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ABSTRACT: The seemingly simple notion of the hydrophobic
effect can be viewed from multiple angles involving theory,
simulation, and experiments. This viewpoint examines five
attributes of predictive models to enhance synthetic efforts as
well as experimental methods to quantify hydrophobicity. In
addition, we compare existing predictive models against exper-
imental data for polymer surface tension, lower critical solution
temperature, solution self-assembly morphology, and degradation
behavior. Key conclusions suggest that both the Hildebrand
solubility parameters (HSPs) and surface area-normalized Log P
(Log P SA−1) values provide unique and complementary insights
into polymer phenomena. In particular, HSPs appear to better
describe bulk polymer phenomena for thermoplastics such as surface tension, while Log P SA−1 values are well-suited for describing
and predicting the behavior of polymers in solution.

The study of polymer structure−property relationships has
fostered a deep understanding of the behavior of

polymers in bulk or solution, explained phenomenological
observations, inspired new research avenues in polymer
synthesis and self-assembly, and ultimately facilitated the
creation of novel materials. In the past few decades, many
synthetic efforts have been directed toward understanding the
relationships between molecular weight (MW) or molecular
weight distribution (MWD) and polymer behaviors such as
mechanical properties, solubility, stimuli-responsiveness, self-
assembly, degradation behavior, or biological activity.1,2 Such
relationships invoke arguments of viscosity and chain
entanglement to explain MW-dependent phenomena.3 While
these relationships have proven to be generally useful for a
variety of polymers, they tend to exclude information regarding
polymer chemistry (i.e., the specific chemical composition of
the repeating unit(s)). As such, opportunities exist to connect
polymer chemistry to properties, filling gaps in existing models
and providing predictive information to guide future polymer
design.
In pursuit of a polymer parameter to apprehend structure−

property relationships, we invoke the concept of hydro-
phobicity. The term “hydrophobic” dates back over 100 years
and has appeared in over 190k journal articles. Since many
processes involve water, it is no surprise that the term
“hydrophobic” is found throughout many scientific disciplines
such as biochemistry, chemistry, physics, and materials science.
Despite widespread qualitative use and implication in protein
folding, thermal transitions, and self-assembly, predictive

models of these phenomena often struggle to quantify the
influence of hydrophobicity.
Why is it so challenging to capture hydrophobicity?

Although Hildebrand and Hansen solubility parameters and
partition coefficients (Log P values) have been successfully
exploited to predict solution behavior of small molecules, it is a
complicated transition from small molecules, many of which
have rigid polycyclic structures, to large flexible macro-
molecules.4 However, despite their limitations, studies have
shown that these parameters have promise for solving scientific
challenges.5−10

In this Viewpoint, we aim to examine definitions of polymer
hydrophobicity and highlight important features of predictive
models. Using this insight, we prioritize key parameters to
compare the relative hydrophobicities of different polymers
and construct structure−property relationships. We then
explore the influence of hydrophobicity on polymer solution
behavior and, in particular, its role in (1) polymer surface
energy; (2) polymer thermal transitions (e.g., lower critical
solution temperatures); (3) block copolymer self-assembly;
and (4) polymer degradation via hydrolysis. We hypothesize
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that methods to quantify hydrophobicity which involve a
combination of theory and simulations with experimental
validation may provide the most robust approach. Through
these explorations, the importance of considering polymer
hydrophobicity in the design of polymeric materials will
emerge.

■ DEFINING HYDROPHOBICITY
Pure H2O possesses strong cohesive forces; thus, the act of
dissolution encompasses the energetic costs of disrupting these
interactions and the subsequent formation of new ones. These
energetic factors strongly influence the behavior of the solute
molecules, as best exemplified by the so-called “hydrophobic
effect”. Familiar outcomes include “the disaffinity of oil for
water”11 or “the tendency for oil and water to segregate”.12

