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Abstract: Here, we characterized a negative single-stranded (−ss)RNA mycovirus, Botrytis cinerea
mymonavirus 1 (BcMyV1), isolated from the phytopathogenic fungus Botrytis cinerea. The genome of
BcMyV1 is 7863 nt in length, possessing three open reading frames (ORF1–3). The ORF1 encodes
a large polypeptide containing a conserved mononegaviral RNA-dependent RNA polymerase (RdRp)
domain showing homology to the protein L of mymonaviruses, whereas the possible functions of the
remaining two ORFs are still unknown. The internal cDNA sequence (10-7829) of BcMyV1 was 97.9%
identical to the full-length cDNA sequence of Sclerotinia sclerotiorum negative stranded RNA virus 7
(SsNSRV7), a virus-like contig obtained from Sclerotinia sclerotiorum metatranscriptomes, indicating
BcMyV1 should be a strain of SsNSRV7. Phylogenetic analysis based on RdRp domains showed that
BcMyV1 was clustered with the viruses in the family Mymonaviridae, suggesting it is a member of
Mymonaviridae. BcMyV1 may be widely distributed in regions where B. cinerea occurs in China and
even over the world, although it infected only 0.8% of tested B. cinerea strains.
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1. Introduction

Botrytis spp., a group of widespread plant pathogenic fungi, can infect more than 1400 plant
species, causing gray mold disease on many economically important crops [1]. Besides being pathogens
of many plants, Botrytis spp. are also ideal hosts for viruses. Among sequenced Botrytis viruses,
most positive single-stranded (+ss)RNA viruses were classified into five families—Alphaflexiviridae,
Gammaflexiviridae, Hypoviridae, Narnaviridae, and a recent proposed family Fusariviridae—while most
double-stranded (ds)RNA viruses were assigned into three families—Endornaviridae, Partitiviridae,
and Totiviridae—and the genus Botybirnavirus [2–5]. In addition, a few sequenced Botrytis viruses,
including Botrytis cinerea RNA virus 1 [6], Botrytis ourmia-like virus [7], and Botrytis cinerea
negative-stranded RNA virus 1 (BcNSRV1) [8], remained unclassified.

Compared with +ssRNA and dsRNA viruses, (−ss)RNA viruses are rarely reported in Botrytis cinerea
as well as in other fungi [1]. Mononegaviruses are a group of nonsegmented (−ss)RNA viruses
with the genomes of 8.9–19 kb in length, although there are some exceptions [9]. Most reported
mononegaviruses infect invertebrates, vertebrates, and plants, whereas only few have been shown
to infect fungi [10–13]. Mononegaviruses are divided into eight families—Bornaviridae, Filoviridae,
Paramyxoviridae, Rhabdoviridae, Pneumoviridae, Sunviridae, Nyamiviridae, and Mymonaviridae [12]—of which
Mymonaviridae (genus Sclerotimonavirus, type species Sclerotinia sclerotiorum negative-stranded RNA
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virus 1 (SsNSRV1)) is a newly established viral family that accommodates mononegaviruses infecting
fungi in the order Mononegavirales [14]. In addition, eight other viruses/virus-like contigs, including
soybean leaf-associated negative-stranded RNA viruses 1–4 (SlaNSRV1–4), Sclerotinia sclerotiorum
negative stranded viruses 2–4 (SsNSRV2–4), and Fusarium graminearum negative-stranded RNA virus 1
(FgNSRV1), are phylogenetically closer to SsNSRV1, and may also belong to Mymonaviridae [15–17].

In the present study, we describe the genome of a (−ss)RNA virus infecting the fungus B. cinerea,
namely Botrytis cinerea mymonavirus 1 (BcMyV1). Genomic and phylogenetic analysis indicates
that BcMyV1 was most closely related to Sclerotinia sclerotiorum negative-stranded RNA virus 7
(SsNSRV7) [18] and also showed homology to other fungal mononegaviruses. In addition, we also
determined the incidence and geographic distribution of BcMyV1 in the population of B. cinerea
in China.

