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Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a progressive liver disorder with a rising prevalence. 
It begins with lipid accumulation in hepatocytes and gradually progresses to Metabolic-associated steatohepatitis (MASH), fibrosis, 
cirrhosis, and potentially hepatocellular carcinoma (HCC). The pathophysiology of MASLD is complex and involves multiple factors, 
with oxidative stress playing a crucial role. Oxidative stress drives the progression of MASLD by causing cellular damage, 
inflammatory responses, and fibrosis, making it a key pathogenic mechanism. The Nuclear Factor Erythroid 2-Related Factor 2 / 
Heme Oxygenase-1 (Nrf2/HO-1) signaling axis provides robust multi-organ protection against a spectrum of endogenous and 
exogenous insults, particularly oxidative stress. It plays a pivotal role in mediating antioxidant, anti-inflammatory, and anti- 
apoptotic responses. Many studies indicate that activating the Nrf2/HO-1 signaling pathway can significantly mitigate the progression 
of MASLD. This article examines the role of the Nrf2/HO-1 signaling pathway in MASLD and highlights natural compounds that 
protect against MASLD by targeting Nrf2/HO-1 activation. The findings indicate that the Nrf2/HO-1 signaling pathway holds great 
promise as a therapeutic target for MASLD. 
Keywords: the NRF-2/HO-1 signaling pathway, antioxidants, anti-inflammatory, natural compounds, non-alcoholic fatty liver disease

Introduction
Non-alcoholic fatty liver disease (NAFLD) is a condition characterized by excessive fat accumulation in the liver, 
excluding alcohol and other specific causes of liver damage.1 To more accurately reflect the metabolic basis of the 
disease, an international expert panel introduced a new term in 2020: Metabolic Dysfunction-Associated Fatty Liver 
Disease (MAFLD), which replaced the old term “Non-Alcoholic Fatty Liver Disease” (NAFLD).2 In 2023, a multi- 
society Delphi consensus statement on the new nomenclature for fatty liver disease introduced the term Metabolic 
Dysfunction-Associated Steatotic Liver Disease (MASLD) and formally discontinued the use of NAFLD.3 Based on 
disease progression, MASLD can be classified into four distinct stages: simple steatosis, Metabolic-Associated 
Steatohepatitis (MASH), fibrosis, and cirrhosis.4 The clinical manifestations of MASLD are diverse, with the majority 
of patients being asymptomatic. However, some patients may report symptoms such as fatigue, discomfort in the right 
upper quadrant, hepatomegaly, acanthosis nigricans, and lipomas.5 In more severe cases, symptoms like jaundice, loss of 
appetite, nausea, and vomiting may occur.6 Furthermore, MASLD is closely associated with metabolic and systemic 
diseases such as cardiovascular disease, obesity, type 2 diabetes, and sarcopenia. These conditions are not only common 
complications of MASLD,7–9 but may also exacerbate its progression, leading to further deterioration of the patient’s 
condition.10–12
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MASLD has become the most common liver disease worldwide and is expected to be the leading cause of end-stage 
liver disease in the coming decades.13,14 According to statistics, the global prevalence of MASLD ranges from 25% to 
34%, with 30% in Europe, 35% in South and North America, and 29.29% in Asia. Notably, the prevalence in Southeast 
Asia is as high as 42%.15–18 The mortality rate for individuals with MASLD is 1.6 times higher than that of the general 
population,19–21 with an all-cause mortality rate of 12.60 per 1000 person-years, posing a significant public health 
crisis.22 Among the management strategies for MASLD, weight loss is considered one of the most effective measures; 
however, patients often struggle to maintain long-term adherence in practice.23,24 Pharmacological and surgical treat-
ments have also been shown to improve patients’ metabolic conditions and increase survival rates effectively. Commonly 
used medications include insulin sensitizers such as pioglitazone,23 statins,24 and vitamin E,25 which can effectively 
alleviate fatty liver and inflammatory responses, particularly in patients with metabolic syndrome. Resmetirom, as an 
emerging drug, selectively activates the hepatic thyroid hormone receptor β, which can improve metabolic function, 
reduce hepatic fat accumulation, alleviate liver inflammation, enhance liver fibrosis, and potentially increase insulin 
sensitivity.26 Weight loss surgery, such as gastric bypass, significantly reduces weight, improves liver function, and 
decreases the incidence of MASH and liver fibrosis.27 Moreover, liver transplantation is the ultimate treatment option for 
end-stage MASH.28,29 Although these treatments have demonstrated certain clinical efficacy, the overall management of 
MASLD patients remains suboptimal due to the lack of early effective diagnostic tools and targeted therapeutic agents.30 

Therefore, there is an urgent need to intensify efforts to develop new treatment strategies for MASLD.
The “second hit” theory is a classic pathogenic mechanism of MASLD, where the “first hit” typically refers to insulin 

resistance leading to excessive fat accumulation in the liver (hepatic steatosis), oxidative stress is considered the “second 
hit”, significantly promoting the development of steatohepatitis.31 In recent years, the “multiple-hit” hypothesis has 
increasingly replaced the “second hit” theory, gaining widespread acceptance.32 This hypothesis posits that MASLD is 
influenced by multiple pathological factors that collectively lead to hepatic fat deposition, inflammatory response, and 
fibrosis.33,34
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Nevertheless, oxidative stress remains one of the key factors in alleviating MASLD.35–37 When the balance between 
oxidants and antioxidants is disrupted, oxidative stress can trigger lipotoxicity, lipid peroxidation, endoplasmic reticulum 
(ER) stress, and mitochondrial dysfunction, while also increasing the production of inflammatory cytokines. This cascade 
of events leads to inflammatory and fibrotic responses, ultimately progressing to MASH and end-stage liver disease.37,38

The nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway is a critical signaling mechanism 
in the body’s response to oxidative stress.39 Nrf2, a basic leucine zipper transcription factor, is essential for regulating the 
cellular antioxidant response and is widely expressed in various tissues and cells.40,41 Research indicates that Nrf2 exerts dual 
protective effects in MASLD: (1) it negatively regulates genes that promote hepatic lipid accumulation. (2) it eliminates 
Reactive Oxygen Species (ROS) and electrophiles produced by lipid peroxidation, thereby preventing oxidative stress and 
mitochondrial dysfunction in hepatocytes.42 The downstream effector of Nrf2, HO-1, plays a crucial role in anti-inflammatory, 
antioxidant, and anti-apoptotic processes.43 HO-1 significantly improves MASLD by enhancing mitochondrial function, 
inhibiting ferroptosis, reducing ROS production, and suppressing inflammatory responses.44–47 Qiu et al48 demonstrated that 
activating the Nrf2/HO-1 pathway can regulate antioxidant enzyme levels, eliminate lipid peroxides, maintain the balance 
between oxidation and antioxidation, reduce weight gain, and improve lipid metabolic dysfunction, effectively suppressing the 
progression of MASLD both in vitro and in vivo. Additionally, Qiao et al49 indicated that iNOS upregulates HO-1 expression 
by promoting Nrf2 nuclear translocation, thereby protecting the liver from MASH damage. Once HO-1 expression is 
inhibited, the protective effects of iNOS on hepatocytes diminish. This underscores the potential of the Nrf2/HO-1 signaling 
pathway as a therapeutic target for the progression of MASLD.

