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Abstract

Background: Relapsed pediatric B-acute lymphoblastic leukemia (B-ALL) remains as the leading cause of cancer death
among children. Other than stem cell transplantation and intensified chemotherapy, no other improved treatment
strategies have been approved clinically. Gene expression profiling represents a powerful approach to identify potential
biomarkers and new therapeutic targets for various diseases including leukemias. However, inadequate sample size in
many individual experiments has failed to provide adequate study power to yield translatable findings. With the hope
of getting new insights into the biological mechanisms underpinning relapsed ALL and identifying more promising
biomarkers or therapeutic targets, we conducted a meta-analysis of gene expression studies involving ALL from 3
separate studies.

Method: By using the keywords “acute lymphoblastic leukemia”, and “microarray”, a total of 280 and 275 microarray
datasets were found listed in Gene Expression Omnibus database GEO and ArrayExpress database respectively. Further
manual inspection found that only three studies (GSE18497, GSE28460, GSE3910) were focused on gene expression
profiling of paired diagnosis-relapsed pediatric B-ALL. These three datasets which comprised of a total of 108 matched
diagnosis-relapsed pediatric B-ALL samples were then included for this meta-analysis using RankProd approach.

Results: Our analysis identified a total of 1795 upregulated probes which corresponded to 1527 genes (pfp < 0.01;
FC> 1), and 1493 downregulated probes which corresponded to 1214 genes (pfp < 0.01; FC < 1) respectively. STO0A8
appeared as the top most overexpressed gene (pfp < 0.01, FC=1.8) and is a potential target for further validation. Based
on gene ontology biological process annotation, the upregulated genes were most enriched in cell cycle processes
(enrichment score = 15.3), whilst the downregulated genes were clustered in transcription regulation (enrichment

score = 12.6). Elevated expression of cell cycle regulators (e.g kinesins, AURKA, CDKs) was the key genetic defect
implicated in relapsed ALL, and serve as attractive targets for therapeutic intervention.

Conclusion: We identified ST00A8 as the most overexpressed gene, and the cell cycle pathway as the most promising
biomarker and therapeutic target for relapsed childhood B-ALL. The validity of the results warrants further investigation.
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Background

B-Acute lymphoblastic leukemia (ALL) accounts for 80%
of childhood leukemias, and relapsed B-ALL remains as
the leading cause of cancer related deaths among children
[1, 2]. Despite the 5-year survival rate for pediatric ALL
exceeding 90% after treatment with multi-agent chemo-
therapy tailored to established risk factors [3], nearly 20%
of patients will still relapse and succumb to disease. Re-
lapsed B-ALL has a dismal prognosis, with overall survival
rates of 35-40% even when treated with intensified
chemotherapy or stem cell transplantation [4—6]. To date,
the biological mechanisms of relapsed ALL remains
largely unknown. Therefore, there is a pressing need to
gain better understanding of the molecular mechanisms
governing relapsed ALL, with the hope of developing
more effective treatment plans and to improve patients’
survival rate.

In the past decades, microarray has been widely used
to identify candidate biomarkers and therapeutic targets
by studying the gene expression changes at the genome
wide level. Several studies on diagnosis-to-relapsed ALL
have been performed to unlock the dysregulated genes
and pathways essential in driving relapsed ALL [7-10].
However, only a very small number of genes were found
significantly differentially expressed between diagnosis
and relapse, and the results were not consistent across
all these studies. These discordant results therefore have
limited the reliability for further validation or develop-
ment into clinically useful biomarkers and therapeutic
targets. It has been well recognized that small sample
sizes, different microarray platforms, and different statis-
tical methods are among the limiting factors contributed
to the discordant results. To resolve this limitation,
meta-analysis represent a powerful approach to combine
different datasets from different studies to improve the
reliability and generalizability of the findings by increas-
ing its statistical power analysis. Meta-analysis on gene
expression data has yielded new biological insights, as
well as identification of more robust and reliable candi-
date biomarkers and therapeutic targets [11-13].

