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Empirical Bayes functional models for hydrogen
deuterium exchange mass spectrometry
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Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a technique to explore

differential protein structure by examining the rate of deuterium incorporation for specific

peptides. This rate will be altered upon structural perturbation and detecting significant

changes to this rate requires a statistical test. To determine rates of incorporation, HDX-MS

measurements are frequently made over a time course. However, current statistical testing

procedures ignore the correlations in the temporal dimension of the data. Using tools from

functional data analysis, we develop a testing procedure that explicitly incorporates a model

of hydrogen deuterium exchange. To further improve statistical power, we develop an

empirical Bayes version of our method, allowing us to borrow information across peptides

and stabilise variance estimates for low sample sizes. Our approach has increased power,

reduces false positives and improves interpretation over linear model-based approaches. Due

to the improved flexibility of our method, we can apply it to a multi-antibody epitope-

mapping experiment where current approaches are inapplicable due insufficient flexibility.

Hence, our approach allows HDX-MS to be applied in more experimental scenarios and

reduces the burden on experimentalists to produce excessive replicates. Our approach is

implemented in the R-package “hdxstats”: https://github.com/ococrook/hdxstats.
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Probing a protein structure is essential to fully understand its
function1. Protein structures can be perturbed when bind-
ing to another protein, small molecule or due to alterations

in their context (such as pH)2–4. Hydrogen deuterium exchange
(HDX) mass spectrometry is one such technique to examine
differential context-specific protein structure5,6. The guiding
hypothesis is that, when a protein is incubated with heavy water,
amide hydrogens exchange with deuterium in accordance with
Linderstom-Lang theory7. Though a number of factors, such as
solvent occlusion, topological flexibility, amino acid content and
secondary structure, also affect the process8–11. By monitoring the
kinetics of HDX using bottom-up mass spectrometry, it is pos-
sible to discern subtle alterations to a protein’s structure3. To
mediate possibly complex kinetics the process is usually examined
over a time-course. However, this temporal component is rarely
used in statistical testing of alterations to the kinetics e.g.,12–19.

A number of approaches have been proposed to detect dif-
ferences in peptide HDX between samples. These include manual
examination of the data, linear models, linear mixed-models and
a student’s t test amongst others12–19. The most statistically
advanced approach to analyse differential HDX is termed
MEMHDX16, which introduced random effects to previous linear
modelling approaches13. Models incorporating both fixed effects
and random effects are called mixed effects, these model excel at
modelling nested variance according to the replicate structure of
the data20. However, they can be difficult to interpret for
unseasoned users. Furthermore, MEMHDX suggest to examine p-
values for magnitude of deuterium change and change in
dynamics. This subtly conflates significance with effect size and
we suggest to examine a number of effects alongside the p-value
to accurately interpret the nature of the kinetic changes.

All currently proposed methods avoid explicitly modelling the
temporal component of HDX data, which reduces statistical
power. In experiments with low samples sizes, such as HDX-MS
where only a handful of measurements are made per peptide,
maximising power is crucial to infer condition-specific differ-
ences. Hence, methodology that models serial correlations will
improve power in HDX-MS experiments with low samples sizes.
Statistics based on sampled curves, so-called functional data
analysis, concerns the analysis of such functions21. Here, we turn
the functional model of HDX into a statistical test, namely a
functional analysis of variance (ANOVA). This approach is
simpler to interpret and more powerful than previously proposed
methods. The advantages arise because of a reduction in the
number of parameters and tests performed, whilst also allowing
the model to capture serial correlations21. Furthermore, we can
exploit repeated measurement across different peptides to esti-
mate a pooled variance. The estimated sample variance for each
peptide can then be shrunk towards this pooled variance,
resulting in more stable estimates of variance when the sample
size is small. This idea is called empirical Bayes and has been
highly influential in the analysis of microarrays22, RNA-seq23 and
proteomics experiments24. We establish this method for HDX
data as applied to functional models, see25 for applications to
linear HDX models.

Our article is structured as follows. First, we compare a number
of methodologies through simulated examples to demonstrate the
effects of different methodological choices, replicate structure and
number of time points. We then apply our approach to a number of
real-world experiments and find that linear mixed models are
unable to control false positives, whilst the t test is unable to declare
any results significant. We then proceed to an epitope mapping
experiment for which none of the current methods are applicable.
We demonstrate that our approach is able to make quantitative
statements in experimental scenarios, where other available
methods are not. In particular, our method uncovers significantly

altered kinetics in an epitope mapping experiment applied to an
HOIP-RBR, for which previous results have only been qualitative26.
Our results support an observation that some single domain anti-
bodies hold HOIP-RBR in a more open conformation26.