The term hydrophobicity has also been used broadly in
reference to polymer solubility, partitioning behavior, and
aggregation, or to describe fundamental chemical properties
such as polarity, although the latter is imprecise.
To expand the physiochemical basis that lies beneath, we

must consider what makes a polymer “hydrophobic”. The
following contributing factors reinforce the complexity of a
seemingly simple idea. For instance, “hydrophobic interactions
depend on the temperature, pressure, solute size and shape,
type, and concentration of the additives, as well as the
proximity to interfaces”.13 From another angle, researchers
emphasize “hydrophobicity depends not only on the surface
area of a solute but also on its shape and curvature”.14 These
observations suggest that molecular dynamics simulations have
a key role to play in obtaining information about solute surface
area and curvature and that simple theoretical constructions of
hydrophobicity, involving carbon counting or considering the
ratio of carbon/oxygen atoms within a molecule, are
insufficient. Indeed, poly(ethylene glycol) (PEG; C/O = 2)
displays water solubility while poly(oxymethylene) (POM; C/
O = 1) does not.15

■ BRIEF TIMELINE
For small molecules and macromolecules, the avenues for
quantifying hydrophobicity fall into four general categories:
theory, empirical, simulations, and experimental. In the 1930s,
Hildebrand pioneered a theory-based approach for predicting
the solubility of small molecules by combining enthalpy (ΔH)
and molar volume (Vm) to give the Hildebrand solubility
parameter (δ; eq 1).

δ =
Δ −H RT

V
v

m (1)

Although δ values helped to explain the swelling of vulcanized
rubber,16 they struggled to account for the influence of polar
functional groups. Later, during the 1960s, Hansen modified
Hildebrand’s solubility parameter (HSP) to obtain an
empirical relationship that accounted for dispersion (δd),
polar (δp), and hydrogen bonding (δh) interactions between
the solute and solvent molecules. In contrast, during the 1980s
and 1990s, medicinal and pharmaceutical chemists gravitated
toward a free-energy approach using octanol−water partition
coefficients (Log P; eq 2).17,18 n-Octanol was chosen to mimic
lipid-like structures ubiquitous in nature. By the late 1990s,
sophisticated cheminformatics approaches to calculating Log P
values emerged that encompassed atom-based, group-based,
and mixed atom/group methods.19 In contrast to other

models, the sign of Log P values (eq 3) provides a convenient
indication of hydrophobicity and hydrophilicity, as insoluble or
soluble compounds possess positive or negative Log P,
respectively.
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In 1999, seminal work by Lum, Chandler and Weeks (LCW)
was developed that acknowledged the important relationship
between hydrophobicity and length scale.20 This idea provided
a missing piece for many hydrophobicity models: at small
length scales, hydrophobicity scales linearly with molecular
volume while at large length scales the situation changes and
hydrophobicity scales with surface area.12 Typically, the
crossover from small to large length scales occurs at about 1
nm.21,22 Moreover, throughout the last two decades, wide-
spread agreement on the concept of a crossover has emerged
from theory, experiments, and simulations.23−25

■ COMPONENTS OF A HYDROPHOBICITY MODEL

Importantly, the concept of hydrophobicity could refer to a
molecular average or to specific regions of a molecule. For
instance, a polymer comprised of both a hydrophobic
backbone and hydrophilic side chains may possess an overall
degree of hydrophobicity that allows dissolution in H2O.
Alternatively, a hydrophobic initiator might be employed in the
synthesis of a hydrophilic polymer to yield a macromolecule
that is water-insoluble. In addition to these examples, variation
in polymer architecture must also be considered. As such, a
robust hydrophobicity model should accommodate a range of
possibilities. In order to understand which attributes of a
hydrophobicity model would allow the most versatility, we
highlight five components.
First, representations of the polymeric microstructure with a

molecular model should be informed by experimental data to
adequately account for the influences of composition,
branching, cross-linking, and stereochemistry.
Second, a molecular model should be large enough (in terms

of repeat units) to represent a polymer chain, but small enough
to allow reasonable computation times. As suggested by LCW
theory, the hydrophobicity of polymers below a critical length
scales with their volumes and above with their surface areas.
Thus, an accurate model should include the appropriate
structural parameter. Indeed, some authors argue that
determining length scale crossover “must be a central
requirement of any comprehensive theory of the hydrophobic
effect”.23 As a caveat, while 5−10 monomer units exceeds the
crossover length for linear polymers,26 additional units may be
needed to account for comonomers or branching.27