2. Materials and Methods

2.1. Fungal Strains, Culture Conditions, and Biological Characterization

B. cinerea strains Ecan17-2 was originally obtained through single conidium isolation from diseased
oilseed rape (Brassica napus) stem in Shiyan, Hubei Province, China, and strain B05.10 of B. cinerea was used
as a control [3]. In addition, 508 B. cinerea strains from 40 counties/cities in 11 provinces of China were used
for testing the presence of BcMyV1. All strains were stored at 4 ◦C and working culture was established [19].
The mycelial growth was determined on potato dextrose agar (PDA) in petri dishes [3], while the pathogenicity
of B. cinerea strains was determined on detached Nicotiana benthamiana leaves [3,19,20].

2.2. dsRNA Extraction and Purification

dsRNAs from B. cinerea mycelia was extracted and purified as described previously [20] and
was further confirmed based on resistance to DNase I and S1 nuclease (Promega, Madison, WI, USA).
The extracted dsRNA was fractionated by agarose gel (1%, w/v) electrophoresis and visualized by
staining with ethidium bromide (1.5 µg/L) and viewing on a UV transilluminator.

2.3. cDNA Cloning and Sequencing

After separation by agarose gel electrophoresis, the dsRNA segment (BcMyV1 replication
intermediates, approximately 10 kb in size based on the DNA marker) was gel-purified by using
AxyPrepTM DNA Gel Extraction Kit (Axygen Scientific, Inc.; Union City, CA, USA) as described
by Wu et al. [21]. The cDNAs of BcMyV1 were produced using a random-primer-mediated PCR
amplification protocol [6] and were then sequenced [21]. The terminal sequences of the dsRNA were
cloned through ligating the 3′-terminus for each strand of the dsRNA with the 5′-terminus of the 110A
adaptor (Table S1) using T4 RNA ligase (Promega Corporation, 2800 Woods Hollow Road, Madison,
WI, USA) at 16 ◦C for 18 h and were then reverse transcribed using primer RC110A (Table S1).
The cDNA strands were then used as template for PCR amplification of the 5′- and 3′-terminal
sequences with the primer RC110A and the corresponding sequence specific primers (Figure S1 and
Table S1). Cloning of the 3′- or 5′-terminal sequences of the dsRNA was performed for three rounds.
In addition, the internal region of the BcMyV1 genome was also amplified through RT-PCR with
four sequence-specific primer pairs (Figure S1 and Table S1). All these amplicons were detected
by agarose gel electrophoresis, gel-purified, and cloned into Escherichia coli DH5α and sequenced
as previously described [19]. All cDNA sequences were assembled to obtain the full-length cDNA
sequence of BcMyV1.

2.4. Sequence Analysis

Open reading frames (ORFs) in the full-length cDNA sequences of BcMyV1 in strain Ecan17-2
of B. cinerea were deduced using the ORF Finder program on the website of the National Center for
Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov/gorf/gorf.html). The homologous
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sequences searching for the full-length cDNA sequences and deduced polypeptides of BcMyV1
were carried out at the NCBI database by using the BlastN and BlastP programs, respectively.
CDD database (http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) searching predicted the
domains present in the polypeptide sequence. Multiple alignments of the sequences of mononegaviral
RNA-dependent RNA polymerase (RdRp) domains in the polypeptides encoded by BcMyV1 and other
mononegaviruses were performed using the ClustalW program in MEGA 7.0 [22]. Phylogenetic trees
based on the sequences of RdRp domains were constructed using the neighbor-joining (NJ) method
and tested with a bootstrap of 1000 replicates to ascertain the reliability of a given branch pattern
in MEGA 7.0. Putative transmembrane helices sequences were predicted using the TMHMM server
version 2.0 (http://www.cbs.dtu.dk/services/TMHMM/) [23].