Our approach is made freely available to the community
through an R-package “hdxstats”: https://github.com/ococrook/
hdxstats, which builds on the “QFeatures” package for general
quantitative mass-spectrometry27.

Results
Simulations. To obtain a more reliable statistical method for
hydrogen-deuterium exchange mass spectrometry (HDX-MS), we
developed an empirical Bayes functional model based on a pro-
posed Weibull model for the kinetics (see methods). Our
approach can be summarised as fitting a functional model that is
blinded to the condition. The model is then refitted separately for
each condition. By examining the residual error of each of these
two scenarios, we can compute an F-statistic, which is then
moderated by pooling information across peptides. The null
hypothesis is that the condition-independent model is sufficient
to explain the data. Figure 1a shows the fitted model kinetics
where there is no difference between the two conditions, whilst
panel b shows a situation where the kinetics significantly differ
between the two conditions. From these fitted models we can
compute an F statistic, high values of the F statistics indicate
sufficient evidence to reject the null hypothesis. Such high values
are obtained by examining the appropriate F distribution (see
methods and Fig. 1c). Such an approach avoids testing each time
point separately, explicitly incorporates serial correlations and
improves power by stabilising variance estimates.

We compare our method to other major approaches
(MEMHDX16 and t tests). t tests are an exact test for the equality
of means of two populations. In HDX-MS, this corresponds to
the application of the t test pointwise at each measured time
point. If the false discovery rate (FDR) for a peptide is lower than
some nominal value, say 0.05, we have sufficient evidence to say
the HDX kinetics were perturbed at that time point. MEMHDX is
a linear mixed modelling approach. These approaches are usually
applied when multiple measurements are made on the same
quantity of interest, which induces a structured variance. In the
case of MEMHDX, replicates are encoded as a random effect. If
the coefficients of the linear model related to the condition (see
methods) are declared significant, then this would be taken as
evidence of perturbed HDX kinetics. We note that t tests are a
special case of linear mixed models with one level and random
intercepts. Since the t test and linear mixed models produce many
p-values per peptide, they are combined to a single p-value using
the harmonic mean p-value28. All methods are corrected for
multiple testing using the Benjamini–Hochberg procedure29.

In our simulation study (see methods), we are assessing
whether methods can detect known perturbations to the HDX
kinetics. If a method declares an FDR of less than 0.05 for a given
peptide which has condition-dependent kinetics, then this is
called a true positive. Whilst, if the FDR is less than 0.05 but the
peptide does not have condition-dependent kinetics then that is
defined as a false positive. Hence, methods are assessed using the
F score (not to be confused with the F statistic), which weighs up
precision and recall. In all cases, our approach outperforms the
other methods except in the last simulation where only 1% of
peptides were simulated to have significant differences, where it
performed equally well to the t test. This performance level
indicates that our approach can reliably detect differences even
with only a couple of replicates and can handle HDX
measurements that are missing at random. The t test performs
poorly because it is difficult to accurately estimate the population
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standard deviation and thus it is underpowered. MEMHDX
performs better than the t test because it models additional
correlations via the random effect but because these correlations
are not explicitly parametrised they are less powerful than our
functional model. We explore simulations with higher levels of
noise in the supplementary material (see Supplementary Fig. 18)
and obtain the same conclusions (see Supplementary Note 6). In
the next section, we demonstrate that MEMHDX also inflates
false positives.

Applications
Structural variant experiment. We compared each of the
approaches in practice. Outside of simulations, true positives are
not well defined; however, the methods can be tested on their
ability to control false positives. We examined a previously
published structural variant experiment, where HDX data on
maltose-binding protein (MBP) was generated in seven replicates
across four HDX labelling times17. Additional experiments were
carried out in triplicate for the W169G (tryptophan residue 169 to
glycine) structural variant. Here MBP-W169G was spiked into
the wild-type MBP sample in 5, 10, 15, 20, 25% proportions, and a
further experiment included a 100% mutant sample. All data were
analysed on a Agilent 6530 Q-TOF mass spectrometer and raw
spectra processed in HDExaminer.

The seven MBP samples without any structural variant can be
used as a null experiment by partitioning the replicates falsely into
two conditions. That is three of the samples are labelled condition
A and four samples are labelled condition B, arbitrarily. We
randomly permute the samples labelled A and B, six times. We
then performed statistical significance testing between the
conditions using the three methods previously considered. Since
experiments are in fact all replicates, if the FDR is correctly
controlled, there should be no peptides declared significant.