To identify differentially expressed genes across mul-
tiple datasets, we employed a non-parametric ‘rank
product’ method [14, 15]. RankProd is among the most
popular tool which utilizes a non-parametric statistical
method and outperforms other meta-analysis methods,
including metaArray [16], GeneMeta [17], and MAMA
[18], by ranking the differentially expressed genes based
on false discovery rate. Matched diagnosis and relapse
samples represent the most ideal biological samples to
study the mechanisms for relapse. Hence, in this study,
we sought to identify differentially expressed genes asso-
ciated with relapsed ALL by performing a meta-analysis
on three independent microarray datasets of paired
diagnosis-relapsed B-ALL, with the hope of providing
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new insights into the molecular mechanisms of relapsed
B-ALL, as well as to identify potential therapeutic options
to improve patients’ outcome. Interestingly, our analysis
found a long list of significantly differentially expressed
genes which have been missed in individual studies, and
highlighted cell cycle regulators as promising therapeutic
targets amenable for relapsed childhood B-ALL.

Methods

Selection of microarray datasets

To identify paired diagnosis-relapsed pediatric B-ALL
microarray expression datasets for meta-analysis, we per-
formed a web-based search in Gene Expression Omnibus
database GEO  (http://www.ncbinlm.nih.gov/geo) and
ArrayExpress (http://www.ebi.ac.uk/arrayexpress) data-
base using the keywords “acute lymphoblastic leukemia”,
and “microarray”. A total of 280 and 275 expression by
array datasets were listed in GEO and ArrayExpress data-
bases respectively (before 6™ March 2015). The datasets
were reviewed manually and only datasets which fulfilled
the following criteria were included for further analysis:
(1) Expression profiling by array, (2) Studies which com-
prised of CEL raw files, and (3) Paired diagnosis-relapsed
pediatric B-ALL samples. Only 3 microarray datasets were
found, in which GSE28460 and GSE18497 were listed in
GEO, whilst GSE28460, GSE18497, and GSE3910 were re-
corded in ArrayExpress. All three microarray datasets
were included in this meta-analysis. GSE3910 consisted of
32 matched diagnosis-relapsed ALL using the using the
Affymetrix Human Genome U133A Array [8], whilst
GSE18497 [9] and GSE28460 [7] were generated using
Affymetrix Human Genome U133 Plus 2.0 Array plat-
form, and consisted of 27 and 49 matched diagnosis-
relapsed ALL samples respectively.

Individual microarray data analysis

To identify differentially expressed genes in each individual
dataset, the limma package which employs a linear model-
ing approach was used. The raw CEL files was normalized
using Robust Multichip Averaging (RMA) implemented in
the Affy package, returning log2 transformed intensities
[19]. The normalized datasets were then subjected to
limma to compute differentially expressed genes. Genes
significantly dysregulated in relapsed ALL as compared to
matched data at diagnosis were defined by a p-value < 0.05,
and log2 fold change of >1 (upregulated genes) or< -1
(downregulated genes). The results of the linear modelling
on each dataset and meta-analysis using RankProd method
were then compared.

Meta-analysis of multiple microarray datasets

Meta-analysis was performed on the three datasets using
the RankProd package [14] to identify the upregulated
and downregulated genes between relapsed ALL and
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matched samples at diagnosis. Initially, the raw CEL files
were normalized using RMA implemented in the Affy
package, returning log2 transformed intensities [19]. The
normalized datasets were then merged using inSilicoMer-
ging package, and the batch effects was adjusted using
method COMBAT [20]. To identify top differentially
expressed probesets, the RPadvance function within the
RankProd package was used [14]. False discovery rates
(pfp) of differential expression were determined using
1000 permutations. The list of upregulated or downregu-
lated probes was identified based on false discovery rate
(pfp <0.01) and fold change value (FC > 1, upregulated;
FC <1, downregulated). Probes that mapped to multiple
genes were discarded to avoid misinterpretation of the re-
sults and to increase the specificity.

Gene enrichment analysis

Significantly upregulated (FC>1, pfp<0.01) and down-
regulated genes (FC < 1, pfp < 0.01) identified by RankProd
were subjected for gene enrichment analysis using the
Database for Annotation, Visualization, and Integrated
Discovery (http://david.abcc.ncifcrf.gov/) [21] to identify
over-represented functional classes of genes. STRING [22]
was used to identify the protein-protein interaction net-
work on selected clustered genes.