2.5. Detection of BcMyV1 in B. cinerea Population

The total RNAs of 508 B. cinerea strains were extracted using the TRIzol® reagent (Invitrogen
Corp, Carlsbad, CA, USA) as described previously [19], and the presence of BcMyV1 was determined
by using RT-PCR with primer pairs M-RT-F/R (Table S1), which was designed to amplify a specific
band of 728 bp in size.

3. Results

3.1. B. cinerea Strain Ecan17-2 Exhibits Hypovirulence Traits

After cultivation on a PDA plate for 9 days, strain Ecan17-2 formed colonies with no production
of sclerotia, whereas strain B05.10 produced massive sclerotia on the colony (Figure 1A). In addition,
the radial mycelial growth of Ecan17-2 on PDA, averaging 2.9 mm/day, was significantly slower than
that of strain B05.10 (14.8 mm/day). The virulence assay on detached N. benthamiana leaves revealed
that the average lesion diameter (6.9 mm) caused by strain Ecan17-2 was significantly smaller than
that (29.3 mm) of strain B05.10 (Figure 1B).
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mycelia of B. cinerea strains Ecan17-2 and HBtom-372. 

Figure 1. (A) Culture morphology (upper, 20 ◦C, 9 days) and pathogenicity assay (lower, 20 ◦C,
3 days) of Botrytis cinerea strains Ecan17-2 and B05.10 on potato dextrose agar (PDA) and detached
N. benthamiana leaves, respectively. (B) Radial mycelial growth rate (20 ◦C, upper) on PDA and
lesion diameter (20 ◦C, 72 h, lower) on detached N. benthamiana leaves of strains Ecan17-2 and
B05.10. “**” indicates a significant difference (p < 0.01) between strains Ecan17-2 and B05.10 in both
pathogenicity and radial mycelial growth rate. (C) Agarose gel electrophoresis of dsRNAs extracted
from the mycelia of B. cinerea strains Ecan17-2 and HBtom-372.
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3.2. Genome Analysis of BcMyV1

After DNase I and S1 nuclease digestion, a major dsRNA segment was detected through
electrophoresis in the mycelium of B. cinerea strain Ecan17-2 with the size of approximately 10.0 kb,
which was slightly smaller than the dsRNA-B (Botrytis cinerea fusarivirus 1 (BcFV1), 8411 bp) detected
in strain HBtom-372 [3]. The coding strand (GenBank accession no. MH648611) of BcMyV1 was 7863 nt
long, with a GC content of 41.6%, possessing three ORFs (ORF1–3) and two short untranslated regions
(UTRs) of 76 nt and 472 nt in length at the 5′- and 3′-terminus, respectively. The ORF1 was predicted
to encode a putative large polypeptide of 1968 amino acid (aa) residues (Figure 2A), which contains
a putative mononegaviral RdRp domain and a mononegaviral mRNA-capping region V (Figure 2A).
The ORF2 and ORF3 encoded two proteins of 169 aa and 250 aa in length, respectively. In addition,
the 21 nt long repeated sequence 3′-UAAAUUUCUUUGAUCCUCUAU-5′ was detected in the two
UTRs between the three ORFs (Figure 2B).