Based on the aforementioned information, the Nrf2/HO-1 pathway presents significant potential as a therapeutic 
target for non-alcoholic fatty liver disease (NAFLD). Recent studies indicate that various natural compounds, such as 
Aucubin,50 Gastrodin,51 and Ganoderma lucidum polysaccharides,52 can activate the Nrf2/HO-1 pathway, exerting 
antioxidant, anti-inflammatory, and lipid metabolism-improving effects that effectively inhibit the pathological progres-
sion of NAFLD. Therefore, we propose targeting the Nrf2/HO-1 pathway as an innovative approach to intervene in 
NAFLD, which may not only slow disease progression but also improve associated complications. In the future, as our 
understanding of this pathway deepens, Nrf2/HO-1 targeted therapies are expected to serve as a valuable complement to 
existing treatments, opening new avenues for NAFLD research.

Heading
Oxidative Stress and MASLD
In 1998, British scholar Day first proposed the “two-hit theory” of MASLD pathogenesis, which has been widely accepted 
within the scientific community. According to this hypothesis, the “first hit” is peripheral insulin resistance leading to the 
accumulation of free fatty acids in the liver, resulting in hepatic steatosis. This condition predisposes the liver to further 
damage, preparing it for the subsequent “second hit”. The “second hit” involves oxidative stress and the production of pro- 
inflammatory cytokines, which contribute to the progression of steatohepatitis.31 However, as research has advanced, 
scientists have increasingly recognized that the complexity of this disease far exceeds the “two-hit” theory. The “multiple- 
hit theory” has been proposed and gradually replaced the “two-hit” hypothesis as a widely accepted perspective.32 This theory 
posits that the onset and progression of MASLD are not triggered by two singular events but rather involve a synergistic 
interplay of various pathological factors, including but not limited to genetic susceptibility, epigenetic regulation, metabolic 
dysregulation, gut microbiota imbalance, insulin resistance, lipid peroxidation, and immune responses,33,34 these factors 
interact in complex ways, promoting the accumulation of fat in the liver, inflammatory responses, and the acceleration of 
fibrosis. The “two-hit” hypothesis emphasizes that steatosis occurs first, followed by hepatitis and fibrosis triggered by 
oxidative stress and other factors, while the “multiple-hit” hypothesis posits that multiple pathogenic factors can act 
simultaneously or sequentially to lead to the onset and progression of MASLD.

Despite the complex pathogenesis of NAFLD involving multiple factors, oxidative stress is consistently recognized as 
a crucial contributor to disease progression.53 Oxidative stress arises from an imbalance between the production and 
elimination of ROS,54 which serves as a primary cause of both hepatic and extrahepatic injury.55 Clinical studies have 
shown that compared to the normal group, patients with NAFLD exhibit significantly higher body mass index, 
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cholesterol levels, and transaminases, while levels of glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), 
glutathione reductase (GR), and glutathione peroxidase (GPX) are significantly lower.56,57 The decreased activity of these 
antioxidant enzymes leads to exacerbated oxidative stress, further aggravating liver cell damage, inflammation, and 
fibrosis.37,58,59 Additionally, oxidative stress initiates a series of pathophysiological changes in MASLD, including 
mitochondrial dysfunction, ER stress, disturbances in iron metabolism, disruption of the gut-liver axis, insulin resistance, 
and endothelial dysfunction.55

Nrf2/HO-1 Signaling Pathway
Nrf2 is pivotal in cellular antioxidant defense, ensuring redox homeostasis.60 This key transcription factor dissociates 
from its inhibitory protein, Kelch-like ECH-related protein 1 (Keap1), during oxidative stress and relocates to the 
nucleus. In the nucleus, Nrf2 engages with the Antioxidant Response Element (ARE) to activate the transcription of 
multiple antioxidant genes, including HO-1. HO-1 plays a crucial role in shielding cells from damage caused by ROS and 
is essential for anti-inflammatory, antioxidant, and anti-apoptotic functions.61,62 As the primary regulatory mechanism for 
cellular protection against oxidative stress, the Nrf2/HO-1 pathway is essential in managing MASLD.63

The Structure and Properties of Nrf2
Nrf2 also referred to as Nfe2l2, a transcription factor, is encoded by the NFE2L2 gene on chromosome 2q31.2.64 This 
protein is part of the cap “n” collar (CNC) basic leucine zipper (bZIP) family of transcription factors.65 Nrf2 is 
ubiquitously expressed in multiple tissues, including the liver, kidneys, spleen, and heart. It is critically involved in 
protecting these tissues from oxidative stress and chemical-induced cellular damage.66 Nrf2 consists of 605 amino acids 
and features seven distinct structural domains, which are sequentially arranged from the N-terminus to the C-terminus as 
Neh2, Neh4, Neh5, Neh7, Neh6, Neh1, and Neh3.67 Each domain fulfills a specific and irreplaceable function.68 The 
Neh2 domain, located at the N-terminus of Nrf2, contains two highly conserved amino acid sequences: 29DLG (low 
affinity) and 79ETGE (high affinity)69, which are the two sites that bind to the Kelch domain of the Nrf2 repressor 
protein (Keap1).70,71 Nrf2 is subject to ubiquitination by the Keap1-Cullin3 E3 ubiquitin ligase, which results in its 
degradation via the proteasome system.72 The Neh4 and Neh5 domains, together with the C-terminal Neh3, act as 
transactivation domains for Nrf2, binding to coactivators.73,74 The Neh7 domain, serving a negative regulatory function, 
binds to retinoid X receptor alpha (RXR α) and inhibits the transcriptional activity of Nrf2.75 The Neh6 domain is a key 
negative regulatory domain that mediates the ubiquitination and proteasomal degradation of Nrf2, containing the amino 
acid sequences DSGIS338 and DSAPGS378,76 which are recognized by GSK-3/β-TrCP and targeted for degradation by 
the Cullin1/Rbx1 complex.77 Lastly, the Neh1 domain, defined by its conserved CNC and bZIP structures, is crucial for 
Nrf2 to bind to small Maf proteins in the nucleus, facilitating the formation of dimers that recognize and attach to the 
DNA sequences of target genes,78 particularly the Antioxidant Response Element (ARE)79(Figure 1).

The Structure and Characteristics of HO-1
HO-1 is a 32 kDa stress-inducible protein that belongs to the heme oxygenase family.80 It is a type II detoxifying enzyme 
regulated by Nrf2 and serves as the rate-limiting enzyme in the oxidative degradation of heme into free iron, carbon monoxide 
(CO), and biliverdin.81 HO-1 is highly expressed in various digestive organs, including the gastrointestinal tract, pancreas, and 
liver.82 HO-1 is an enzyme encoded by the HMOX-1 gene, located on human chromosome 22q12.3.83 The gene spans 
approximately 13,148 bp and contains 5 exons and 4 introns, accompanied by 3 regulatory regions. A proximal regulatory 
region is positioned at about −0.3 Kb, while two distal enhancer regions, designated E1 and E2, are located at approximately 
−4 Kb and −10 Kb, respectively.84–86 These regulatory regions contain numerous transcription factor binding sites, such as 
hypoxia-inducible factor 1 (HIF-1), nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), stress response element 
(StRE), metal response element (MtRE), and heat shock element (HSE).87,88 These regulatory elements facilitate the 
transcriptional response of the HMOX-1 gene to various oxidative and inflammatory stimuli.87 StRE is the primary sequence 
motif, functioning analogously to the Maf response element (MARE) and the antioxidant response element (ARE).89 Among 
the transcription factors, nuclear erythroid 2-related factor (Nrf2) and BTB and CNC homolog 1 (Bach1) (transcriptional 
repressors of HMOX1) play key roles in HMOX1 regulation, regulating gene expression by activating and repressing its 
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transcription, respectively.90 HO-1 is present at low levels in most mammalian tissues but plays a crucial protective role in 
cells, including anti-inflammatory, antioxidant, anti-apoptotic, and pro-angiogenic.91 Upon activation, HO-1 degrades heme 
into biliverdin, carbon monoxide (CO), and ferrous iron. Biliverdin is subsequently converted to bilirubin by biliverdin 
reductase, which scavenges or neutralizes ROS, thus mitigating oxidative stress.82,92 As a gaseous signaling molecule, CO 
exerts various effects in signal transduction, including vasodilation, anti-inflammatory responses, anti-apoptotic effects, and 
the promotion of angiogenesis.93 Additionally, the activation of HO-1 upregulates the expression of ferritin, which binds 
ferrous iron, thereby reducing oxidative stress94(Figure 2).