From Fig. 2 we see that our proposed method and the t test
perform well at avoiding false positives, each generating only one
false positive across the six permutation experiments. However,

the linear mixed modelling approach generates excessive false
positives, with between 6% and 22% false positives per
experiment. Here, the percentage is of the total peptides measured
in the experiment. Hence, we can conclude that the linear mixed
modelling approach is too liberal to be reliable in practice.

Our proposed functional statistical approach is built using a
parametric functional model allowing us to interpret the
statistical significance of our results, beyond simply pairwise
differences. We compared wild-type MBP with the 100%
structural variant sample, using all methods. Given there are
seven replicates of the wild-type protein, statistical power (and
henceforth, simply, power) is not an issue for any of the
approaches. However, for most experiments, seven replicates are

Fig. 2 Performance of statistical methods in null experiments. Our
functional approach (functional), linear mixed models (LMM) and the t test
(t test) are compared in null experiments.

Fig. 1 Functional model and performance in simulations. a–c Cartoon of the proposed approach to statistical analysis of HDX-MS data. a) Functional
models fit where there is no difference between the conditions. b Functional models fitted to HDX data where there are significant differences. c The F
distribution with 5% critical region identified in magenta. d Simulation study for HDX data showing improved performance of our proposed functional
method (functional) for linear mixed models (LMM) and the t test (t test). These simulations encompass scenarios with differing numbers of time points
and replicates. We refer the reader to the methods for details.
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likely to be onerous. Each parameter of our functional model can
be interpreted and the magnitude of the parameters can be
considered as effects sizes. We are particular interested in the
parameters b and p of our functional model because they control
the time-dependent kinetics (see methods for a full description).
In particular, values of p > 1 suggest more rapid than exponential
exchange of deuterium suggesting that a region has become more
exposed to the solvent. Meanwhile, b controls the rate of plateau,
such that larger values of b indicate the deuterium uptake
plateaus more quickly. The parameter a models the plateau itself,
whilst d models the intercept. A forest plot can be used to
simultaneously visualise several possible effects that we might be

interested in to improve the interpretation of the results. Figure 3
shows two peptides with overlapping residues and their fitted
models. In both cases the kinetics are significantly different
between the WT and structural variant (FDR < 10−8) using our
empirical Bayes F test. Panels c and d of this figure show that the
pairwise differences at each time point are different from 0. The
parameters d and b only display small changes, whilst a, which
models the curves’ plateau, is significantly different. This suggests
some residues for these peptides have become accessible due to
the mutation compared with the WT protein. We can also see
that p ≈ 1.5 for peptide IAYPIAVEA [129–138] and p ≈ 1.8 for
YPIAVEAL [131–139] in the W169G variant, whilst for the WT

Fig. 3 Functional models are interpretable. a Deuterium kinetics for peptide IAYPIAVEA [119-138] in charge state two. Proportion of deuterium
incorporated is plotted against solvent exposure time in seconds. Conditions are coloured with the null model in purple. The number after the underscore
indicates the charge state. (b) same as for (a) but for peptide YPIAVEAL [131–139] in charge state one. c Forest plot for effect sizes corresponding to
peptide in IAYPIAVEA [129–138]. d Forest plot for effect sizes, the strength of relationship between variables (see methods), corresponding to peptide in
YPIAVEAL [131–139]. c, d The pointer refers to the mean estimate with tails corresponding to the 95% confidence interval. e MBP (PDB: 1OMP) with
peptides highlighted in green YPIAVEAL [131–139] (left) IAYPIAVEA [129–138] (right).
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p ≈ 1 in both cases. This suggests more rapid than exponential
exchange in deuterium for the mutant and further evidence that
this region has become more solvent accessible and/or has fewer
hydrogen bonds. The concerted behaviour between the two
peptides adds further support to this hypothesis. These peptides
are localised to a buried beta-strand suggesting the structural
variant has a large impact on the protein’s structure (Fig. 3e).

