the oropharyngeal wash as well as bronchoalveolar
lavage samples of healthy controls, HIV+ patients, and lung
transplant recipients, thereby establishing a gradient of
progressively increasing lung impairment for comparative
purposes (227). The increasing severity of pulmonary and
immunologic deficits in the patients was observed to be
accompanied by an elevated representation of Candida,
Aspergillus, and Cryptococcus. Furthermore, it was also
observed that Candida-rich oropharyngeal communities
demonstrated a positive covariance with members of the
Streptococcus mitis group, potentially indicating cross-kingdom
interactions. S. mitis is a group of bacteria, many of which are
recently classified, poorly characterized, and pathogenic. They
natively colonize the human oral cavity, nasopharynx, and GI
tract (227–229). In a recent study, a group applied deep-
sequencing to analyze the microbial biofilms present on
endobronchial stents (a silicone/steel tube that keeps the
bronchial tubes open in patients affected by bronchial stenosis)
in a patient cohort predominantly consisting of lung transplant
recipients (230). The authors reported Candida spp. and
Aspergillus to have the highest and second-highest abundance
in the biofilms, respectively. Aside from fungal taxa, the existence
of several bacterial taxa such as Corynebacterium (most
common), Staphylococcus, Pseudomonas, Streptococcus, and
Prevotella was also noted by the authors. Furthermore, some
evidence indicating fungal–bacterial covariation was also
observed in this study (230).

In addition to the mycobiome, the lung hosts a diverse virome
and phageome that, alongside the mycobiome and bacteriome,
have potential implications for lung transplantation success and
the overall lung immunity. Several studies exploring the lung
virome have been reported in the recent past. For example, in
one such single-center, prospective, longitudinal study, the
authors analyzed the viral communities present in transplanted
lungs and detected the presence of community-acquired
respiratory viruses such as influenza A, parainfluenza, and
human rhinovirus. The detected viruses were, however, not
associated with transplant rejection (231). In another study, a
group aiming to characterize the post-transplant respiratory tract
Frontiers in Immunology | www.frontiersin.org 14
DNA virome analyzed the viral communities present in lung
transplant recipient–sourced bronchoalveolar lavage as well as
oropharyngeal wash samples (232). They then compared the
same with bronchoalveolar lavage and oropharyngeal wash
samples obtained from healthy as well as HIV+ individuals.
Although anelloviruses were detected in all the samples, the lung
transplant recipient–sourced samples hosted a significantly
richer and more diverse population consisting of multiple
anellovirus variants. In fact, lung transplant recipient–sourced
samples had a 56× higher content of anelloviruses. Papilloma
viruses, herpes viruses and bacteriophages were also detectable,
albeit at much lower levels in comparison to the anellovirus
signal. Interestingly, large numbers of bacteriophages were
detected in the transplant subject–sourced samples compared
to a very limited number of mammalian viruses (anelloviruses
being the only exception). It is, however, likely that the
confounding effects of the antiviral prophylaxis, transplant
subjects routinely administered, contributed to this
asymmetrical distribution of bacteriophages and mammalian
DNA viruses. Many sequences yielding no hits on the National
Center for Biotechnology Information (NCBI) database were
also obtained during the metagenomic analysis, indicating the
existence of novel bacteriophage and mammalian virus strains in
the post-transplant lung virome. High annellovirus burdens were
also found to be correlated to bacterial dysbiosis in the transplant
recipient–sourced bronchoalveolar lavage samples, suggesting
cross-kingdom interactions (232).