The Nrf2/HO-1 Signaling Pathway
The Nrf2/HO-1 signaling axis plays a pivotal role in maintaining homeostasis by regulating calcium ion influx, oxidative stress, 
ferroptosis, pyroptosis, autophagy, and programmed cell necrosis.95 Nrf2, as an endogenous antioxidant transcription regulator, 
serves as a primary modulator of cellular defense and survival.96,97 Under physiological conditions, Nrf2 binds to Keap1 to form 
a complex sequestered in the cytoplasm.68,98 Keap1 interacts with Cullin3 and the Rbx1 subunit of the E3 ubiquitin ligase 
complex to form a protein complex. This complex binds to the Neh2 domain of Nrf2, leading to its ubiquitination and 
maintaining Nrf2 in a low activity state within the cell. Keap1 acts as a redox sensor, and upon oxidative thiol modification, it 
loses its ability to inhibit Nrf2. HO-1 is a crucial mediator of the antioxidant and anti-inflammatory effects of Nrf2.99 Under 
normal conditions, the chromatin structure of HO-1 remains in a pre-activated state, with its transcription inhibited by Bach1.100 

Specifically, the HMOX1 promoter is suppressed by the Bach1/Maf dimer binding to the StRE element.101

Upon exposure to oxidative stress or other pathological stimuli, the regulatory cysteine thiols on Keap1 react 
with ROS, leading to the dissociation of Keap1 from Nrf2. This dissociation allows Nrf2 to translocate into the 
nucleus. Inside the nucleus, Nrf2 forms a heterodimer with small Maf proteins (sMaf) and Jun bZip transcription 

Figure 1 The schematic diagram of Nrf2 and Keap1 domain structure: Nrf2, is a transcription factor characterized by multiple functional domains, including Neh2, Neh4, 
Neh5, Neh6, Neh7, Neh1, and Neh3. Neh2 interacts with the Kelch domain of Keap1 through DLG and ETGE motifs, while Neh4, Neh5, and Neh3 engage with co- 
activators to enhance transcriptional activity. Neh7 serves as a negative regulatory domain, and Neh6 is critical for the recognition of Nrf2 by GSK-3/β-TrCP, facilitating its 
degradation via the ubiquitin-proteasome pathway. Neh1 is responsible for binding to DNA, thereby regulating gene expression. Keap1, contains several functional domains, 
including the N-terminal region (NTR), BTB, IVR, Kelch domain, and CTR. Keap1 interacts with Nrf2 through its Kelch domain and mediates Nrf2 ubiquitination via CUL3, 
leading to its degradation. The BTB domain binds to CUL3 and promotes the dimerization of Keap1, thereby forming an effective ubiquitin ligase complex.
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factors, collectively referred to as the Nrf2-Maf complex, this complex accurately recognizes sequences containing 
antioxidant response elements (ARE) and binds to the Neh4 and Neh5 domains of Nrf2.102–104 Through interactions 
with cAMP response element-binding protein (CREB) and other transcriptional activators, the Nrf2-mediated 
transcription process is initiated, the regulation of downstream gene expression includes HO-1, NAD(P)H quinone 
oxidoreductase 1 (NQO1), glutamate cysteine ligase (GCL), peroxiredoxin (Prdx), SOD, CAT, GR, and glutathione 
peroxidase (GSH-Px).63 These genes facilitate the clearance of ROS and other harmful substances, promoting 
mechanisms of antioxidant response, anti-inflammation, and anti-apoptosis.63 Studies have shown that, in addition 
to Keap1, several protein kinase signaling pathways can induce Nrf2 phosphorylation and participate in its 
transcriptional regulation.60 Among these, mitogen-activated protein kinases (MAPK), protein kinase C (PKC), 
and phosphoinositide 3-kinase (PI3K) positively regulate NRF2 activity, while glycogen synthase kinase 3 (GSK-3) 
negatively regulates NRF2 activity through phosphorylation at different sites.105,106 Additionally, oxidative stress 
can cause heme to be released from hemoproteins. Free heme binds to Bach1, inducing conformational changes in 
its structure. This results in the dissociation of Bach1 from StRE, thereby increasing the transcription of HO-1 
within cell107(Figure 3).

The Role of the Nrf2/HO-1 Signaling Pathway in MASLD
MASLD is a prevalent chronic liver disorder primarily driven by oxidative stress and lipid peroxidation, which result in 
cellular damage, apoptosis, inflammation, and fibrosis. Improving lipid metabolism and reducing hepatic oxidative stress 
and inflammatory responses are considered effective strategies for preventing and treating MASLD.108 Nrf2 is an 
intracellular transcription regulator, with HO-1 as one of its most significant downstream products. The cascade reaction 
between Nrf2 and HO-1 is crucial for the body’s anti-inflammatory and antioxidant systems.39 Studies have demonstrated 
that the Nrf2/HO-1 pathway is involved in regulating every stage of the MASLD spectrum.47,109 Moreover, a range of 
natural compounds has demonstrated potential therapeutic effects across various stages of MASLD, including simple 
steatosis, MASH, fibrosis, cirrhosis, and even HCC. This is largely attributed to their ability to activate the Nrf2/HO-1 
signaling pathway (Table 1).

Impact of the Nrf2/HO-1 Signaling Pathway on Simple Steatosis
Nrf2/HO-1 Signaling Pathway and Simple Steatosis 
The early stages of MASLD are characterized by the accumulation of lipids within hepatocytes. This condition results 

Figure 2 The Cytoprotective Mechanisms of HO-1: Heme oxygenase 1 is an enzyme responsible for the breakdown of heme into Fe²⁺, CO, and bilirubin, which is 
subsequently converted to bilirubin by BVR. This process also involves the participation of NADPH and is associated with the regulation of ferroptosis. As shown in the 
upper right corner of the figure, when free heme accumulates, Nrf2 dissociates from Keap1 and translocates to the nucleus, promoting the expression of HO-1. Additionally, 
free heme recruits the E3 ubiquitin ligase component Fbxo22, facilitating the degradation of Bach1, an inhibitor of HO-1. Following ubiquitination, Bach1 is degraded via the 
proteasome pathway.

https://doi.org/10.2147/JIR.S490418                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 8066