We then assessed our method on its ability to detect subtle
differences in HDX experiments. We took the 10% and 15%
structural variant samples from the structural variant experiments
on MBP. We applied our functional model to the data and found
that 12 peptides had an adjusted p-value smaller than 0.05. Three
examples are plotted in Fig. 4a–c with the remainder plotted in
the supplementary material. Figure 4d shows the forest plot

corresponding to the peptide in Fig. 4a. Here, the difference is
visually subtle but our functional method identifies a difference
between the two samples. Indeed, at all time points, the
deuterium incorporation for the 10% sample is lower than that
of the 15% structural variant sample. However, for three out of
the four samples, the confidence intervals in this difference
overlapped with 0 (see Table 1). The power of functional methods
is that they can identify the consistency in an effect across time
points, allowing us to identify significant changes that are
consistent but not necessarily significant at any time point
individually. This finding is reinforced with an overlapping
peptide demonstrating concordant behaviour (Fig. 4b, g). The t
test fails to find any significant differences at level 0.05 and the
histogram of adjusted p-values is shown in Fig. 4e. The lack of

Fig. 4 Functional models can identify subtle, consistent differences. a Deuterium kinetics for peptide DIKDVGVDNAGAKAKAGLTF [203-220] in charge
state 3. Deuterium incorporation is plotted against solvent exposure time in seconds. Conditions are coloured with the null model in yellow. The number
after the underscore indicates the charge state. (b) same as for (a) but for peptide VGVDNAGAKAGLTFL [207–220] in charge state 2. (c) as for (a) but
for peptide LVDL [221–224] in charge state 1 (d) Forest plot for effect sizes corresponding to peptide in (a). e, f Histogram of adusted p-values for the t test
and functional method, correspondingly. g MBP (PDB: 1OMP) with DIKDVGVDNAGAKAKAGLTF (left) and VGVDNAGAKAGLTFL (right) highlighted
in green.
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uniformity and peaking of values toward 0 suggests low power,
whilst the expected trend is seen for the functional method in
Fig. 4f. Even deuterium differences that are apparent are not
detected by the t test (see 4c). Our functional models ability to
detect differences whilst controlling false positives in both
simulations and experiments suggests it is a more appropriate
method for HDX-MS.

Epitope mapping of HOIP-RBR using HDX-MS. In this section,
we explore an application of HDX-MS to epitope mapping of
HOIP-RBR. HOIP is an E3 ubiquitin-protein ligase which
conjugates linear polyubiquitin chains and plays a role in
immune signalling30–32. Usually, binding epitopes are identified
by “protection″; that is, surface amides that incorporate deu-
terium more slowly as they are shielded from the solvent26

performed HDX-MS experiments for HOIP-RBR upon single
domain antibody (dAb) complexation and in APO state. Mass-
spectrometry was performed using a Waters Synapt G2-Si
instrument and raw data was processed using DynamX. HDX-
MS measurements were taken at 0, 30 and 300 s post-exposure
to heavy water, for thirteen dAbs at different molar con-
centrations. Only a single replicate measurement was taken in
each state so that more measurements of different dAbs could
be made. However, this renders the t test inapplicable because
we cannot compute a within-group variance and linear mixed-
models (MEMHDX) are inapplicable because there is not a
nested replicate structure. However, it is still possible to apply
our proposed functional method.

To avoid over-fitting, we fix b= 0.5, q= 1, d= 0 in our
Weibull model, reducing the complexity of our model to a single
degree of freedom in the null case. This greatly reduces the
flexibility of our model, but in return we can apply rigorous
statistical testing. These parameter choices roughly correspond to
an assumption that 80% of deuterium will be incorporated within
30seconds and the kinetics will plateau by 300seconds.

For brevity, we focus on dAb25 from the study of ref. 26,
because they observed non-standard HDX behaviour for this
complex (the remainder are shown in the supplementary
material). We applied our functional method as detailed in the
methods, with the alterations described in the previous
paragraph. We identified eight peptides for which the deuterium
kinetics were altered (adjusted p-value < 0.05). six of these
peptides displayed non-classical behaviour with increased deuter-
ium incorporation on dAb binding (see Fig. 5). Three of these
peptides overlap with each other and are contained within the
helix-turn-helix (linker) region of HOIP (top row Fig. 5), whilst
the other three also overlap and are contained in the RING2
region of HOIP (middle row Fig. 5)). The remaining two peptides
also overlap with each other and are contained within the IBR
(in-between ring) region of HOIP (final row Fig. 5). This suggests
that the epitope for dAb25 is contained with the IBR region and
this binding holds HOIP in a more open conformation allowing
increased solvent exposure; hence, more deuterium exchange is
possible.