Results

Individual microarray data analysis of differentially
expressed probes

Differentially expressed genes were identified between
relapsed and diagnosed ALL in each study using the
limma method which employed the t-test statistical algo-
rithm, and the overlapped genes were examined. As
depicted in Fig. 1, based on the cutoff p-value <0.05 and
logFC > 1, we identified 3 probes which were upregu-
lated in GSE3910, 1 probe in GSE18497, and 23 probes
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in GSE28460. Of these probes, only 2 probes, i.e.
202018_s_at which encodes for LTF, and 202917_s at
which encodes for S100A8 were found consistently up-
regulated in 2/3 datasets. In the downregulation profile
(p-value <0.05 and logFC < -1), no overlapped candidate
probe was found. There were 5 probes uniquely down-
regulated in GSE3910, whereas 1 probe was downregu-
lated in GSE28460 whereas no probe was found
significantly downregulated in GSE18497. The genes’ list
was as summarized in Additional file 1: Table S1.

Meta-analysis of differentially expressed probes

To overcome the limitation of small sample sizes in indi-
vidual study, we then performed meta-analysis on these
3 datasets using RankProd approach. A total of 108
matched diagnosis-relapse ALL samples were pooled to-
gether to identify differentially expressed genes impli-
cated in relapsed ALL. The significance of differential
gene-expression was calculated based on percentage of
false positive predictions (pfp). After removal of probes
that mapped to multiple genes or unannotated genes,
based on 1000 permutations and a cut-off of false dis-
covery rate at<0.01, of the 27,000 probes examined,
1795 probes (corresponding to 1527 genes) were found
to be upregulated in relapsed ALL (FC > 1), whilst 1493
probes (corresponding to 1214 genes) were downregu-
lated (FC<1). The top 20 ranked upregulated and
downregulated probes are as listed in Tables 1 and 2 re-
spectively, whilst the list of dysregulated probes are as
summarized in Additional file 1: Table S2.

Interestingly, in agreement with the linear modeling
approach that identified the upregulation of SI00AS8 in
relapsed ALL (2/3 microarray datasets, Fig. 1), the meta-
analysis also detected this candidate probe as the most
significantly upregulated target (Table 1). Therefore,
SI100A8 appeared to be an attractive and promising

202018_s_at: LTF
202917_s_at: S100A8

GSE28460

found concordantly upregulated in 2/3 studies

a LogFC > 1; p-value < 0.01
GSE3910

GSE18497

Fig. 1 Venn diagram of differentially expressed probes identified from each individual microarray dataset using limma approach. a Upregulated
probes (p-value < 0.01, logFC > 1); b Downregulated probes (p-value < 0.01, logFC < -1). Only 2 probes which encode for LTF and S100A8 were

b LogFC < -1; p-value < 0.01
GSE3910 GSE18497

GSE28460
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Table 1 The top 20 most significantly upregulated probes
identified by RankProd in relapsed childhood ALL (pfp < 0.01;
FC>1), 1000 permutation
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Table 2 The top 20 most significantly downregulated probes
identified by RankProd in relapsed childhood ALL (pfp < 0.01;
FC< 1), 1000 permutation

Probe Gene FC:(class1/class2) pfp p.value Probe Gene FC:(class1/class2) pfp p.value
202917_s_at S100A8 1.8713 0 0 209480_at HLA-DQB1 0.8503 0 0
203949_at MPO 20051 0 0 219737 _s_at PCDH9 05924 0 0
201427_s_at SEPP1 1.6536 0 0 210432_s_at SCN3A 0.6362 0 0
213975_s_at Lyz 1.6129 0 0 203038_at PTPRK 08517 0 0
205000_at DDX3Y 1.1483 0 0 206637_at P2RY14 0.7417 0 0
204971 _at CSTA 1.757 0 0 204897_at PTGER4 06231 0 0
209160_at AKR1C3 1.6693 0 0 221728_x_at XIST 09313 0 0
209170_s_at GPM6B 1.3387 0 0 212592_at 1GJ 0.7981 0 0
204409_s_at EIFTAY 1.2661 0 0 221841 _s_at KLF4 06573 0 0
201291 _s_at TOP2A 1.8054 0 0 203910_at ARHGAP29 0.8594 0 0
204304_s_at PROM1 1.1579 0 0 206864 _s_at HRK 0.6284 0 0
201669_s_at MARCKS 14776 0 0 210448_s_at P2RX5 06183 0 0
202018_s_at LTF 1.6698 0 0 214218_s_at XIST 0.9554 0 0
211657_at CEACAM6 1.3632 0 0 201005_at D9 0.7092 0 0
212077_at CALD1 1.5944 0 0 210517_s_at AKAP12 0.8163 0 0
221731_x_at VCAN 1.3855 0 0 205081_at CRIPT 0.605 0 0
214039_s_at LAPTM4B 11776 0 0 204439_at IF144L 0.7068 0 0
204620_s_at VCAN 1434 0 0 205289_at BMP2 0.7267 0 0
200665_s_at SPARC 14726 0 0 FC fold change, class 1 represent relapsed ALL, class 2 diagnosed ALL
209687_at cXcLi2 1.7029 0 0

FC fold change, class 1 represent relapsed ALL, class 2 diagnosed ALL

biomarker and therapeutic target for relapsed B-ALL
that warrants further validation.