A notable number of studies report the notable predominance
of Anelloviridae (such as the TTV) in lung transplant recipient–
sourced bronchoalveolar lavage and oropharyngeal wash samples
(223, 232–234). In fact, the repeated occurrence of this observation
has prompted discussions into the possibility of anellovirus-based
immune status biomarkers (235). Furthermore, the interest
surrounding anelloviruses extends beyond lung transplantation
and has been discussed in the context of overall pulmonary
health and chronic respiratory diseases (236). A comprehensive
study investigating viral post-transplant temporal dynamics
reported the bidirectional movement of viral populations
between donor and recipient lungs, implicating that the
commensal viral communities constituting the virome of a lung
allograft are transplanted alongside the organ. Furthermore,
alongside anelloviruses (the most abundant), other viral families
such as herpesviruses, parvoviruses, polyomaviruses, and even
bacteriophages were also detected in the study. Interestingly, a
different study reported the presence of a novel viral family termed
Redondoviridae in human bronchoalveolar lavage and
oropharyngeal samples (237). What was even more surprising
was that the frequency at which the members of the family
Redondoviridae were detected in the samples was second only to
the detection frequency of Anelloviridae. Furthermore, two were
found to co-occur at statistically significant levels. Given the
documented elevation of the anellovirus load in post-transplant
lung allografts, the rich commensal anellovirus population
constituting the healthy human virome, and our limited
understanding of the human virome, studies focusing on
building a deeper understanding of post-transplant viral
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dynamics is the need of the hour (233, 234, 237–239). The existence
of bacteriophages in the lung virome is also noteworthy since they
can have a modulatory role on the resident bacteria of the lung
microbiota that can be leveraged in clinically translatable directions
(14, 232). Studies describing multimodal therapeutic interventions
involving antibiotics as well as bacteriophages to treat the
multidrug-resistant pathogenic strains of P. aeruginosa and
Burkholderia dolosa have reported optimistic therapeutic
outcomes and no adverse effects (240, 241).

The use of probiotics-based therapeutic interventions in the
amelioration of lung diseases has also been explored by several
groups. For example, the oral supplementation of E. faecalis FK-23
has been documented to attenuate allergic airway inflammation
and Th17-cell development in mouse allergic asthma models
(242). The use of probiotics has also been discussed in the
context of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) prevention and treatment (243). However, the
prospect of probiotic consumption by immunocompromised
patients such as lung transplant recipients is deeply intertwined
with concerns pertaining to its safety. In their case report, Luong
and colleagues describe how a concerning elevation in the number
of Lactobacillus infections was recorded in a hospital after L.
acidophilus/helveticus was replaced with L. rhamnosus GG as
the principal constituent of the prophylactic probiotic
supplementation given to heart and lung transplant patients for
C. difficile–associated diarrhea. In fact, the routine administration
of probiotic formulations to patients was subsequently
discontinued due to the dearth of convincing evidence regarding
its benefits as compared to the established downsides (244). The
literature surrounding the administration of FMT to restore the
lung microbiota is not well developed. One group reported a study
in which a patient-derived multidrug-resistant Pseudomonas
isolate was engrafted into humanized murine lungs following
which host cytokine responses, as well as the notable post-
engraftment lung and gut microbiota changes, were studied. Gut
FMT was demonstrated to have a therapeutic effect on multidrug-
resistant bacterial lung infections (245). More elaborate studies in
this direction are anticipated in the years to come.

A recent study categorized post-transplant lung microbiotas
into four distinct compositional states determined by an
aggregate of factors including anellovirus loads, respiratory
function, and even host immune responses (246). A balanced
compositional state, characterized by diverse bacterial
communities with moderate viral loads, indicates a healthy
lung microbiota. On the other hand, dysbiotic compositional
states, characterized by depleted or pathogen-dominated
microbiotas, are indicative of elevated immune activity and
infection risk, depressed pulmonary function, and increased
lung allograft rejection risk (246). This study delineates the
intimate yet complex association between respiratory health,
the resident lung microbiota, the bacteriome–virome–host
physiology axis, human lung function, respiratory health, and
most importantly, post-transplantation clinical stability of lung
allografts. Recent advancements in next-generation sequencing
technologies and metagenomic workflows have galvanized the
exploration of challenging microbiotas such as that of the lung
Frontiers in Immunology | www.frontiersin.org 15
(247). With further technological and methodological
advancements, more and more insightful reports exploring the
lung microbiota in health, disease, and various transplantation
scenarios can be expected to surface in the upcoming years. A
visual summary of some of the key highlights discussed in this
section is illustrated in Figure 4.
LIVER AND HEART TRANSPLANTATION