To provide the spatial context for these changes in deuterium
kinetics, we plotted a Manhattan plot; that is, peptides plotted
against �log10ðp�valueÞ (see Fig. 6). This helps us to simulta-
neously visualise protein domain regions and (de)protected
regions, as described in the previous paragraph. Whilst examining
this plot, we also notice tendencies for p-values to cluster,
suggesting correlations in the spatial axis of HDX data. This is
expected, since these peptides either physically overlap or come
from the same protein domain. Furthermore, we notice some of
these clustered p-values fall just below the significance threshold
suggesting power could be boosted by modelling correlations in
this dimension as part of future work. Results for the remaining
peptides and a residue-level analysis can be found in Supple-
mentary Figs. 1–14.

Discussion
We have presented an empirical Bayes functional data analysis
approach for HDX-MS data. Our model explicitly incorporates
the temporal component of these data, which boosts power and
interpretation. Furthermore, we developed an empirical Bayes
testing approach to stabilise variance estimates across the pep-
tides in the experiment. The resulting methodology is more
powerful than previous linear model-based approaches, as
demonstrated by our simulation study. These earlier approaches
lack power because they do look explicitly incorporate the tem-
poral component nor borrow information across peptides.

We made an empirical comparison of the approaches in an
application to structural variant data. This analysis concluded
that the mixed-modelling approach was unable to control the
false discovery rate, whilst our approach and the t test were able
to control it. However, application to a case with subtle differ-
ences demonstrated that the t test was unable to declare any
peptides significant. Hence, our approach controls false positives
whilst providing peptides which can be followed up.

Having demonstrated the empirical statistical properties of our
method, we applied our approach to a case study of multi-
antibody epitope mapping of HOIP-RBR. Current approaches are
not able to assess the significance in these experiments because of
their stringent assumptions. However, our empirical Bayes
functional method is applicable and was able to find significant
differential HDX kinetics. Thus, we are able to identify the
binding epitopes and allosteric effects of the single domain
antibodies on HOIP-RBR.

Our approach has a number of limitations. Firstly, we do not
model correlations in the spatial domain of HDX data - that is
between overlapping peptides. This manifests as clustering of p-
values for overlapped peptides. Several strategies exist to reconcile
the spatial dimension of HDX data, including combining p-values
using multi-level testing or spatial random effects, which we will
consider if future work. Secondly, we do not model correlations in
our multi-antibody study across the different antibody experi-
ments. Joint modelling across related experiments is likely to
boost power and interpretation further. Finally, our analysis

Table 1 Difference between deuterum incoperation for peptide DIKDVGVDNAGAKAGLTF in the 10% and 15% structural variant
experiments.

Estimate confL confU Time point condition

1 −0.17 −0.31 −0.03 30 Change in deuterium uptake
2 −0.03 −0.09 0.02 240 Change in deuterium uptake
3 −0.02 −0.14 0.11 1800 Change in deuterium uptake
4 −0.01 −0.13 0.11 14400 Change in deuterium uptake

Central estimates (mean) are reported alongside the 95% confidence intervals. The lower (upper) tail of the confidence interval is given by confL (confU).
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Fig. 5 Functional model identifies protected and unprotected region of HOIP-RBR in complexation with dAb 25. The top row contains kinetic plots for
peptides in the helix-turn-helix region of HOIP; the middle row contains kinetic plots for peptides in the RING2 region of HOIP; the final row contains
proteins in the IBR region of HOIP. Deuterium incorporation is plotted in units of Daltons and Exposure to heavy water in seconds. Yellow lines indicate the
null model, whilst green and purple indicate the alternative model.

Fig. 6 Manhattan plots provide spatial context of deuterium chances for HOIP-RBR-dAb25. A Manhattan plot with peptides described as the amino acid
(AA) segments of the protein sequence plotted against the �log10ðp-valueÞ. Protein domain annotations are provided in the bar below26. The red dashed
line indicates a significance threshold �log10ð0:05Þ and p-values have been corrected for multiple testing.
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works with centroided HDX spectra, we anticipate further
improvements by working with raw spectra and identification
confidences directly.

