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Abstract

In eukaryotic cells, Flap endonuclease 1 (FEN1) is a major structure-specific endonuclease that processes 5’ flapped
structures during maturation of lagging strand DNA synthesis, long patch base excision repair, and rescue of stalled
replication forks. Here we report that fanconi anemia complementation group A protein (FANCA), a protein that
recognizes 5’ flap structures and is involved in DNA repair and maintenance of replication forks, constantly stimulates
FEN1-mediated incision of both DNA and RNA flaps. Kinetic analyses indicate that FANCA stimulates FEN1 by
increasing the turnover rate of FEN1 and altering its substrate affinity. More importantly, six pathogenic FANCA
mutants are significantly less efficient than the wild-type at stimulating FEN1 endonuclease activity, implicating that
regulation of FEN1 by FANCA contributes to the maintenance of genomic stability.
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Introduction

During DNA replication, various structured DNA
intermediates are effectively processed to avoid deleterious
consequences such as genome instability and cancer.
Replication on the lagging strands is discontinuous and
initiated by DNA Pol α, which synthesizes an RNA primer
approximately 12-nt long that is further extended with
approximately 20-nt of DNA. This RNA-DNA hybrid is believed
to be made at low fidelity and subjected to displacement by the
high-fidelity DNA Pol δ. The strand displacement activity of Pol
δ produces a 5’ single-stranded flap structure that contains the
RNA primer and some of the initiator DNA. The 5’ flap structure
is then recognized and incised by the structure-specific flap
endonuclease FEN1 to ensure the integrity of DNA replication
[1–10]. Additionally, FEN1 has 5’ to 3’ exonuclease activity and
gap-dependent endonuclease activity that are important during
maturation of Okazaki fragments and the rescue of stalled
replication forks [6,11–16]. FEN1 is also involved in long-patch
base excision repair, nucleotide excision repair, non-
homologous end-joining, and resolution of di- and tri-nucleotide
repeat secondary structures [7,17–19]. Defects in FEN1 cause
accumulation of mutations, genomic instability, cancer
predisposition and chronic inflammation [20–22].

More than 30 proteins have been shown to interact with
FEN1 and affect its function [7,11]. For example, proliferating
cell nuclear antigen (PCNA) stimulates FEN1 endonuclease
activity through protein-protein interaction [23–25]. RecQ DNA
helicases such as Werner syndrome protein WRN and Bloom
syndrome protein BLM were shown to stimulate FEN1 through
physical interaction [26–28]. It was also reported that MUS81-
EME1 and MUS81-EME2, DNA endonucleases involved in
interstrand crosslink unhooking and Holliday junction
resolution, stimulate FEN1 activity [29].

FANCA is one of the 16 Fanconi anemia disease genes
[30–33]. Fanconi anemia is a severe genetic disorder
characterized by bone marrow failure, genomic instability, and
predisposition to cancer. Fanconi anemia cells are generally
sensitive to DNA damaging agents and show hypersensitivity
to DNA crosslinking compounds, indicating that they are
defective in repairing or tolerating DNA damage, particularly
interstrand crosslinks [30,34–42]. Deficiency of each gene
shows similar clinical and cellular phenotypes; however,
approximately 66% of Fanconi anemia patients presents with
defective FANCA [39].

FANCA has been found to exist in a large nuclear protein
complex that contains the Fanconi anemia core complex and
the Bloom syndrome BLM complex [36,43]. It is localized to
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chromatin in a replication-dependent manner [44–46]. Xenopus
egg extracts immune-depletion study shows that FANCA is
directly involved in maintenance of replication forks [47,48].
Most recently, FANCA has been found to regulate MUS81-
EME1 activity in a damage-dependent manner and FANCA has
intrinsic affinity to nucleic acids with particularly high affinity to
single-stranded RNA and DNA structures with a 5’ flap [46,49].
Because both FANCA and FEN1 localize to replication forks
and practically share the same substrate specificity, i.e. 5’ flap
structures and single-stranded RNA [44–46], we hypothesize
that FANCA may affect FEN1 activity by competing or
collaborating with each other on the same structures to
regulate removal of RNA primers and 5’ flap structures during
DNA replication and repair. In support of this hypothesis,
deficiency in FEN1 causes partially similar phenotypes as
FANCA, i.e. inflammation and cancers [22,50–52].

In this study, we found that human FANCA indeed stimulates
FEN1 endonuclease activity. This novel regulation of FEN1 by
FANCA is impaired in pathogenic FANCA mutants thus making
the novel interaction physiologically relevant to Fanconi
anemia.