As shown in Fig. 2, hierarchical clustering on top 100
dysregulated probes of relapsed and diagnosed childhood
B-ALL demonstrated that both groups are not clustered
uniquely and were mixed together. This profile indicated
that the expression profiles of these 2 samples groups
were highly similar.

Functional and pathway analysis

The significantly dysregulated genes were then anno-
tated using DAVID (Additional file 1: Table S3). As
depicted in Figs. 3 and 4, based on gene ontology bio-
logical process annotation, the 1527 upregulated genes
were most enriched in cell cycle processes (enrichment
score = 15.3), whilst the 1214 downregulated genes were
enriched in transcription regulation (enrichment score =
12.6). Notably, a total of 161 upregulated genes were cell
cycle regulators, and many of them (e.g. kinesins, CDKs)
have been reported to be implicated in leukemia patho-
genesis. Of the top 100 significantly upregulated probes,
14 of them (PBK, ASPM, AURKA, BUBIB, BIRCS,
CDK1, CEPS5, CCNB2, DLGAPS, KIF11, KIF15, NCAPS,
GOS2, TTK) encode for cell cycle regulators and are
inter-related via protein-protein interaction network

(String network, Fig. 5). Of these candidate genes,
CDK1, AURKA, and survivin (BIRCS5) are the most at-
tractive candidates, whereby numerous inhibitors
under development have entered into either phase I/II
clinical trials.

Discussion

In the past decades, microarray has been used widely to
investigate differentially expressed genes and dysregu-
lated pathways underlying cancer pathogenesis. Numer-
ous microarray gene expression studies on pediatric ALL
have been performed, with few focused on understand-
ing the biological mechanisms underlying relapsed ALL
using matched diagnosis-relapsed samples. Also, each
published dataset was relatively small (#<50) and the
concordance of these studies is rather low based on the
publication findings [7-9] or even with the re-analysis
on individual dataset using the limma method (Fig. 1;
Additional file 1: Table S1). The discrepancies could be
attributed to the small size in each single dataset which
is underpowered to identify reliable candidates of inter-
est. Hence, meta-analysis which merges all qualified
datasets into a single analysis using a more robust statis-
tical method is preferable to yield more meaningful set
of differentially expressed genes and to provide new in-
sights into the biological mechanisms. Meta-analysis on
multiple microarray datasets of various diseases has
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Fig. 2 Heatmap of the top 100 differentially expressed probes between relapsed and matched diagnosed B-ALL samples (n = 108) from meta-analysis
of three microarray datasets. Each green color column denotes newly diagnosed B-ALL samples whilst each blue color column denotes relapse B-ALL
samples. Expression levels are represented by red (high expression) and green (low expression)
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yielded reliable candidates of interest by increasing the
statistical power and generalizability [11-13].

Our meta-analysis demonstrated that SI00A8 was the
top gene upregulated in relapsed ALL as compared to
matched diagnosis. SI00A8 is a member of the S100 multi-
gene family of cytoplasmic EF-hand Ca2 + -binding pro-
teins [23] and was found overexpressed in various cancer
types, and is involved in regulating cell proliferation, me-
tastasis and apoptosis [23-27]. In hematological cancers,
SI00A8 has been reported to be overexpressed in child-
hood AML and associated with a worse prognosis [28, 29].
It may be involved in mediating chemoresistance by up-
regulating autophagy in leukemia cells through promoting
the formation of BECNI1-PI3KC3 complex [30]. Also,
SI00A8 was found overexpressed in the more aggressive
ALL subtype, infant B-ALL, as compared to non-infant B-