Methods
Preliminaries. In hydrogen–deuterium exchange mass spectrometry, we observe
isotope distributions for i= 1,…,n peptides at different exposure times t1,…,tm to
heavy water (D2O). The isotope distributions are a set of mz -Intensity pairs revealing
the relative intensities of each peptide isotope. These isotope distributions are
frequently summarised into a centroid via an intensity weighted mean of the m

z ,
which we write as �mz . Since deuterium is heavier than hydrogen, deuterium inter-
operation leads to positive shifts in m

z and monitoring this change over time and
with respect to the state is the standard usage of HDX-MS. In most scenarios data
are replicated, so we observe replicates r= 1,…,R and, potentially, a number of
conditions denoted c= 1,…,C. For example, binding to antibody is an example of a
condition. The observations are then

yicrðtÞ ¼ MðtÞ ¼ �m
z
ðtÞ ´ z � z; ð1Þ

where z denotes the charge of the precursor ion. Some practitioners normalise with
respect to the initial mass M(0), though this is unnecessary and assumes that mass
errors are similar over time. This normalisation is an assumption of homo-
scedasticity, which is unlikely to hold in general because as deuterium is incor-
porated the isotope distribution undergoes isotopic expansion and so M(t) will
have different errors for different values of t. If we wish to avoid this normalisation,
we can include an offset term in our proposed model (see below).

Methodological summary. In this section, we present a high-level methodological
summary. In differential HDX-MS, the key quantity of interest is the difference in
deuteration patterns between conditions. Conditions can include protein interac-
tions, small molecule binding or environmental perturbation; such as changes in
temperature. Statistical methods are typically used to detect significant changes in
deuteration between conditions. For example, the t test incorporates the difference
in mean between conditions with the variance in each condition into a test statistic.
The statistic is then compared to a t-distribution, to compute a p-value. Once all
the p-values are computed they are corrected for simultaneous testing of many
hypotheses (multiplicity), typically using the Benjamini-Hochberg procedure.

However, t tests are applied to differential HDX-MS pointwise, meaning a test
for each time point. This excessive amount of testing results in an unnecessary
number of false-negatives (low statistical power). Our proposed approach performs
curve fitting to the kinetics measured by HDX-MS. Since only one test is performed
per peptide, this reduces the number of tests performed. By examining how well
these curves fit to the data, we can see if there are significant changes in HDX-MS
kinetics. In this case, this is quantified by computing the total difference between
the observed data and fitted curves, which is a measure of variance. The
appropriate test statistic in this case is an F-statistic resulting in an F test, in which
p-values are obtained from an F-distribution. Furthermore, these variances are
computed for every peptide and so we can improve our method by learning a
distribution of variances. By incorporating prior information about this
distribution, we can improve the power of our method. The following sections
proceed with a detailed mathematical description of this process. Furthermore, we
provide a tutorial for analysing differential HDX-MS data in the vignettes of the
“hdxstats” package.

Proposed method. In this section, we describe the functional model we use to
model hydrogen–deuterium exchange. The kinetics of HDX follow a well-
appreciated logistic-type model. Typically, peptides rapidly incorporate deuterium
and plateau at maximum incorporation. Mathematically, the proposed model takes
the following form

μðtÞ ¼ að1� expð�btÞÞ þ d: ð2Þ
Each parameter is interpreted as follows. Firstly, d denotes the mass at time 0,

but note this is inferred so the uncertainty in the value is captured unlike when
normalising by M(0). The parameter d models the initial undeuterated mass and
can be forced to 0 when data are normalised in our “hdxstats” package. b, the rate
constant for HDX, controls the time-dependent kinetics, such that larger values of
b denote a more rapid increase in mass (and hence deuterium incorporation).
Whilst a controls the plateau of the model representing maximum incorporation. It
is also useful to consider a slight modification to the above model, in which a
Weibull-type model is used:

μðtÞ ¼ að1� expð�btqÞÞ þ d: ð3Þ
The additional parameter q models additional effects with respect to the

temporal kinetics. Sometimes, values of q are greater than 1, suggesting more rapid
than exponential incorporations at smaller times, and plateauing more quickly than
exponential on longer time scales. Mathematically, q allows some flexibility in the
inflexion of the kinetics33 refer to this model as a stretched exponential.
Furthermore, whilst back-exchange correction factors were not available for the

datasets considered in this manuscript, methodology and functions to normalise
data based on these data are available in our “hdxstats” package.