Li et al                                                                                                                                                                 Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


from increased fatty acid uptake and synthesis, coupled with decreased fatty acid oxidation and removal.138 Reducing 
oxidative stress and inflammation is crucial for the effective prevention and treatment of high-fat diet (HFD)-induced 
steatosis.139 The Nrf2/HO-1 pathway is a crucial mechanism for mitigating oxidative stress. Activation of this pathway 
effectively reduces ROS production in hepatocytes and inhibits RIP3 expression, thereby decreasing inflammation and 
lipid deposition.140 As a negative regulator of genes associated with hepatic steatosis, Nrf2 suppresses key lipid- 
synthesizing enzymes, reduces hepatic fat storage, and participates in fatty acid metabolism.42 Its activation enhances 
lipid breakdown and inhibits de novo lipogenesis,141 thus reducing lipid accumulation and oxidative stress in HFD-fed 
mice.142 Increased HO-1 activity also aids in the treatment of MASLD by significantly impacting hepatic steatosis and 
preventing its progression to MASH, cirrhosis, and related complications.45,47

Natural Compounds Modulating the Nrf2/HO-1 Pathway to Mitigate Simple Steatosis 
Linalool inhibits lipid accumulation and oxidative stress by activating the Nrf2/HO-1 signaling pathway, thus preventing 
HFD-induced MASLD.110 Aucubin (AU) significantly reduces lipid accumulation and oxidative stress by activating the 
Nrf2/HO-1 and AMPK signaling pathways.50 Gastrodin (GSTD) promotes the phosphorylation of Nrf2 at serine 40, 
stimulating Nrf2 nuclear translocation and increasing hepatic expression of HO-1. Concurrently, it activates AMPK, 
thereby inhibiting oxidative stress and inflammatory responses, and improving hepatic steatosis.51 Ganoderma lucidum 
polysaccharides (GDLP) activate Nrf2, inducing the expression of antioxidant enzymes such as HO-1, SOD, CAT, and 
GSH-Px, reducing MDA levels, and inhibiting hepatic steatosis, oxidative stress, and inflammation in db/db mice.52 

Limonene upregulates the hepatic Nrf2/HO-1 signaling pathway, reduces ROS accumulation, inhibits macrophage 

Figure 3 The regulatory mechanisms for Nrf2/HO-1 signaling pathway: Under normal conditions, Keap1 mediates the ubiquitination and proteasomal degradation of Nrf2 
by binding to Nrf2 and interacting with the CUL3 ubiquitin ligase complex. Under oxidative stress conditions, the accumulation of ROS prompts Nrf2 to dissociate from 
Keap1 and translocate to the nucleus, activating the expression of antioxidant genes such as HO-1 and NQO1. HO-1 metabolizes free heme to produce bilirubin, iron, and 
carbon monoxide, thereby regulating the antioxidant response. However, excessive iron and oxidative stress can trigger lipid peroxidation and ferroptosis, leading to 
inflammatory responses. The expression of antioxidant genes can inhibit apoptosis by removing ROS. Additionally, GSK3β regulates the stability of Nrf2 through 
phosphorylation, while IDH mutations, associated with increased Nrf2 activity, can modulate the oxidative stress response via the NADPH/NADP+ pathway.
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Table 1 Natural Compounds Modulating the Nrf2/HO-1 Pathway to Mitigate MASLD

Natural 
Compound

Source Pharmacological 
Effect

Cell Dose Animal 
Model

Medication 
Administration

Mechanism Of 
Action

Outcome References

Monoterpenes 
Compounds
Linalool Tea, 

Vanilla
Anti-stress, 
Hepatoprotective, 

Anticancer, 

Antibacterial, 
Anxiolytic

Male Wistar 
rats, HFD

100 mg/kg, qd, 
Gavage, 45days

Activates Nrf-2/HO-1 
pathway

Inhibits lipid 
accumulation and 

oxidative stress, 

prevents HFD-induced 
MASLD

[110,111]

Triterpenes 
Compounds
Limonin Citrus 

Fruits

Antioxidant, 

Hepatoprotective, 

Anticancer, 
Anti-inflammatory, 

Antiviral

Human fetal 

hepatocyte cell 

line (LO2), 
Lipid mixture 1 

(L0288)

10, 20, 

40 μM

Zebrafish 

larvae at 3 days 

post 
fertilization 

(dpf) 

Thioacetamide 
(TAA)

12.5, 25, 50 μM, 

72 hours

Upregulates Nrf2/HO-1 

signaling in the liver, 

reduces ROS 
accumulation, inhibits 

macrophage infiltration, 

decreases expression of 
pro-inflammatory 

cytokines (IL-6, IL-1β, 

TNF-α)

Anti-lipid accumulation, 

Antioxidant, Anti- 

inflammatory

[112]

Dehydroabietic 

acid (DA)

Coniferous 

Plants

Anti-inflammatory, 

Antisteatosis, 

Antitumor

Human liver 

cells HL7702, 

Oleic Acid 
(OA)

2.5, 5, 

10 µM

Male C57BL/6J 

mice, HFD

10, 20 mg/kg, qd, 

Gavage, 9 weeks

Binds to Keap1, 

activates Nrf2-ARE, 

promotes expression of 
HO-1, GSH, GPX4; 

inhibits ferroptosis, 

increases expression of 
key genes like FSP1

Inhibits Oxidative 

Stress and Ferroptosis 

to Alleviate HFD- 
Induced MASLD.

[113]

Betulin (BE) Betula 

Platyphylla

Antioxidant, 

Anti-inflammatory, 
Anticancer, 

Antiviral, 

Antibacterial

Male Sprague- 

Dawley rats, 
HFD

15, 30 mg/kg, qd, 

Gavage, 
12 weeks

Upregulates Nrf2 and 

HO-1 expression 
inhibits NF-kB gene 

expression

Mitigates Oxidative 

Stress and 
Inflammatory 

Responses to 

Attenuate Serum Lipids 
and Transaminase 

Levels in HFD-Fed Rats, 

thereby Preventing 
Hepatic Lipid 

Accumulation, 

Steatosis, and Fibrosis.

[114]
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Asiatic Acid (AA) Centella 

Asiatica

Antioxidant, 

Anti-inflammatory, 
Anti-apoptotic

Male Sprague- 

Dawley rats,  
CCl4

5, 15 mg/kg, qd, 

Oral, 6 weeks

Activates Nrf2/ARE 

pathway, increases 
nuclear Nrf2 

expression, significantly 

upregulates HO-1, 
NQO-1, GCLC 

expression; inhibits NF- 

κB/IkBα and JAK1/ 
STAT3 pathways

Effectively counteracts 

oxidative stress- 
induced liver injury; 

reduces the release of 

inflammatory factors 
and activation of HSCs

[115,116]

Astragaloside IV 

(AS-IV)

Astragalus Antioxidant, 

Anti-inflammatory, 
Anti-apoptotic, 

Immunomodulatory, 

Anticancer

Immortalized 

rat HSC lines 
(HSC-T6) cells 

and HepG2 

cells, TGF-β1

5, 10, 

20 μM

Male C57BL/6J 

mice, DCC 
(DEN/CCl4/ 

C2H5OH)

20, 40, 80 mg/kg, 

qd, 20 weeks

Activates Nrf2/HO-1 

and pSmad3C/3L 
pathways

Inhibits Oxidative 

Stress and Collagen 
Deposition to Suppress 

the Onset of HCC

[117,118]

Iridoids 
Compounds
Aucubin 
(AU)