Aside from the transplantation scenarios discussed above, organs
such as the heart and liver are also transplanted across the globe.
There has also been amultitude of reports exploring a diverse range
of perspectives involving each of these transplantation scenarios in
the context of human microbiotas. For example, a recent study
analyzing the pre- and post-transplant fecal microbiotas of a cohort
of patients consisting of heart–kidney, heart–liver, heart–liver–
kidney, or just liver transplant recipients has been reported (248).
This study aimed to compare fecal samples sourced from different
heart transplant recipients with those sourced from liver transplant
recipients as well as healthy controls to better understand the
metagenomic and metabolomic changes occurring across the
transplantation timeline. The study revealed that heart
transplantation patients displayed a lower within-sample
microbial diversity but a higher frequency of Lactobacillus,
Enterococcus, and Faecalicoccus detection as compared to healthy
controls. Among the different transplant recipients, liver transplant
recipients had the lowest within-sample microbial diversity and
marked losses of normal bacterial taxa. Moreover, both heart
transplant and liver transplantation recipients demonstrated
notable differences in the relative abundances of butyrate-
producing anaerobic bacterial species such as Lachnospiraceae
and Ruminococcaceae, with heart transplant recipients having
significantly higher abundances. Aside from the discussed
observations, this study also demonstrated how the nature of the
changes occurring in the gut microbiota as a response to organ
transplantation can distinctly vary based on the specific organ
being transplanted (248). Wider and deeper studies in this
direction can be expected in the upcoming years. In another
study, an immunocompromised pediatric heart transplant
recipient received FMT to treat recurrent C. difficile infection.
The recipient reported a restoration of healthy microbial
diversity without any concomitant transplant complications or
infection relapses (249). This was a remarkable report as the
FMT recipient was the youngest immunocompromised patient to
undergo the procedure, although successful FMT procedures on
other pediatric cardiac transplant patients have been reported
earlier (250). Although there is some evidence demonstrating the
safety and efficacy of FMT, the consistency of the positive outcomes
needs to be validated in larger groups ideally spanning multiple
geographies and ethnicities.

Liver transplantation has also been documented to significantly
alter the gut microbiota. A group compared the fecal microbiota of
healthy liver transplant recipients with that of liver transplant
recipients presenting with abnormal liver function. All liver
transplant recipients displayed an elevated relative abundance of
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opportunistic pathogens (Klebsiella, Escherichia/Shigella) as
compared to healthy controls. However, the interesting point of
difference among the liver transplant recipients was that liver
transplant recipients presenting with abnormal liver function had
a notably lower relative abundance of butyrate-producing gut
bacteria such as Lachnospiraceae, Odoribacteraceae, and
Clostridiaceae, as compared to their healthy counterparts. This
study once again reinforced the importance of short-chain fatty
acids as well as their producers in maintaining gut health across a
variety of different transplantation scenarios (251). A different
study analyzed fecal samples sourced from a cohort of liver
transplant recipients with a history of non-alcoholic fatty liver
disease, among which 71% presented with a disease recurrence.
The authors found evidence suggestive of the protective roles of
Akkermansia, Firmicutes, and Bifidobacterium as well as the
pathogenic roles of Fusobacteria and Bacteroidetes (252).

Aside from the bacteriome, the plasma virome also has a
documented role in determining liver transplantation outcomes
(253). A recent study analyzing the plasma virome of liver
transplant recipients both pre- and post-liver transplant reported
an Anelloviridae bloom dominating the immunosuppressed post-
transplant plasma virome that was accompanied by several
complications. The potential of Anelloviridae-based diagnostic
markers has been discussed in the context of HSCT and lung
transplantation. The findings of this study also demonstrate the
relevance of the same for the detection of post-liver transplant
complications. Interestingly, all human pegivirus–positive liver
transplant recipients were found to be alive half a decade after
undergoing the transplantation procedure, suggesting potentially
beneficial, positive patient outcome–promoting immune system
modulation by the virus (253). However, further investigation in
this regard is required before robust conclusions can be drawn.

The use of probiotics has also been investigated in the context
of liver transplantation. A randomized, double-blind, and
placebo-controlled clinical trial placed adult liver cirrhosis
patients on a four-strain probiotic supplementation regimen
consisting of Lactococcus lactis, L. casei, L. acidophilus, and
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Bifidobacterium bifidum, once daily before breakfast until the
commencement of the liver transplantation procedure (254).
Compared to the placebo control group, the probiotic-
supplemented liver transplant recipients reported substantially
lower post-transplant infection rates as well as improved
biochemical markers of allograft function such as bilirubin
concentration, and (aspartate and alanine) aminotransferase
activity. However, in this study, probiotic administration did
not seem to have any notable impacts on postoperative mortality
(254). More studies exploring the impact of probiotics as well as
prebiotics on liver transplant outcomes need to be conducted
before the scientific and medical community can reach a
unilateral consensus pertaining to the benefits of the same. A
visual summary of some of the key highlights discussed in this
section is illustrated in Figure 5.
CONCLUSION