Third, our view is that a robust model must include a
thermodynamic parameter. Addressing hydrophobicity from a
thermodynamic perspective not only enables rigorous
quantification, but also provides a theoretical basis for
prediction. Both the HSP, which includes the heat of
vaporization of the solvent (ΔHv), and Log P, which is related
to the free energy of transferring a solute molecule between
phases, represent potentially useful descriptors of hydro-
phobicity on the basis of this view.
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Fourth, a structural parameter is needed to complement
thermodynamic descriptors and account for molecular size.
Ideally, a structural parameter would be measured after an MD
simulation. Fortunately, over the last several decades, many
researchers have laid the foundation for methods to calculate
the surface area of macromolecules.28,29 In view of LCW
theory, we hypothesize that surface area (SA) is more
appropriate for macromolecules than volume.
Fifth, since “hydrophobic interactions increase in strength

with increasing temperature”, models should have some ability
to capture the role of temperature.12 As shown in eqs 1 and 2,
both HSP and Log P have temperature dependence, while the
Hansen model lacks a temperature term.

■ EVALUATING PREDICTIVE MODELS
In the context of polymers, promising hydrophobicity
descriptors normalize thermodynamic parameters by structural
parameters, as demonstrated by HSP and, more recently, by
Log P SA−1 values,27 which we term the Mathers hydro-
phobicity parameter (MHP). We will also consider Hansen
solubility values for common polymers. In the subsequent
sections, we will compare common hydrophobicity descriptors,
including HSP, Hansen solubility parameters, and MHP values,
against experimental data for polymers, with the aim of
addressing their usefulness in constructing future predictive
models.
As mentioned above, the HSP, Hansen, and MHP models of

hydrophobicity have all been exploited to explain polymer
behavior. Since each approach differs in the way hydro-
phobicity is quantified, the following question arises: which
method(s) provides representation for the widest range of
functional groups and polymer architectures? Beyond this, can
one single method be used to explain a broad variety of
experimental observations such as LCST or self-assembly
behavior? Figure 1A shows a hydrophobicity ranking for 12
common polymers using the three approaches. These data can

then be used to determine an average hydrophobicity ranking
by comparing the rankings of the individual methods (Figure
1B). The trends emergent in Figure 1 are generally constant
with expectations. PVA, a water-soluble polymer, is on average
the most hydrophilic, while those polymers comprised of
exclusively hydrocarbon constituents (e.g., PP) are most
hydrophobic. It should be noted that both the HSP and
Hansen models ranked PAN (water insoluble) more hydro-
philic than PEG (water-soluble) and PVC more hydrophilic
than the ester-containing PEMA. Thus, from an observational
perspective, the MHP appears to better reflect the realities of
polymer water solubility. When comparing the methods
quantitatively, MHP values appear to best represent the
average of the three (as judged by its low LSE value). Although
Hansen parameters have achieved a moderate level of success,
the empirical nature of this model lacks a thermodynamic
component, length scale, and adjustment for temperature.
Consequently, while Hansen parameters are conceptually valid,
we exclude this model from further consideration. These
findings are supported by a more expansive comparison of the
HSP and Hansen models, which showed they had similar
prediction accuracies for polymer solvents and nonsolvents,
but that neither model captured the influences of temperature,
concentration, or polymer molecular weight.4 To better
understand the usefulness of the HSP and MHP models in a
practical context, we will compare them against experimental
data in the subsequent sections.

■ HYDROPHOBICITY AND POLYMER PHENOMENA
Polymer Surface Energy. Surface tension data has been

extensively used to approximate the hydrophobicity of
polymers;30−32 however, modern computational methods
have not been rigorously tested against experimental data.
To this end, we sought to investigate the relationship between
the surface tension of solid polymers and MHPs/HSPs.
Surface tension and polymer solubility are interrelated via

Figure 1. (A) Polymer hydrophobicity as ranked by the HSP, Hansen, and MHP models. In each case, hydrophobicity increases from left to right.
The number in parentheses represents the least-squares error for each of these rankings compared with the average ranking shown in B. (B)
Schematic representation of the average hydrophobicity ranking of each polymer, generated from the data in A.
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intermolecular forces, as described by the concept of cohesive
energy density. Building upon Hildebrand’s work for
estimating polymer solubility, eq 5 was proposed for estimating
polymer surface tension, γl, from cohesive energy density,
ecoh.

33

γ ≈ ·| Ae Vcoh m
1/3

(5)

It is, however, important to recognize that the trends in water
solubility are not always replicated in terms of surface tension.
For example, PVA and PEG are both water-soluble, hydro-
philic polymers; however, PVA, by comparison, has notably
lower surface tension (Figure 2B).