Eucommia, 
Plantain, 

Japanese 

Ash

Antioxidant, 
Anti-inflammatory, 

Hepatoprotective, 

Antifibrotic, 
Neuroprotective, 

Osteoprotective, 

Anticancer

3T3-L1 cells, 
Apolipoprotein 

C-III (apoC-III)

35, 70, 
140μg/mL

Male C57BL/6 
mice, Tyloxapol

10, 20, 40 mg/kg, 
Intraperitoneal 

injection, 

24 hours

Activates Nrf2/HO-1 
and AMPK pathways

Significantly inhibits 
lipid accumulation and 

oxidative stress in vitro 

and in vivo

[50,119]

Geniposide 

(GEN)

Gardenia, 

Eucommia

Anti-inflammatory, 

Hepatoprotective

HepG2 cells, 

OA+PA

65, 130, 

260, 390, 

520 μmol/L

The male wild- 

type (WT) 

AND Nrf2−/ 

− C57BL/6J 

mice, Tyloxapol

50, 75, 100 mg/ 

kg, Injection, 

18 hours

Activates Nrf2 

expression, increases 

cytoplasmic HO-1 
protein levels

Protects liver from 

oxidative damage, 

reduces lipid 
accumulation in HepG2 

cells

[120]

Phenolic 
Compounds
Gastrodin 
(GSTD)

Gastrodia 
elata Blume

Anti-inflammatory, 
Antioxidant, 

Anti-apoptotic, 

Antitumor activities

HL-7702 
cells, Oleic acid 

(OA)

25, 50, 
100, 

200μg/mL

Male C57BL/ 
6Jmice, HFD

10, 20, 50mg/kg, 
qd, Oral, 

10 weeks

Promotes Nrf2 
phosphorylation at 

serine (Ser) 40, 

stimulates Nrf2 nuclear 
translocation, increases 

hepatic HO-1 

expression, and 
activates AMPK

Inhibits oxidative stress 
and inflammatory 

responses, improving 

hepatic steatosis

[51,121]

(Continued)
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Table 1 (Continued). 

Natural 
Compound

Source Pharmacological 
Effect

Cell Dose Animal 
Model

Medication 
Administration

Mechanism Of 
Action

Outcome References

Polysaccharide 
Compounds
Ganoderma 

lucidum 

Polysaccharides 
(GDLP)

Ganoderma 

lucidum

Anti-inflammatory, 

Antioxidant, 

Liver protection, 
Immunomodulation, 

Anti-tumor

C57BL/KsJ-db 

/db male mice, 

HFD

100, 400 mg/kg, 

qd, 

Gavage, 8 weeks

Activates Nrf2, induces 

increased expression of 

antioxidant enzymes 
such as HO-1, SOD, 

CAT, and GSH-Px, and 

reduces MDA levels

Inhibits the progression 

of hepatic steatosis, 

mitigates oxidative 
stress, and attenuates 

inflammatory 

responses.

[52]

Flavonoid 
compounds
Naringin Grape, 

Tomato, 

Citrus Fruits

Antioxidant, 
Lipid-lowering, 

Metabolic 

Syndrome 
Protection, 

Anticancer

Male Sprague 
Dawley rats, 

Fructose 

solution

100 mg/kg, qd, 
Oral, 4 weeks

Activates the Nrf2/HO- 
1 pathway, inhibits the 

NF-κB/TNF-α pathway, 

and reduces 
endogenous triglyceride 

synthesis

Inhibits Oxidative 
Stress and 

Inflammatory 

Responses to 
Attenuate the 

progression of MASLD

[108,122]

Hesperetin Citrus Fruits 
(Oranges, 

Grapefruits, 

and 
Lemons)

Anti-cancer, 
Anti-Alzheimer’s, 

Anti-diabetic

HepG2 cell, OA 2.5, 5, 
10 μM

Male Wistar 
rats, HFD

100, 300 mg / kg, 
qd, Gavage, 

16 weeks

Activate the PI3K/AKT- 
Nrf2 pathway to 

upregulate antioxidant 

levels (SOD/GPX/GR/ 
GCLC/HO-1), inhibit 

NF-κB activation, and 

reduce the secretion of 
inflammatory factors 

(TNF-α and IL-6)

Alleviate hepatic 
steatosis, oxidative 

stress, inflammatory 

cell infiltration, and 
fibrosis.

[123]

Total Flavonoids 
from Hawthorn 

Leaves

Hawthorn 
Leaves

Antioxidant, 
Anti-inflammatory, 

Lipid-lowering, 

Hepatoprotective

Male SD rats, 
HFD 

125, 250mg/kg, 
qd, Gavage, 

12 weeks

Enhances Nrf2/HO-1 
expression and inhibits 

COX-2 overexpression

Mitigates oxidative 
stress-induced cellular 

damage and 

inflammatory 
responses, prevents 

MASH progression

[124]
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Baicalein Scutellaria 

Baicalensis 

Georgi

Lipid-lowering, 

Antioxidant, 

Hepatoprotective

Male Sprague- 

Dawley (SD) 

rats, MCD 
(methionine 

and choline 

deficient diet)

10 mg/kg, qd, 

Intraperitoneal 

injection, 
8 weeks

Enhances the Nrf2/HO- 

1 pathway and increases 

the activity of SOD and 
CAT; inhibits iNOS 

activation to reduce 

NO production in the 
liver; and suppresses 

NF-κB activation, 

leading to decreased 
levels of IL-6 and TNFα.

Inhibits oxidative stress 

and inflammatory 

responses, significantly 
alleviating MCD diet- 

induced NASH.

[125]

HepG2, BSA 

and free fatty 
acids (FFAs, 

palmitate acid/ 

oleic acid = 1/2)

16 μM Male C57BL/6J 

mice, HFD

50, 200 mg/kg, 

qd, Gavage, 
12 weeks

Activates the Nrf2/HO- 

1 signaling pathway 
while inhibiting the 

NLRP3/Caspase-1/ 

GSDMD pathway.

Inhibits oxidative stress 

and pyroptosis, 
alleviating liver damage 

in NASH mice.

[126]

Scutellarin Erigeron 

Breviscapus

Anti-inflammatory, 

Antioxidative, 

Antiapoptosis

HepG2 cells, 

OA

50, 100, 

200μmmol/ 

L

Male C57BL/6J 

mice, HFD

12.5, 25, 50 mg/ 

kg, qd, 8 weeks

Activates PPARγ and 

upregulates the 

expression of PGC-1α 
and Nrf2 proteins; Nrf2 

activation subsequently 

enhances the 
expression of HO-1, 

NQO1, and GST 

proteins.

Inhibits oxidative stress, 

significantly improving 

lipid metabolism in 
NAFLD and reducing 

fat accumulation in the 

liver.

[127]

Sprague- 

Dawley rats, 
HFD

50, 100, 300 mg/ 

kg, qd, Oral, 
4 weeks

Activates the PI3K/AKT 

pathway, facilitating 
Nrf2 nuclear 

translocation and 

enhancing the 
expression of key 

antioxidant (HO-1, 

NQO1)

Reduces oxidative 

stress, leading to 
improvements in 

NAFLD and 

hyperlipidemia.

[128]

(Continued)
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Table 1 (Continued). 