Two-sample test. The proposed model can be turned into a formal test, using
tools from functional data analysis. We first suppose that there is no difference in
HDX kinetics for a peptide between two conditions. In such a case, a single
function would describe the HDX kinetics regardless of the condition. This con-
stitutes the null hypothesis, whilst the alternative is that there is a difference in
HDX kinetics. In this case, independent condition-specific models would better
describe the data. To formalise this, for each peptide i, we would fit the following
model

μicðtÞ ¼ aicð1� expð�bict
qic ÞÞ þ dic; ð4Þ

and correspondingly compute the residual sum of squares under the null (subscript
0) and alternative (subscript 1) hypothesis:

RSS0;i ¼ ∑
c;r;t

ðyicrt � μi0tÞ2 ð5Þ

RSS1;i ¼ ∑
c;r;t

ðyicrt � μictÞ2: ð6Þ
These equations describe the squared deviation of the observed data from the

fitted mean functions. These quantities will be small if the model is a good fit. The
relative plausibility of the two models can be described using the F-statistic:

Fi ¼
di;2
di;1

RSS0;i � RSS1;i
RSS1;i

; ð7Þ

which intuitively weighs up the relative fits of the null and alternative models. The
values di,1 and di,2 represent the degrees of freedom of the corresponding F-
distribution. di,1 is given by p2− p1, that is the difference between the number of
parameters in the alternative model and the null model, for our approach p1= 3
and p2= 6 or p1= 4 and p2= 8 if the Weibull model is used. Whilst, di,2= ni− p2,
where ni is the number of observations of peptide i across the conditions. Finally, p-
values are obtained from the corresponding F test:

Fi �H0
Fðdi;1; di;2Þ: ð8Þ

Given that we are performing n tests, multiple testing corrections should be
performed, typically the Benjamini–Höchberg procedure is recommended29.

Effect sizes. In linear models, effect sizes are given by the values of the coefficients
of the appropriate covariates. For functional models, there are the number of
possible effect sizes. The appropriate effect size is best chosen based on the question
of interest. We describe some of the possible effects that can be extracted from the
model:

1. Differences in initial (undeuterated) mass: This quantity is described by
extracting d and its confidence intervals from the models.

2. Difference in maximum uptake: This quantity is described by extracting
a+ d and its confidence intervals from the models. The parameter a is often
referred to as the deuterium recovery.

3. Difference in rate kinetics: This quantity is described by extracting b as well
as p and their confidence intervals from the models.

4. The global difference between the two models. This quantity is given by the
maximum difference between the condition-specific curves:

Δi;max ¼ sup
t
jμi1ðtÞ � μi2ðtÞj ð9Þ

or the integral as suggested by34

Δi;int ¼
Z
t
jμi1ðtÞ � μi2ðtÞjdt: ð10Þ

5. Local differences between models; that is, an effect at specific time t*. This
quantity is given by the difference between the condition-specific curves at
that time:

Δi;t�
¼ μi1ðt�Þ � μi2ðt�Þ: ð11Þ

Empirical Bayes. Estimates derived from a small number of replicates and time-
points can lead to unstable inferences, as is typically observed in microarray22 and
RNA-seq experiments23. To improve stability, and hence power, we propose an
empirical Bayes extension to our model. The idea is to shrink estimates of the
sample variance towards a pooled estimate. This constituent a bias-variance trade-
off, where we trade a small amount of bias for increased precision. Following35,
inference can then be formulated using a so-called moderated F-statistic. To ela-

borate, let s2i ¼
RSSi;1
di;2

, we can then use this set of variances to identify a global s20 and

shrink our estimate s2i towards s
2
0. We assume true variances σ2i are drawn from the
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following scaled inverse χ2 distribution:

1
σ2i

� 1
d0s

2
0
χ2: ð12Þ

It can be shown that35, the expected value of the posterior of ~s2i is

~s2i ¼
d0s

2
0 þ d2s

2
i

d0 þ d2
; ð13Þ

where the hyperparameters d0 and s20 are computed by fitting the following scaled
F-distribution s2i � s20Fðd2; d0Þ. Hence, we compute the moderated F-statistic with

~F ¼ RSS0;i � RSS1;i
~s2i di;1

: ð14Þ

Functional ANOVA. Our model takes the form of a functional analysis of variance
(ANOVA). As a result, it allows for covariate-based experimental designs with
multiples levels. One such example would be an analysis based on a set of anti-
bodies or different concentrations of small molecules.