Because the process of wetting a polymer surface involves
both the creation of a new interface as well as the disruption of
intermolecular interactions between H2O molecules, we
anticipated observing a correlation between HSPs and polymer
surface tension values. Indeed, linear regression analysis
revealed that the HSP model adequately described the surface
tension data (Figure 2C) for linear homopolymers.
In contrast, there was no apparent linear relationship

between Log P SA−1 and polymer surface tension (Figure
2D). Since Log P SA−1 does not directly acknowledge the
intermolecular forces that govern surface tension, such as
cohesive energy and internal pressure,4 this result was not
particularly surprising. This finding suggests that the HSP
model is better suited for estimating the surface tension of
water-insoluble, hydrophobic polymers. However, MHP values
correlate reasonably well to water contact angles.27

Lower Critical Solution Temperature (LCST). Polymers
that respond to temperature variations in solution display two
distinct behaviors known as the upper critical solution
temperature (UCST) and lower critical solution temperature
(LCST). UCST and LCST are the temperature points above
or below which polymers are completely miscible with the
solvent.34 Such transitions occur primarily in response to the
increased contribution of ΔS to the Gibbs free energy of the
system (ΔG = ΔH − TΔS) that occurs with increasing
temperature.35,36 When the temperature increases: (1)

intermolecular hydrogen bonding between H2O molecules
and the polymer chains are weakened; and (2) the energetic
influence of water organization becomes more significant,
leading to the collapse and aggregation of the polymer chains.
The temperature at which a clear polymer solution undergoes
a LCST and becomes cloudy is known as cloud point
temperature, TCP.

37 TCP will be used as a metric of comparison
for hydrophobicity below. It is generally understood that the
TCP is inversely related to polymer hydrophobicity, and many
studies have leveraged this relationship to design stimuli-
responsive copolymers with bespoke thermal transition
temperatures.36,38−43

In a recent work by our groups, the TCPs of copolymers
based on hydrophilic oligoethylene glycol monomethyl ether
methacrylate (OEGMA) and different hydrophobic methacry-
late comonomers were measured to investigate the influence of
hydrophobicity on LCSTs. Although TCP values correlated
with MHPs for each of the various copolymers, a series of
parallel trends for OEGMA with methyl, ethyl, butyl, and hexyl
methacrylates indicated bottlebrush-like copolymers demon-
strated solution behavior that was difficult to predict with
oligomeric models.9 Thus, we attributed these challenges to
the overriding influence of side chain (grafting) density. This
was surprising, since some precedent existed for using the
MHP method for branching due to multifunctional mono-
mers,27 lightly cross-linked films,26 and cross-linking that
resulted from post-polymerization modification.44 Based on
these observations, we wondered the following: does hydro-
phobicity more directly influence TCP trends for linear
polymers?
Toward this end, we compared HSPs and MHPs to

experimental TCP values for homopolymers (from the
literature). As shown in Figure 3A, no relationship was
observed between HSP and TCP. In contrast, two clusters of
data points were evident in the plot of TCP vs MHP, both of
which appeared to contain data for which linear correlations
could be drawn (Figure 3B). Indeed, model-based clustering
algorithms identified these two clusters as statistically
significant.
Based on the theoretical basis for the HSP, it is apparent that

the LCST does not significantly influence the overall cohesive
energy density of the solvent, at least under the dilute
conditions that are typically employed during TCP measure-
ments (ca. 1−5 mg mL−1 polymer). It is also apparent that the
molar volume component of the Hildebrand model is
insufficient to capture the chain collapse/phase separation
events that occur during the LCST. Thus, the absence of a
relationship in Figure 3A can be explained on these bases.
Critically, the MHP appears to better describe the LCST
phenomenon as it accounts for both of the following : (1) the
act of transferring polymer chains from liquid to polymer
phases; and (2) the creation of a new H2O−polymer interface
between these phases, both of which are understood to be
important for the LCST.
Of further interest, the discrete clusters of data observed in

Figure 3B correspond to polymers possessing side chains in
which heteroatoms are either present or absent. Indeed, a clear
step-change in Log P SA−1 can be observed for these two
groups in the plot of their relative hydrophobicity rankings
(Figure 3C). While the slopes between TCP and Log P SA−1 in
these two clusters appear to be similar, their x- and y-intercepts
are shifted. It is unclear as to the exact physical basis for this
observation; however, it may be the case that differences in