This review has discussed the effect of five different transplantation
scenarios, that is, HSCT, renal transplantation, lung transplantation,
liver transplantation, and heart transplantation on the various
human microbiotas. Three transplantation scenarios, that is,
HSCT, renal transplantation, and lung transplantation, have been
discussed in depth. HSCT is the only form of clinically standardized
stem cell transplantation that is routinely carried out for a variety of
different malignant and non-malignant conditions. Furthermore,
studying HSCT in the context of the human microbiotas gives us
a rare opportunity to study cancer, stem cells, and the human
microbiotas in a contextually relevant, mutually non-exclusive, and
semantically associated framework. Renal transplantation is the
oldest and most prevalent form of solid organ transplantation.
Naturally, many comprehensive studies exploring renal
transplantation and its association with various human
microbiotas have been reported over time. Therefore, the body of
research exploring the intersection of the human microbiotas and
kidney transplantation is among the most mature in all
FIGURE 4 | A visual summary of some of the key highlights discussed in the context of lung transplantation and the human microbiotas.
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transplantation scenarios. Therefore, exploring kidney
transplantation in the context of the human microbiotas serves as
a good primer for similar investigations related to other
transplantation scenarios. Finally, the lungs are the only fully
transplantable organ with their own resident, self-contained
microbiota as well as a well-developed immune system that
effectively neutralizes a constant barrage of antigens, pathogens,
and other immunological challenges. Furthermore, the lung
microbiota is not very well characterized due to its significantly
lower biomass as compared to the gut microbiota and the persistent
challenges involved in obtaining contamination-free samples (218).
Therefore, a deeper look into lung transplantation and its impact on
the lung microbiota may provide us with unique insights pertaining
to host–microbiota interactions and their bidirectional impact on
transplantation as well as transplantation outcomes. Although an
investigation into the impacts of heart and liver transplantation on
the human microbiotas is by no means less important or less
insightful, most of the trends and overarching patterns observed in
the context of HSC, kidney, and lung transplantation are consistent
with that of heart and liver transplantation. A deeper exploration of
these topics is nevertheless warranted.

This review discusses the effects of HSC and organ
transplantation on various human microbiotas and how our
understanding of the same can be leveraged in clinically
translatable directions. However, the relevance of the human
microbiotas is not limited to transplantation, nor are they limited
to the specific microbiotas discussed in this review. For example,
uterine transplantation and its impact on the vaginal microbiota is
an emerging area of investigation. The vaginal microbiota is an
important, intricate, and dynamic humanmicrobiota that changes at
different points of a woman’s menstrual cycle as well as her entire
life. Physiological, psychological, and situational factors such as
hormonal levels, pregnancy status, sexual activity, douching, stress
levels, race, and regional disparity are also known to impact the
vaginal microbiota (8). Uterine transplantation is a surgical
procedure involving the transplantation of the uterus, cervix,
surrounding connective tissue, blood vessels, and a cuff of the
Frontiers in Immunology | www.frontiersin.org 17
vagina from a healthy female donor to a female recipient suffering
from absolute uterine factor infertility (255). Absolute uterine factor
infertility is a clinical condition in which a woman is infertile due to
the anatomical or functional deficit of a uterus. Absolute uterine
factor infertility can both be congenital and acquired (removed
during a hysterectomy). Although uterine transplantation is in its
nascency with only a handful of cases reported worldwide, it is
gaining attention in the medical community (255, 256). The ocular
microbiota is another example of a unique microbiota that has been
reported to be interrelated to a variety of ophthalmic diseases such as
age-related macular degeneration, autoimmune uveitis, glaucoma,
and several others (257). The recent discovery of even more exotic
human microbiotas such as the seminal and penile microbiota,
hepatic microbiota, and cerebrospinal fluid virome opens up new
frontiers of metagenomic exploration (8, 11, 258–260). With the
accumulation of more and more studies, the complex
interconnectivity between different organ systems and the various
human microbiotas is becoming increasingly apparent. How these
insights will translate into beneficial diagnostic and therapeutic
interventions in the future is yet to be seen.
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FIGURE 5 | A visual summary of some of the key highlights discussed in the context of liver as well as heart transplantation and the human microbiotas.
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