Natural 
Compound

Source Pharmacological 
Effect

Cell Dose Animal 
Model

Medication 
Administration

Mechanism Of 
Action

Outcome References

Wogonoside Scutellaria 

baicalensis 

Georgi

Antioxidant, 

Antimicrobial, 

Anti-inflammatory, 
Anticancer, 

Neuroprotective, 

Cardiovascular 
protective, 

Antidiabetic

Male C57BL/6 

mice, HFD

5, 10, 20 mg/kg, 

qd, Gavage, 

12 weeks

Activates Nrf2/HO-1 

and NF-κB pathways

Reduces oxidative 

stress and inflammatory 

responses, provides 
hepatoprotection in 

MASLD models

[129]

Anthraquinone 
Compounds
Aloin Aloe Vera 

Leaves

Antioxidant, 

Anti-inflammatory, 
Anticancer, 

Antibacterial

Male wild-type 

or nuclear 
erythroid 

2-related 

factor 2 (Nrf2) 
knock-out 

(KO) mice, 

Choline- 
deficient, 

L-amino acid- 

defined, high- 
fat (CDAAH) 

diet

10, 20, 40mg/kg, 

qd, Gavage, 
12 weeks

Activates the Nrf2/HO- 

1 pathway

Antioxidant, Anti- 

Inflammatory, and Anti- 
Apoptotic Effects to 

Inhibit the Progression 

of MASH.

[130]

Polyacetylene 
Compounds
Capillin Artemisia 

capillaris 
Thunb

Anti-inflammatory, 

Anti-allergic, 
Anticancer, 

Antibacterial

FL83B 

hepatocytes, 
Palmitic acid 

(PA)

25, 50, 

100, 
200 μM

C57BL/6J mice, 

HFD

25, 50, 100 μmol/ 

kg, fed, 5 weeks

Promotes Nrf2/HO-1 

expression and inhibits 
the NLRP3-ASC- 

Caspase1 

inflammasome

Inhibits palmitic acid 

(PA)-mediated 
oxidative stress and 

hepatocyte apoptosis, 

improves liver fat 
accumulation, oxidative 

stress, and liver injury 

in MASH models

[131]

https://doi.org/10.2147/JIR
.S490418                                                                                                                                                                                                                                    

D
o

v
e

P
r
e

s
s
                                                                                                                                                 

Journal of Inflam
m

ation Research 2024:17 
8072

Li et al                                                                                                                                                                 
D

o
v

e
p

r
e

s
s

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


Lignan 
Compounds
Schisandrin B Schisandra 

Chinensis

Antihyperlipidemic, 

Antioxidant, 
Anti-ER stress, 

Anti-inflammatory, 

Cardioprotective, 
Neuroprotective

HSC-T6 cells, 

TGF-β
5, 10, 

30 μM

Male Wistar 

rats, CCl4

25, 50 mg/kg, qd, 

Gavage, 4 weeks

Activates nuclear Nrf2 

and HO-1, GCLC, 
NQO1 expression; 

inhibits TGF-β/Smad 

signaling pathway

Reduces oxidative 

stress and HSCs 
activation

[132,133]

Polyphenol 
Compounds
Raspberry Extract 

(RBE)

Raspberry Antioxidant, 

Anti-inflammatory, 
Anticancer, 

Endothelial function 

regulation

HSC-T6 cell, 

FBS

125, 250, 

500 μg/mL

Wistar rats, 

DMN

25, 50 mg/kg, 

qod, Oral, 
4 weeks

Upregulates Nrf2/HO-1 

and PPAR-γ signaling 
pathways

Eliminates oxidative 

stress, induces HSC 
apoptosis, alleviates 

liver fibrosis

[134]

Saponin 
Compounds
Ginsenoside Rg1 Ginseng Antioxidant, 

Anti-inflammatory, 

Anti-apoptotic

HSCs, CCl4 1 μmol/L Male Wistar 
rats, CCl4

10, 20, 40 mg/kg, 
qd, 14 days

Promotes Nrf2 nuclear 
translocation, increases 

expression of 

antioxidant enzymes 
(HO-1, SOD, GSH-Px, 

CAT)

Inhibits Oxidative 
Stress to Suppress 

Hepatic Fibrosis.

[135]

Phenolic Acid 
Compounds
Tanshinol Salvia 

Miltiorrhiza

Antioxidant, 

Anticancer, 
Anticoagulant, 

Cardiovascular 

protection, 
Neuroprotection

Sprague- 

Dawley rats,  
CCl4

20, 40 mg/kg, qd, 

Intraperitoneal 
injection, 

8 weeks

Activates Nrf2/HO-1 

signaling pathway, 
increases SOD and 

GSH-Px expression, 

reduces MDA levels; 
suppresses NF-κB 

signaling pathway, 

reduces expression of 
inflammatory factors 

(TGF-β, TNF-α, COX- 

2, IL-1β, IL-6)

Reduces oxidative 

stress and inflammatory 
responses, decreases 

liver fibrosis in rat 

models

[136]

Salvianolic Acid A Salvia 

Miltiorrhiza

Antioxidant, 

Anti-platelet, 

Antithrombotic

Male Balb/c 

mice, CCl4

20, 40 mg/kg, qd, 

Gavage, 6 weeks

Regulates Nrf2/HO-1, 

NF-κB/IκBα, p38 

MAPK, and JAK1/STAT3 
signaling pathways, 

increases SOD and 

GSH-Px levels, reduces 
MDA levels

Reduces oxidative 

stress and inflammatory 

responses, improves 
liver fibrosis

[137]
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infiltration, and decreases the expression of pro-inflammatory cytokines, thereby exerting anti-lipid deposition, antiox-
idant, and anti-inflammatory effects.112 Hesperetin can alleviate hepatic steatosis, oxidative stress, inflammatory cell 
infiltration, and fibrosis by activating the PI3k/AKT-Nrf2 pathway, up-regulating antioxidant levels (SOD/GPX/GR/ 
GCLC/HO-1), decreasing ROS production, inhibiting NF-κB activation, and decreasing the secretion of inflammatory 
factors (TNF-α and IL-6).123 Wogonoside activates the Nrf2/HO-1 pathway to inhibit oxidative stress and reduces 
inflammation by inhibiting the NF-κB pathway to protect MASLD mice from liver injury, and significantly reduces liver 
mass, liver index, and levels of LDL, TG, and TC in the wogonoside group as compared to the MASLD group.129 

Scutellarin can alleviate non-alcoholic fatty liver disease (NAFLD) by activating the Nrf2/HO-1 signaling pathway, 
thereby reducing oxidative stress.127,128 Naringin activates the Nrf2/HO-1 pathway, inhibits the NF-κB/TNF-α pathway, 
and reduces endogenous triglyceride synthesis, thereby preventing the progression of MASLD.108 Geniposide (GEN) 
activates Nrf2 expression, increasing cytoplasmic HO-1 protein levels and significantly reducing lipid accumulation in 
HepG2 cells. Knockdown of Nrf2 diminishes the liver’s antioxidant capacity and nullifies GEN’s beneficial effects on 
TC, TG, and LDL levels.120 Dehydroabietic acid (DA) binds to Keap1, activates Nrf2-ARE, and promotes the expression 
of HO-1, GSH, and GPX4, thereby inhibiting ROS accumulation and reducing MDA levels, which alleviates HFD- 
induced MASLD. Additionally, DA inhibits ferroptosis by upregulating key genes, including ferroptosis suppressor 
protein 1 (FSP1).113