Figure 2. (A) Method for determining polymer surface tension using
contact angle measurements. (B) Selected polymers ranked by their
surface tensions. (C) Plot of surface tension vs HSP. The gray line
represents a linear fit of the data with R2 = 0.70. (D) Plot of surface
tension vs MHP.
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LCST mechanism exist for polymers with hydrophilic or
hydrophobic side chains. This phenomenon bears further
investigation.
Block Copolymer Self-Assembly. In aqueous solution,

amphiphilic block copolymers spontaneously aggregate to form
organized structures. This process, known as self-assembly, is
driven by the hydrophobic effect.45−47 To minimize the
creation of a new interface, the hydrophobic, or core-forming,
blocks of amphiphilic block copolymers aggregate to form
discrete, phase-separated domains stabilized by the associated
hydrophilic polymer segments. As with block copolymer self-
assembly in bulk, the shapes adopted by these aggregates are
related to the geometry of the constituent polymer
amphiphiles.45 The principal empirical relationship between
amphiphile geometry and morphology is the packing
parameter, which describes their packing within polymer
aggregates. The packing parameter is useful for morphological
prediction in systems under equilibrium; however, it does not
account for the kinetic and thermodynamic factors that
underlie the process of self-assembly.48−50

For flexible polymer chains, the thermodynamics of self-
assembly are dominated by interfacial energy.51,52 Put simply,
the higher the difference in surface energies between H2O and
the polymer solutes, the higher the cost of creating a new
interface during self-assembly. The simplest way block
copolymers minimize energy is to simultaneously reduce the
overall number of aggregates while increasing their size.
However, to fill the increasing volume of these larger
aggregates, hydrophilic domains must be inserted into the
bulk polymer phase at additional thermodynamic cost. Thus, a
tentative balance is struck between the polymer−H2O interface
and the polymer−polymer interface, often resulting in the

transformation of these aggregates away from spherical
morphologies toward those comprised of polymer bilayers
(i.e., polymeric vesicles).
Under equilibrium conditions, the following trends in block

copolymer self-assembly are anticipated: (1) morphology
“increases” toward higher-order structures with increasing
length of the core-forming block53 and (2) morphology
“increases” with increasing core-block hydrophobicity.5 The
former is captured by the packing parameter concept and has
been well-studied in the literature. In contrast, less is known
with respect to the influence of core-block hydrophobicity on
self-assembly morphology.
Our groups recently reported a method to identify

chemistries compatible with polymerization-induced self-
assembly (PISA), a method of conducting polymer amphiphile
synthesis and self-assembly simultaneously in the same
pot.54−58 During PISA, a hydrophilic macroinitiator (or
macro-chain transfer agent) is chain-extended with a monomer
that is (generally) miscible with H2O but produces a water-
insoluble polymer upon polymerization. A significant challenge
of PISA is identifying monomers that fulfill the condition of
solubility but produce insoluble polymers. Using in silico
methodology, we found that such monomers could be
predicted via their oligomeric Log P SA−1 values, facilitating
PISA formulation design.5 We also showed that both
nanoparticle nucleation and morphology were also well-
described by Log P SA−1, directly relating a computational
measure of polymer hydrophobicity to experimental observa-
tions.6

Typically, the morphologies obtained during PISA are
classified according to formulation parameters using a phase
diagram. Traditional phase diagrams are constructed using
polymer concentration and core-block degree of polymer-
ization (DP) as parameters. An alternative approach is to
evaluate morphology based on core-block DP and hydro-
phobicity. Figure 4 shows phase diagrams for PISA
formulations conducted using reversible addition−fragmenta-
tion chain-transfer (RAFT) polymerization plotted as a
function of both DP and HSP or MHP. Note that
morphologies represent a simple linear ranking, with larger
“bubbles” corresponding to higher-order morphologies.

Figure 3. (A) Cloud point temperatures for selected polymers vs their
HSPs. (B) TCP as a function of MHP. Two distinct populations were
identified using a model-based clustering algorithm (ellipsoidal
covariance with equal volume, shape, and orientation). (C) Selected
polymers with LCST behavior ranked by their MHPs. The bar colors
correspond to the colors of the clusters identified in (B).