Linear mixed-effects models. In this section, we summarise the previous meth-
odology for significance testing for hydrogen–deuterium exchange mass spectro-
metry that explicitly includes temporal components. The approach, using mixed
effects models, is an extension of a previous linear modelling approach13,16. In our
notation, each set of peptide observations is modelled as

yicrðtÞ ¼ βitxt þ βicxc þ βtcxtxc þ urwr þ ϵ; ð15Þ
where βit, βic and βtc denote the coefficients of the fixed effects for time, condition
and their interaction between time and condition for peptide i. The replicates are
considered as random effects ur. Random effects attempt to model the additional
structured variance corresponding to a particular covariate. We note that in this
interpretation that time is considered as a factor rather than a continuous quantity.
That is, permuting the ordering of time does not change the model and the explicit
correlation induced by the temporal dimension is not modelled. In the case that
time is interpreted as a continuous quantity, the model becomes

yicrðtÞ ¼ βit t þ βicxc þ βtctxc þ urwr þ ϵ; ð16Þ
however, HDX data are rarely linear in time and so the data have to be linearised.
This can be performed by transforming time according to a shifted log transform:
t ! logðt þ δÞ. Where δ is chosen to avoid taking the log of 0. Though this
approach reduces the number of tests performed and models the temporal
dimension it is not recommended as it can lead to uncontrolled p-values and
unstable parameter estimates.

Simulations. This section describes our proposed simulation study. We begin by
sampling, uniformly at random, the number of exchangeable amides of a peptide
from between 5 and 25. The sampled number is the number of exchangeable amino
acids in the peptide and we sample that number of amino acids from the 20
canonical amino acids with replacement. We then define time points at which to
obtain data: T= {t1,…,tm}, with t1= 0 and ti < tj for i < j. For time t1, we simulate
the undeuterated isotope distribution using a binomial model. For a subsequent
time point ti we sample the percentage incorporation by first sampling from a m
−1-variate Dirichlet distribution with concentration parameter α, where αi= 20/
(i− 1). From this we obtain a vector π which sums to 1. We use the cumulative
distribution of π as the schedule of incorporations. That is the incorporation at
tiDi ¼ ∑i�1

r¼1 πr for i > 1. This ensure that incorporation is non-decreasing in time.
To simulate the effect of a condition, for each time point, we sample an indicator
zti 2 f0; 1g such that the pðzti ¼ 0Þ ¼ 0:95. If zti ¼ 1, then we re-sample the
incorporation amount and continue on the simulation process. This ensures that
roughly 95% of the scenarios have no effect with respect to the condition. A
binomial model is used to generate deuterated spectra, where the exchangeable
hydrogens are randomly replaced with deuterium according to the incoperation
percentage. The isotope distribution simulations are repeated R times to allow for
replicates. Centroids summarising the average peptide mass are then computed
from the isotope distribution. The centroids are then further corrupted by Gaussian
noise, using N ð0; 0:05Þ. In all cases, we simulate 500 measured peptides. We
perform simulation scenarios as follows:

● (Scenario 1) 4 time points, 3 replicates and 2 conditions
● (Scenario 2) 4 time points, 2 replicates and 2 conditions
● (Scenario 3) 5 time points, 2 replicates and 2 conditions
● (Scenario 4) 6 time points, 2 replicates and 2 conditions
● (Scenario 5) 6 time points, 2 replicates, 2 conditions and 5% missing values
● (Scenario 6) 6 time points, 2 replicates, 2 conditions, 5% missing values,

pðzti ¼ 0Þ ¼ 0:99

All simulations are performed 10 times and the distributions compared.

Performance metrics. We use the F-score to assess the performance of the dif-
ferent statistical methods. The F-score is the harmonic mean of the precision and

recall. Precision is defined as tp
tpþfp and recall is tp

tpþfn, where tp is true positives, fp is

false positives and fn is false negatives. In words, the F-score weighs how many of
the selected peptides are relevant and how many of the relevant peptide are
selected.

Implementation. The Weibull-type model is implemented using the Levenberg-
Marquardt algorithm, an iterative procedure that interpolates between the Gauss-
Newton algorithm and gradient descent36. The parameters are all constrained to be
non-negative and the algorithm ends after 500 iterations or the difference between
the successive sum of square residuals is less than 10−8.

Residue-level analysis. For visualisation purposes, we propose a residue-level
analysis in the following manner. For each residue j= 1,…,J, where J is the total
amino acids in the protein, we have a set of p-values jp, for p= 1,…,Pj where Pj is
the sequence coverage at that amino acid. A residue level p-value for residue j, for

visualisation purposes, is taken as the harmonic mean of the p-values j1; :::; jPj

n o
.

The primary visualisation is a heatmap of the �log10 of this computed value.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data to reproduce the figures are provided in the supplementary material. Experimental
data are available from the original manuscripts. Data to reproduce the figure have been
deposited on Zenodo: (https://doi.org/10.5281/zenodo.6408572)

Code availability
Code is available as part of the R-package “hdxstats”: https://github.com/ococrook/
hdxstats.
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