Impact of the Nrf2/HO-1 Signaling Pathway on MASH
Nrf2/HO-1 Signaling Pathway and MASH 
Non-alcoholic steatohepatitis (NASH), also known as metabolic dysfunction-associated steatohepatitis (MASH), is 
a severe inflammatory form of MASLD.143 MASH is characterized by fatty infiltration, oxidative stress, and necrotic 
inflammation of the liver, with or without fibrosis144,145 significantly increasing the risk of progressing to severe liver 
disease.146 Nrf2 regulates the recruitment of inflammatory cells and induces antioxidant responses to counteract the 
inflammatory process.147 Studies have shown that Nrf2 activation can inhibit NF-κB activity, thereby reducing the 
expression of pro-inflammatory cytokines and inflammatory mediators such as IL-1, IL-6, IL-10, TNF-α, COX, NO, and 
iNOS, as well as adhesion molecules like ICAM-1 and VCAM-1.148,149 During this process, the Nrf2/HO-1 pathway 
plays a crucial role by reducing ROS levels through the inhibition of hepatic oxidative stress. Since ROS and their 
oxidized lipid peroxides can activate NF-κB, leading to enhanced pro-inflammatory signaling, the Nrf2/HO-1 pathway 
mitigates this inflammation by decreasing the production of ROS and lipid peroxides.150,151 Clearly, the activation of the 
Nrf2/HO-1 pathway not only enhances the activity of antioxidant enzymes (such as superoxide dismutase and CAT), 
reducing oxidative damage to hepatocytes but also effectively suppresses the excessive expression of NF-κB-dependent 
inflammatory factors, thereby alleviating the inflammatory response.123 Okada et al152 discovered that mice with Nrf2 
gene deficiency displayed increased oxidative stress, steatosis, inflammation, fibrosis, and ferroptosis under a methionine- 
and choline-deficient (MCD) diet, resulting in the rapid progression of MASH.153 In contrast, activating Nrf2 can inhibit 
MASH by reducing oxidative stress and ameliorating lipotoxicity, inflammation, ER stress, and iron overload.154 

Furthermore, upregulation of the HO-1 gene can alleviate hepatic steatosis and necroinflammatory responses, signifi-
cantly lowering serum ALT and AST levels in MASH mice.155 Li et al156 further confirmed that upregulating the Nrf2/ 
HO-1 signaling pathway effectively inhibits oxidative stress and inflammatory damage and significantly reduces lipid 
levels, as well as levels of ALT, AST, MDA, IL-1β, and TNF-α. Additionally, it enhances the activity of SOD and GSH- 
Px, thereby alleviating hepatic steatosis, ballooning degeneration, and inflammation. These findings indicate that 
activation of the Nrf2/HO-1 pathway is crucial for combating MASH.49

Natural Compounds Modulating the Nrf2/HO-1 Pathway to Mitigate MASH 
Aloin exerts protective effects against MASH by mediating antioxidant, anti-inflammatory, and anti-apoptotic actions 
through activation of the Nrf2/HO-1 pathway.130 Capillin can inhibit PA-mediated oxidative stress in hepatocytes by 
promoting the expression of Nrf2/HO-1 and reduce PA-mediated hepatocyte apoptosis by suppressing the NLRP3-ASC- 
Caspase1 inflammasome. Through these mechanisms, Capillin effectively ameliorates hepatic fat accumulation, oxidative 
stress, and liver injury in MASH mice.131 Flavones of hawthorn leafonon mitigate oxidative stress-induced cellular 
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damage and liver inflammation by promoting Nrf2/HO-1 expression and inhibiting COX-2 overexpression, thus 
preventing the development of MASH.124 Xin et al125 found that baicalin alleviates oxidative stress by activating the 
Nrf2/HO-1 pathway in the liver and inhibits NF-κB activation, reducing the expression of IL-6 and TNF-α, thus 
suppressing inflammation. Additionally, baicalin regulates liver mitochondrial function. Further research by Shi et al126 

revealed that baicalin reduces NLRP3/Caspase1/GSDMD levels by activating Nrf2/HO-1 expression, thereby inhibiting 
pyroptosis and decreasing lipid accumulation and inflammation in the liver tissues of MASH mice.

Impact of the Nrf2/HO-1 Signaling Pathway on Hepatic Fibrosis
Nrf2/HO-1 Signaling Pathway and Hepatic Fibrosis 
Hepatic fibrosis is a reversible wound-healing response and degenerative disease caused by the excessive deposition of 
extracellular matrix proteins such as collagen. This response represents the liver’s mechanism to counteract prolonged 
injury or disease, aiming to contain the damaged area and promote healing. However, persistent fibrosis can progress to 
cirrhosis and liver failure, ultimately necessitating a liver transplant.157 Oxidative stress is a major factor in hepatocyte 
injury and may exacerbate inflammation and fibrosis in MASH patients.158 Activation of Nrf2 and HO-1 can effectively 
ameliorate hepatic fibrosis.159–161 Khadrawy et al162 demonstrated that activating the Nrf2/HO-1 signaling pathway 
improves oxidative stress, inflammation, and hepatic fibrosis in rats. This improvement is evidenced by decreased levels 
of serum transaminases, ALP, γGT, and bilirubin, inhibition of MDA, NF-κB p65, and inflammatory cytokine expression, 
and reduced histological changes and collagen accumulation in the liver, thereby ameliorating hepatic fibrosis.

Natural Compounds Modulating the Nrf2/HO-1 Pathway to Mitigate Hepatic Fibrosis 
Schisandrin B activates nuclear Nrf2 and Nrf2-related antioxidant genes (HO-1, NQO1, GCLC), thereby inhibiting 
oxidative stress-mediated hepatocyte injury in fibrotic rats. Additionally, it suppresses hepatic stellate cell (HSC) 
activation by inhibiting the TGF-β/Smad signaling pathway.132 Raspberry extract (RBE) upregulates the Nrf2/HO-1 
and PPAR-γ signaling pathways, eliminates oxidative stress, induces HSC apoptosis, and alleviates hepatic fibrosis.134 

Tanshinol not only enhances SOD and GSH-Px levels and reduces MDA levels via the Nrf2/HO-1 signaling pathway, 
thereby inhibiting oxidative stress-induced damage, but also inhibits the NF-κB signaling pathway, reducing the 
expression of inflammatory factors such as TGF-β and TNF-α. Consequently, tanshinol lowers the levels of alanine 
transaminase, aspartate transaminase, total bilirubin, hyaluronic acid, type IV collagen, laminin (LN), and procollagen III 
peptide (PIIIP) in fibrotic rats, significantly inhibiting hepatic fibrosis.136 Salvianolic acid A increases SOD and GSH-Px 
levels, decreases MDA levels, inhibits inflammation and oxidative stress, and ameliorates CCl4-induced hepatic fibrosis 
by modulating the Nrf2/HO-1, NF-κB/IκBα, p38 MAPK, and JAK1/STAT3 signaling pathways.137 Ginsenoside Rg1 
promotes the nuclear translocation of Nrf2 and enhances the expression of antioxidant enzymes such as HO-1, SOD, and 
GSH-Px, thereby inhibiting hepatic fibrosis.135 Betulin (BE) upregulates Nrf2 and HO-1 expression in a dose-dependent 
manner and inhibits NF-κB gene expression, effectively reducing serum lipid and transaminase levels in HFD-fed rats, 
thereby preventing hepatic fat accumulation, steatosis, and fibrosis.114 Fan et al115 demonstrated that Asiatic acid (AA) 
effectively ameliorates CCl4-induced hepatic fibrosis in rats. The underlying mechanisms include the activation of the 
Nrf2/ARE signaling pathway, resulting in increased nuclear Nrf2 expression and decreased cytoplasmic Nrf2 levels. This 
upregulates Nrf2 target proteins such as HO-1 and NQO-1, effectively countering oxidative stress-induced liver damage. 
Additionally, AA inhibits the NF-κB/IκBα and JAK1/STAT3 signaling pathways, reducing the release of inflammatory 
factors and the activation of HSCs, further preventing the progression of hepatic.