The results of the Blast search showed that the nucleotide sequence of the internal region (10-7829)
of the BcMyV1 genome was 97.9% identical to the full-length nucleotide sequence of a contig obtained
from metatranscriptomes of Sclerotinia sclerotiorum isolates, SsNSRV7 [18]. In addition, the polypeptide
encoded by BcMyV1 ORF1 was almost 99.9% identical to the protein L of SsNSRV7 and also showed
homology to the protein L of SsNSRV1 (33.1% aa identity), FgNSRV1 (33.8% aa identity), and several
(−ss)RNA viruses identified through deep sequencing (Table 1). Four conserved motifs, I–IV, found
in mononegaviruses were also identified in the protein L encoded by BcMyV1 ORF1 (Figure 2C).
Unlike SsNSRV1, transmembrane (TM) domains (Figure S2) were found at the C-proximal protein L
of BcMyV1. However, the proteins encoded by ORF2 and ORF3 showed no significant sequence
similarity with proteins in the database of NCBI by using BlastP search.
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Figure 2. (A) Schematic diagram of the genome organization of Botrytis cinerea mymonavirus 1
(BcMyV1). The coding strand of BcMyV1 is 7863 nt long and contains three Open reading frames
(ORFs), and the ORF1 encode a protein L of 1968 amino acids (aa), possessing a mononegaviral
RNA-dependent RNA polymerase (RdRp) domain and a mRNA-capping region V (Cap) domain.
ORF2 and ORF3 encode two proteins of 169 aa and 250 aa, respectively. The black bars indicate the
coding regions, and the gray bars represent the untranslated regions (UTRs) on the genome of BcMyV1.
Two red arrowheads point out the positions of a 21 nt repeat region on the two UTRs, and the detailed
sequence information are listed in (B). The numbers in the parentheses indicate the nt positions nearby
the parentheses. (C) Multiple alignment of the amino acid sequences of RdRp in the protein L encoded
by BcMyV1 and other (−ss)RNA viruses. “*” indicates identical amino acid residues; and “.” indicate
low chemically similar amino acid residues. The abbreviations of virus names are listed in Table 1.
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3.3. Phylogenetic Analysis of BcMyV1

To define the phylogenetic relationship of BcMyV1 with other viruses in Mononegavirales (Table 1),
a phylogenetic tree was established based on the mononegaviral RdRp domain. BcMyV1 firstly formed
a tight cluster with SsNSRV7 and then clustered with (−ss)RNA mycoviruses from S. sclerotiorum,
F. graminearum, and other viral-like contigs, forming an independent clade of Mymonaviridae with
the bootstrap support of 99%. In addition, other viruses from Bornaviridae, Sunviridae, Filoviridae,
Rhabdoviridae, Paramyxoviridae, Pneumoviridae, and Nyamiviridae also formed the corresponding viral
family clades (Figure 3). Therefore, we suppose that BcMyV1 should be a member in the virial
family Mymonaviridae.

Table 1. Percentage of sequence identities between Botrytis cinerea mymonavirus 1 and other
mononegaviruses according to the multiple alignments of the full-length protein L and the
RNA-dependent RNA polymerase domain.

Family Virus Acronym
aa Identity (%)

Accession no.
Full Sequence RdRp

Mymonaviridae

Sclerotinia sclerotiorum
negative-stranded RNA virus 7 SsNSRV7 99.85 100 MF444285

Sclerotinia sclerotiorum
negative-stranded RNA virus 1 SsNSRV1 33.12 56.68 NC_025383.1

Sclerotinia sclerotiorum
negative-stranded RNA virus 2 SsNSRV2 22.28 41.45 KP900931.1

Sclerotinia sclerotiorum
negative-stranded RNA virus 3 SsNSRV3 33.57 56.15 NC_026732.1

Sclerotinia sclerotiorum
negative-stranded RNA virus 4 SsNSRV4 21.67 39.38 KP900930.1

Soybean leaf-associated
negative-stranded RNA virus 1 SlaNSRV1 32.75 59.36 KT598225.1

Soybean leaf-associated
negative-stranded RNA virus 2 SlaNSRV2 33.12 61.5 KT598227.1

Soybean leaf-associated
negative-stranded RNA virus 3 SlaNSRV3 21.43 37.31 KT598228.1

Soybean leaf-associated
negative-stranded RNA virus 4 SlaNSRV4 17.82 34.57 KT598229.1

Fusarium graminearum
negative-stranded RNA virus 1 FgNSRV1 32.75 59.36 MF276904.1

Bornaviridae

Jungle carpet python virus JCPV 14.84 24.6 MF135780
Southwest carpet python virus SWCPV 14.33 21.93 MF135781

Loveridge’s garter snake virus 1 LGSV1 14.28 23.53 KM114265
Variegated squirrel bornavirus 1 VSBV1 14.16 25.13 LN713681