ALL [31], and mediated prednisolone-resistant in MLL-
rearranged infant ALL [32]. Preclinical study has demon-
strated S100A8 promoted cell growth of murine B-cell
leukemia (BJAB) and human T-cell leukemia (Jurkat) lines
[33]. Numerous studies have shown inhibition of S100A8
as a viable treatment strategy for cancers, including
leukemia [28, 34—37]. For instance, inhibition of S100A8
has shown increased drug sensitivity and apoptosis of
leukemic cells [28]. Given that SI00A8 acts as an upstream
target of EGFR signaling [38], anti-EGFR therapies, includ-
ing midostaurin, enzastaurin and gefitinib has been pro-
posed as potential therapy for kidney cancer cells which
overexpressed S100A8 [35]. Moreover, increased expres-
sion of SI00A8 mediated the activation of MAPK and NF-
kB pathways, and treatment with p38 MAPK inhibitor
SB203580 and the NF-«kB inhibitor Bay 11-7082 effectively

GO0:0000070~mitotic sister chromatid segregation
GO0:0048872~hom eostasis of number of cells
G0:0000075~cell cycle checkpoint
G0:0042981~regulation of

GO0:0051325~interphase
GO0:0012501~programmed cell death

GO0:0006260~DNA repli

GO0:0006259~DNA bolic process

G0:0007051~spindle or:

GO:0007049~cell cycle

0.0 2.0 4.0

Fig. 3 The ten most significant biological processes associated with genes upregulated in relapsed childhood B-ALL
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Fig. 4 The ten most significant biological processes associated with genes downregulated in relapsed childhood B-ALL
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abolished migration and invasion of cancer cells [39].
Other than conferring selective sensitivity to drugs which
target mediators of S100A8, the knockdown of S100A8 ex-
pression with siRNA or shRNA also showed reduced inva-
sinesss and migration of cancer cells [28, 34, 36, 37].
Taken together, SI00AS is an ideal target for relapsed ALL
therapy, and warrants further investigation.

MPO appeared as the second top ranked upregulated
genes, with a fold change > 2. MPO has been long con-
sidered as the hallmark marker for AML cells by the
French—American—British and WHO classifications, and
has been used clinically to distinguish between AML
and ALL. However, several studies reported MPO also
being expressed in B-ALL cells, and associated with
poorer prognosis [40—43]. For instance, infant B-ALL, a
subtype which associated with poorer prognosis was

shown to have overexpressed MPO, with an incidence
rate of 40-60% [42, 44]. Also, B-ALL patients who pre-
sented with MPO-positive showed higher incidence of
relapse [45], and reduced long-term survival [46]. Our
data therefore suggested that MPO may serve as strong
indicator for relapse in B-ALL patients. Moreover, silen-
cing of MPO has been shown to effectively induce apop-
tosis in ovarian cancer cell lines by increasing caspase-3
activity [47]. Inhibition of MPO-overexpressed cells is
therefore of clinical interest.

To date, development of cell cycle inhibitors for cancer
therapy is actively ongoing. The most attractive inhibitors
are those that target cell cyclin dependent kinases (e.g.
CDK1) and aurora kinases (e.g. AURKA, AURKB), which
are abundantly expressed in various cancer types. Our
meta-analysis and several earlier studies have demonstrated

Fig. 5 Protein-protein interaction network of cell cycle genes identified in top 100 upregulated probes in relapsed childhood B-ALL
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that overexpression of cell cycle proteins was prominent
and was among the key genetic changes underpinning pro-
gression of relapsed childhood B-ALL [7-9]. From the top
100 upregulated genes list, 14 of them are cell cycle regula-
tors and are found to be interactive with each other (Fig. 5).
Of those candidates, CDK1 appeared as a key target. To
date, numerous CDK inhibitors have entered into clinical
trials (https://clinicaltrials.gov), and have shown promising
clinical response in leukemia patients. For instance, AML
patients treated with a combination of flavopiridol and two
chemotherapeutic agents, cytarabine and mitoxantrone,
showed a complete remission rate of 75% [48], as com-
pared to 40-50% with regimens using only conventional
chemotherapy [49, 50]. Also, Dinaciclib, a novel inhibitor
of CDKs 1, 2, 5, and 9, has been shown to be effective in
CLL patients and induced lesser myelosuppression [51].
Recently, the approval by FDA on the use of a CDK inhibi-
tor, palbociclib, in combination with letrozole to treat ad-
vanced estrogen positive, HER2 negative breast cancer has
strengthen the usefulness of CDK inhibitors as new class
of anti-cancer therapies [52]. In pediatric ALL, incorpor-
ation of CDK inhibitors into standard treatment regimens
is yet to be investigated, and it is believed that clinical trials
of CDK inhibitors on relapsed childhood B-ALL may be
justifiable options to improve patients’ survival rate.