Figure 4. Morphological phase diagrams for self-assembled block
copolymers constructed using core-forming block DP values, HSP
(A) or MHP (B), and morphology. To represent morphology
graphically, a ranking system was developed in which spheres, worms,
vesicles, or mixed morphologies (i.e., S+W or W+V) were assigned a
numerical value increasing from 1 for pure spheres up to 5 for pure
vesicles. The diameters of the “bubbles” shown in A and B are
proportional to these morphology rankings.
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If the criteria outlined above are correct, morphology “rank”
should increase as a function of both core-block DP and
hydrophobicity; thus, “bubbles” corresponding to vesicles
would be expected in the upper right quadrant of the phase
diagram. Both HSP and MHP appear to partially capture these
trends (Figure 4); however, outliers are in evidence for both
treatments (these could be out-of-equilibrium morphologies).
It is noteworthy that the phase diagram built with MHP
appears to better represent expectations; morphologies of
lower “rank” are generally located in the lower left quadrant
and those of higher “rank” are located in the upper right. The
superior performance of this hydrophobicity quantifier relative
to HSP is hardly surprising. Recall that Log P is proportional to
the free energy of transferring a molecule between organic and
aqueous phases (eq 2). This type of phase transfer is integral to
self-assembly; thus, the thermodynamic factors (i.e., interfacial
energy) underlying the formation of block copolymer
aggregates in aqueous solution are better captured by the
MHP.
Polymer Degradation by Hydrolysis. Polymer degrada-

tion can occur by several different mechanisms depending on
exposure to environmental factors such as light, heat,
chemicals, or mechanical force.59,60 Here, we focus on the
factors that influence hydrolytic degradation, which occurs via
random scission of chemical bonds in the polymer backbone to
form oligomers and, eventually, monomers.61 The primary
underlying factor in determining the rate of hydrolytic
degradation is the reactivity and electronic stability of
hydrolytically labile bonds in the polymer backbone.
Secondary to polymer chemistry, incorporation of comono-
mers to raise the glass transition temperature (Tg) of the
polymer or by the introduction of monomers to introduce
crystallinity are both effective means of reducing the mobility
of polymer chains and, thus, the ability of water to diffuse
through the polymer network to perform hydrolytic cleav-
age.62,63

Likewise, enhancing polymer hydrophobicity offers an
approach to reducing exposure of scissible bonds to water
and has proven to be an effective means for controlling the
degradation rates of polyesters.64−67 Hydrophobic polymers
exhibit limited bulk permeability, and slower diffusion of water
into the polymer network relative to bond hydrolysis. Indeed, a
recent computational study by Mathers and colleagues
revealed that the propensity for hydrolytic degradation of
polymers, such as polyesters and nylons, could be correlated to
their hydrophobicity.68

To compare the HSP and MHP models in the context of
hydrolytic degradation, bubble plots were constructed using
polymer Tg and HSP or MHP values. Here, bubble size
corresponds to relative degradation rates for films of selected
polymers in ocean water, with the largest bubbles representing
fast degradation. For polymers that degrade via hydrolysis, we
expected degradation rate to be related to both hydrophobicity
and Tg; water diffusion occurs more rapidly into hydrophilic
polymer films with low Tg, and thus, large bubbles should
appear in the lower left quadrant of the hydrophobicity versus
Tg plot. As shown in Figure 5, large bubbles tended to occupy
the lower left region. From visual inspection, this trend was
apparently better captured by the MHP model. We attribute
outliers in both plots to polymers that are (1) highly crystalline
with Tm above the temperature of the degradation experiment
and/or (2) do not possess hydrolytically degradable bonds.

The use of in silico models to predict degradation
mechanisms and quantify structure−property relationships
for polymer hydrolytic degradation provides a powerful tool
to inform the design of degradable materials.

■ CONCLUSIONS
The concept of hydrophobicity has been implicated in a broad
variety of polymer phenomena. In this Viewpoint, we aimed to
better define hydrophobicity and have identified a set of five
essential criteria for predictive models. Both HSP and MHP
have potential to satisfy these criteria. While neither model
succeeds at describing all aspects of polymer behavior, both
were shown to provide value for explaining and predicting
polymer phenomena such as surface energy/wetting, solution
transitions, self-assembly, and degradation. When combined
with experimental data, theoretical models such as the HSP
and MHP represent powerful tools to aid in the design of
functional, responsive materials.
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