Rhabdoviridae
Rabies virus RabV 14.97 23.62 AB517659

Maize mosaic virus MMV 15.19 23.12 NC_005975.1

Paramyxoviridae Newcastle disease virus NDV 14.94 27.69 JF827026.1
Measles virus MV 15.44 30.77 NC_001498.1

Nyamiviridae Midway nyavirus MIDMV 15.81 26.42 NC_012702.1
Nyamanini nyavirus NYMV 16.01 26.42 NC_012703.1

Filoviridae
Rose rosette virus RRV 10.57 11.4 HQ871942

Raspberry leaf blotch virus RLBV 10.71 10.27 FR823299
Sunviridae Reptile sunshinevirus 1 RSV-1 14.26 24.26 NC_025345

Pneumoviridae
Human respiratory syncytial

virus HRSV 13.43 22.68 NC_001781

Pneumonia virus of mice PVM 14.22 22.8 NC_006579
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3.4. Incidence and Distribution of BcMyV1

In order to investigate the incidence and distribution of BcMyV1 in China, 508 B. cinerea strains
from China were tested for the presence of BcMyV1 by using RT-PCR with the primer pair M-RT-F/R
(Table S1). BcMyV1 infection was detected in only 4 out of the 508 (0.8%) tested B. cinerea strains
(Figures 4 and 5.). In these BcMyV1-infected strains, Bs6-23 and Bs6-33 were collected from the same
location (Beijing, China), whereas strain JLaub-11 was collected from Changchun of Jilin Province.
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Figure 5. Geographic distribution of Botrytis cinerea mymonavirus 1 (BcMyV1) in 11 provinces of
China. The black dots indicate the places where BcMyV1 was not detected, whereas places where
BcMyV1 was detected are indicated as red dots and the corresponding provinces are also highlighted
in grey on the map.

4. Discussion

In the present study, we characterized the genome of a (−ss)RNA mycovirus, namely, BcMyV1,
infecting the hypovirulent strain Ecan17-2 of B. cinerea. Notwithstanding that numerous mycoviruses
have been reported in B. cinerea, only one case of a (−ss)RNA virus (BcNSRV1) had been
characterized [8]. BcNSRV1 is phylogenetically related to members of the genus Emaravirus in the viral
family Bunyaviridae. However, phylogenetic analysis based on RdRp domain indicated that BcMyV1
should belong to the viral family Mymonaviridae in the order Mononegavirales. As high sequence
similarity was observed between BcMyV1 and SsNSRV7, BcMyV1 should be a strain of SsNSRV7 [18].
Nonetheless, the nucleotide sequence of BcMyV1 was longer at both 5′- and 3′-termini than those of
SsNSRV7, indicating the sequence of SsNSRV7 in the NCBI database might be incomplete.
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In S. sclerotiorum, SsNSRV1 infection was closely related to the debilitation symptoms of the
infected S. sclerotiorum strain, including slow growth on PDA, loss of the ability to produce sclerotia,
and pathogenicity on oilseed rape [14]. Similarly, B. cinerea strain Ecan17-2 carrying BcMyV1 also
displayed reduced mycelial growth on PDA and attenuated virulence on N. benthamiana, indicating
possible negative effects of BcMyV1 on its host. However, a faint dsRNA segment of approximately
2.4 kb in length (Figure 1C) was also detected in strain Ecan17-2, indicating coinfection of other viruses
or defective/satellite RNAs with BcMyV1 [3]. Thus, sequencing the 2.4 kb dsRNA in the traditional
way is warranted to ascertain the causal agent of hypovirulence in B. cinerea strain Ecan17-2. Moreover,
deep sequencing [8] may also be an option to determine the full view of the viral infection in strain
Ecan17-2. Generally, two aspects of approach have been used for construction of isogenic lines that aim
to elucidate the effects of mycoviral infection on their hosts. Firstly, viruses could be introduced
into virus-free strains by using the techniques like pairing-culture [3], virion transfection [21],
and construction of infectious cDNA clones [24]. On the other hand, some investigations, including
sequential hyphal tip isolation [25], protoplasts/small mycelial fragments regeneration [26], treatment
of cycloheximide [27,28], or cAMP-rifamycin [29], and single spore isolation [20] were also explored
to cure the viruses in their original strains. Therefore, similar experiments will also be carried out to
elucidate the role of BcMyV1 on B. cinerea biology in the future.