Impact of the Nrf2/HO-1 Signaling Pathway on Liver Cirrhosis and Liver Cancer
Nrf2/HO-1 Signaling Pathway in Liver Cirrhosis and Liver Cancer 
Liver cirrhosis and liver cancer represent the advanced stages of MASLD. Cirrhosis significantly impairs liver structure 
and function, potentially resulting in liver failure, portal hypertension, and liver cancer. Oxidative stress is a key 
mechanism driving hepatic lipid metabolism disorders, cirrhosis, and fibrosis.163 Studies have indicated that Nrf2- 
deficient mice are more prone to developing MASH accompanied by cirrhosis.164 During liver cirrhosis, the activation 
of the ER stress response pathway, specifically XBP1-Hrd, upregulates Hrd1 transcription and inhibits Nrf2-mediated 
antioxidant responses, thereby promoting the progression of cirrhosis.165 However, enhanced Nrf2 can prevent cirrhosis 
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by reducing ROS levels and subsequently decreasing HSCs activation.166 Additionally, once induced, HO-1 can exert 
protective effects in cirrhosis.167 Xue et al demonstrated that HO-1 protects hepatocytes in cirrhotic rats from liver I/R 
injury by reducing oxidative stress, apoptosis, and inflammation.168

Hepatocellular carcinoma (HCC) is the most prevalent form of primary liver cancer, constituting over 80% of all 
cases.169 Research indicates that Astragaloside IV facilitates the phosphorylation of Nrf2, enhances the activation of HO- 
1 expression, mitigates oxidative stress, and inhibits the progression of HCC.170 Furthermore, Purslane (Portulaca 
oleracea) has been shown to effectively suppress the phosphorylation of PI3K, Akt, mTOR, NF-κB, and IκBα, upregulate 
the expression of Nrf2 and HO-1, exhibit anti-inflammatory and antioxidant properties, reduce the levels of ALT, AST, 
IL-6, IL-1β, TNF-α, and MDA in HCC mice, restore SOD activity, and markedly ameliorate liver pathological 
alterations.171 Additionally, HO-1 inhibits the proliferation and migration of HCC in vivo by downregulating the levels 
of miR-30d and miR-107 through its metabolites, thereby significantly suppressing HCC progression.172 Hence, the 
activation of the Nrf2/HO-1 signaling pathway presents a potential therapeutic approach for HCC.

However, the application of the Nrf2/HO-1 signaling pathway in MASLD-related cirrhosis and liver cancer remains 
controversial. Some researchers suggest that Nrf2/HO-1 activation may, in certain cases, increase portal vein pressure and 
cause abnormal visceral hemodynamics in cirrhotic rats with portal hypertension.173 Moreover, sustained activation of 
Nrf2 may exacerbate the progression of HCC,174 and promote chemoresistance in cancer cells.174 Additionally, short 
(GT)n variants in the HO-1 gene may increase susceptibility to cirrhosis and cancer.175 Therefore, the molecular 
mechanisms and potential advantages and disadvantages of the Nrf2/HO-1 antioxidant pathway in cirrhosis and liver 
cancer require further investigation and discussion.

Natural Compounds Modulating the Nrf2/HO-1 Pathway to Liver Cirrhosis and Liver Cancer 
Astragaloside IV (AS-IV), one of the primary active components of Astragalus, possesses pharmacological properties 
including anti-inflammatory and anticancer effects. Zhang et al117 demonstrated that AS-IV activates the pSmad3C/3L 
and Nrf2/HO-1 pathways, thereby inhibiting collagen fiber deposition and the development of primary liver cancer. 
Furthermore, the Nrf2/HO-1 pathway is notably more effective in contributing to the anti-HCC effects of AS-IV 
compared to pSmad3C/3L.118

Conclusion
MASLD is a complex lipotoxic disease characterized by hepatic steatosis and oxidative stress, which plays a central role 
in its pathophysiology. The Nrf2/HO-1 pathway is a critical antioxidant mechanism in MASLD. Activation of Nrf2 
regulates the gene expression of various endogenous antioxidant enzymes, including HO-1, NQO1, SOD, potentially 
alleviating hepatic steatosis, MASH,153 liver fibrosis,176 and the onset and progression of HCC.177 HO-1, regulated by 
Nrf2, is essential for the removal of toxic heme. Upregulation of HO-1 can reverse the progression of hepatic steatosis, 
liver fibrosis, cirrhosis, and systemic complications.47 Furthermore, targeting the Nrf2/HO-1 pathway can not only 
effectively inhibit the progression of MASLD but also serve as an effective treatment for related complications such as 
obesity, type 2 diabetes, and sarcopenia.178,179

Studies have shown that various natural compounds mitigate the progression of MASLD by activating the Nrf2/HO-1 
pathway, which regulates lipid metabolism, oxidative stress, inflammatory responses, and apoptosis in hepatocytes 
(Table 1). Additionally, other drugs also modulate MASLD through the Nrf2/HO-1 pathway. For example, 
liraglutide180 and lansoprazole181 have been shown to improve hepatic lipid metabolism and oxidative stress via the 
activation of the Nrf2/HO-1 pathway. Moreover, traditional Chinese medicine formulations, such as Hedansanqi Tiaozhi 
Tang (HTT)48 and Di’ao Xinxuekang (DXXK),156 alleviate MASLD by activating Nrf2/HO-1, thus inhibiting oxidative 
stress and inflammation.

In summary, the Nrf2/HO-1 pathway regulates various pathological processes, including lipid metabolism, oxidative 
stress, inflammatory response, and apoptosis, effectively inhibiting the pathological progression of MASLD. Targeting 
this pathway holds promise for providing a more comprehensive treatment strategy for MASLD compared to existing 
drugs. However, the development of this pathway as a therapeutic target still faces numerous challenges. Firstly, 
precisely activating Nrf2 is a critical issue, as excessive activation may lead to adverse effects such as abnormal cell 
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proliferation and immune suppression, which need to be addressed in future studies. Secondly, while various natural 
compounds have shown potential therapeutic effects on MASLD in animal models, their clinical translation still faces 
significant challenges. Currently, there is a lack of large-scale, randomized controlled clinical trials to validate the 
efficacy and safety of these compounds. Additionally, optimizing their dosage and administration routes to ensure 
effectiveness and long-term safety across different individuals remains an urgent issue to be resolved.

Future research should focus on the precise regulatory mechanisms of the Nrf2/HO-1 pathway, exploring how to 
selectively activate Nrf2 without eliciting adverse effects. Additionally, the clinical applicability of natural compounds in 
MASLD needs to be validated through further large-scale clinical trials. By conducting in-depth studies on the Nrf2/HO-1 
pathway, optimizing natural compounds, and investigating their synergistic effects with existing medications, we can develop 
more personalized and safe treatment strategies for MASLD. This endeavor will require the collaborative efforts of more 
researchers in the field.
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