Another candidate of cell cycle regulators, AURKA, was
also found in the top 100 upregulated genes list in our
meta-analysis. AURKA is one of the three aurora kinases
(AURKA, AURKB, and AURKC) which play essential roles
in cell proliferation, regulating cell cycle transit from G2,
formation of the mitotic spindle, centrosome maturation
and separation, and cytokinesis [53-55]. Overexpression of
AURKA has been documented in solid tumors and
hematological cancers [56—60]. Higher levels of AURKA ex-
pression were correlated with higher tumor grade, and
poorer prognosis [61-64]. Furthermore, overexpression of
AURKA mediated resistance to gefitinib, taxol and cisplatin
in cancer cells [65—67]. Inhibition of AURKA has been
shown to increase cisplatin-induced apoptosis [66]. It is
noteworthy that more than 30 AURKA inhibitors have
been tested in clinical studies [68]. For relapsed and refrac-
tory AML patients, an early phase I/II clinical trial on
AURKA inhibitor, MLN8237, has shown 13% complete
response rate, 11% partial response rate, and 49% stable dis-
ease [69]. Given that the levels of AURKA expression was
elevated in relapsed pediatric B-ALL, it would be worth-
while to investigate the efficacy of AURKA inhibitor in this
group of patients.

Earlier studies have identified survivin overexpression as
a strong risk factor for relapse in childhood B-ALL [70].
Independent microarray studies using other analysis pipe-
lines have reported survivin as a key gene upregulated in
relapsed ALL [7, 8]. Our analysis has strengthened the fact
that targeting survivin is a promising therapeutic strategy,
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and warrants further investigation. Survivin is part of the
AuroraB-survivin-INCENP-Borealin/Dasra B complex, an
essential component for cell-cycle progression and cyto-
kinesis [71]. It plays an important role in regulating cell
proliferation and apoptosis suppression. Survivin was also
found to be overexpressed in adult AML and T-cell
leukemia [72, 73] as well as childhood AML [74-76], and
associated with poorer survival outcome. Upregulation of
survivin is mediated by multiple signaling pathways and
by the tumor microenvironment including PI3K, MAPK,
STAT3, Wnt/-catenin, hypoxia, angiogenesis, and NF-kf
signaling pathways [53, 76—80], hence may serve as an im-
portant target for leukemia therapy. Survivin also mediates
resistance to chemotherapeutic agents, including vincris-
tine, cisplatin, and tamoxifen in tumor cells [81-83].
Down-regulation of survivin via antisense oligonucleotides
was shown to enhance sensitivity of various cancer cell
types to cytotoxic agents such as TRAIL [84], cisplatin
[85], taxol [86], imatinib [87], as well as to cytotoxicity in-
duced by radiation therapy [88]. To date, several clinical
trials on survivin employing different approaches includ-
ing antisense oligonucleotides, small molecule inhibitors
and immunotherapy are in progress ([89-92], http://
www.clinicaltrials.gov), and is offered as an treatment
option for terminally ill relapsed B-ALL patients within in
the context of clinical trial.

Taken together, our meta-analysis on paired
diagnosis-relapsed B-ALL has strengthened the evi-
dence for the roles of cell cycle dysregulation as the
key component of genetic alterations underpinning
disease progression, and can be considered as the
promising pathway for new therapeutic intervention.
The efficacy of targeted cell cycle therapies to treat
relapsed pediatric B-ALL patients shall be further
evaluated in the context of clinical trials.

Conclusion

In summary, our analysis identified SIO0A8 as the top
most promising biomarker and therapeutic candidate for
relapsed childhood B-ALL. Dysregulation of the cell
cycle is the key genetic event implicated in relapsed
ALL, and an in-depth investigation of the efficacy of cell
cycle inhibitors (e.g. CDK inhibitors, and aurora kinases
inhibitors) in eliminating relapsed leukemic cells is war-
ranted to improve patients’ survival rate.

Additional file

Additional file 1: Table S1. List of significantly differentially expressed
probes identified in GSE3910, GSE18497, and GSE28460 analyzed by limma
approach. Table S2. List of significantly differentially expressed probes
identified in the meta-analysis of three microarray datasets (GSE3910,
GSE18497, GSE28460) using RankProd approach. Table S3. Gene set
enrichment analysis for the significant upregulated and downregulated
genes analzyed by DAVID. (XLSX 248 kb)
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