It is of interest that BcMyV1 was detected in two different fungal species, B. cinerea and
S. sclerotiorum. Although the same mycovirus is rarely detected in different fungi, there are still
a few exceptions. In addition to the present case, another mycovirus, Botrytis porri botybirnavirus 1
(BpBV1), was also detected in both B. porri and S. sclerotiorum [18,21]. We suppose that viral interspecific
transmission may frequently occur between B. cinerea and S. sclerotiorum, although they belong to
different genera. Some factors may increase the possibility of viral transmission between the two
species. Firstly, B. cinerea is a close relative of S. sclerotiorum, and their genes share 83% aa identity
on average between the two fungi [30]. Thus, viruses may adapt a new host more easily when viral
transmission occurs from one host to the other. Secondly, both fungi have a broad host range [1,31],
and many plant species are hosts for both B. cinerea and S. sclerotiorum. Therefore, the contact
between the two fungi may frequently occur in small niches under field conditions [30]. Thirdly, viral
interspecies transmission through anastomosis has also been reported in a few cases, including from
Aspergillus niger to A. nidulans [32], from S. sclerotiorum to S. minor [33], and from Cryphonectria parasitica
to C. nitschkei [34], suggesting that viral interspecies transmission by anastomosis between B. cinerea
and S. sclerotiorum might also be possible. Finally, recent studies have shown that insects and mites are
also potential vectors during mycoviral transmission [35,36], and similar mechanisms may increase
the possible viral transmission between B. cinerea and S. sclerotiorum as well.

Although –ssRNA viruses have been reported in several fungal species [8,14–18], the information
of their incidence and distribution remain unclear. Moreover, investigation of other BcMyV1-infected
B. cinerea strains may also help us to uncover their effects on B. cinerea. On the contrary, unlike strain
Ecan17-2, two strains of B. cinerea (Bs6-33 and JLaub-11) carrying BcMyV1 grew quickly and produced
massive sclerotia, and only one strain, Bs6-23, showed similar culture morphology to that of strain
Ecan17-2 (data not shown). This suggests that more complex interactions may exist between BcMyV1
and the B. cinerea population. Therefore, genome-wide association study [37,38] may be helpful to
further elucidate the role of genetic variation in the response of B. cinerea to viral infection. Compared
with other viruses infecting B. cinerea, including Botrytis cinerea endornavirus 1 [2], Botrytis cinerea
hypovirus 1, BcFV1 [3], Botrytis cinerea mitovirus 1 [39], Botrytis virus F, and Botrytis virus X [5],
the incidence of BcMyV1 in the Chinese B. cinerea population was very low, accounting for only 0.8%
in the tested strains. The linear distance between Beijing and Shiyan is over 900 km, and Changchun
is over 800 km away from Beijing. These results indicate that BcMyV1 might be widely distributed
in regions where B. cinerea occurs of China, although the infection rate is low. This may be one
reason why (−ss)RNA viruses were rarely reported in the population of B. cinerea. Despite the low
incidence, BcMyV1 still had a wide geographic distribution and may not be only limited to China,
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as the homologous virus-like contig was obtained from S. sclerotiorum strains in Australia. This suggests
BcMyV1 may have a global distribution.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/10/8/432/s1.
Table S1: Oligonucleotide primers/adaptor used in this study. Figure S1: Schematic representation of the strategy
used for full cDNA sequence cloning of Botrytis cinerea mymonavirus 1 (BcMyV1). Figure S2: Transmembrane
domains prediction for ORF1 encoded polypeptide L of BcMyV1.
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