Materials and Methods

Expression and Purification of Proteins
cDNAs for human FANCA and FEN1 were obtained by PCR

amplification from a universal cDNA pool (BioChain Institute,
Inc.). The full-length open reading frames were confirmed by
sequencing and found to exactly match NCBI Reference
Sequence NM_000135 and NM_004111 respectively.
Overexpression and purification of hexahistidine-tagged
FANCA was achieved in insect High Five cells using the Bac-
to-Bac expression system (Invitrogen) as previous described
[16,46]. Truncation mutants of FANCA were produced through
a PCR-based method [53]. Point mutations were produced
through a site-directed Mutagenesis Kit (Agilent). Expression of
FANCA and its mutants was confirmed by Western blot
analysis using FANCA Antibody (Santa Cruz Biotech.).
Monoclonal antibody against the His6 tag (GenScript,
Piscataway, NJ) was also used to confirm expression and
subsequent purification. Protein concentration was determined
using the Coomassie protein assay reagent (Pierce). The
purified proteins were stored at -80 °C in aliquots. Purified
FEN1 was prepared as described previously [13,54] and
confirmed by western blot using a FEN1 antibody (Epitomics).

Preparation of Substrates
Oligonucleotides that were used to create the 15-nt 5’ flap

substrates were adopted from a design by Fisher et al with the
same sequences (Figure S1) [55]. RNA/DNA hybrid oligos
were chemically synthesized by Integrated DNA Technologies,
Inc. with the flap as RNA. All DNA oligos were purified by 10%
denaturing PAGE gel. The 5’ ends in the flap structures were
labeled by 32P (Figure S1). Annealing was carried out in a
water bath within 5 h by slowly cooling from 70 °C to 20 °C.

Endonuclease Assay
The endonuclease assay was performed as previously

described [1]. 2 nM of 5′ 32P-labeled 5’ flap substrates were
incubated with purified proteins as indicated amount in a 10 μl
reaction with the buffer containing 30 mM HEPES PH 7.5, 1
mM dithiothreitol, 3 mM MgCl2, 5% glycerol, 100 ng/mL bovine
serum albumin and 100 mM KCl at 37 °C for 15 minutes. The
reaction was stopped by adding 10 μl 2x sequencing dye (10
mM EDTA, 0.2% SDS, 0.03% Xylene cyanol and Bromophenol
blue). Reaction products were separated on a 10% or 15%
denaturing polyacrylamide gel. The incision products were
visualized by autoradiography and quantified by using NIH
ImageJ software. The incision rate was calculated by dividing
the intensity of product band by the total substrate band of
each reaction.

Determination of Kinetic Parameters
To measure kinetic parameters, kinetic analyses were

repeated three times using increasing amounts (described
under the figure) 15nt both DNA and RNA 5’ flap substrates.
Kinetic parameters were obtained based on the Michaelis-
Menten equation: v = Vmax[S] / (Km+[S]), where v is the reaction
rate and [S] is the concentration of substrates. Km and Vmax

were gained by plotting v against [S] using Origin software
through nonlinear curve fit.

Co-immunoprecipitation (Co-IP) Assay
FANCA-null (RA3087) and the FLAG-FANCA-complemented

cells were generously provided by Agata Smogorzewska at the
Rockefeller University [56]. Cells were grown in DMEM (sigma)
with 10% FBS and harvested at 80% confluence by
trypsinization. Cells were washed once by PBS and dissolved
in Lysis Buffer (50 mM Tris-HCl, pH 7.6, 500 mM NaCl, 0.5 %
NP-40, 2 mM EDTA, 2 mM DTT, 1x proteinase inhibitor, and
1mM Sodium orthovanadate) for sonication by using a Qsonica
sonicator. Lysates were centrifuged and pre-cleaned with 10 μl
activated Staph.aureus cells. 600 μg pre-cleaned extracts were
incubated in buffer (50 mM Tris-HCl, pH 7.6, 100 mM NaCl, 1
mM DTT, 50 μg/mL BSA) overnight at 4 °C with the following
antibodies or IgG: mouse monoclonal Anti-FLAG M2 antibody
(Sigma Aldrich), rabbit polyclonal anti-FEN1 antibody (Bethyl),
mouse IgG1 antibody and rabbit IgG antibody (Santa Cruz).
Next, they were incubated with protein G magnetic beads
(Millipore) for 1h at 4 °C, followed by 3 washes with ice cold
Wash Buffer (50 mM Tris-HCl, pH 8.0, 5 mM EDTA, 150 mM
NaCl, 0.1% NP-40, 1 mM DTT, 1x proteinase inhibitor, and 1
mM Sodium orthovanadate). 10μl of Lysis Buffer was used to
elute the protein complexes from the beads and the protein
complexes were resolved by 10% SDS-PAGE and transfer to
nitrocellulose membranes (Bio-Rad). Blots were incubated with
the following primary antibodies: goat polyclonal anti-FANCA
(C-20) antibody (Santa Cruz), rabbit monoclonal anti-FEN1
antibody (for mouse FLAG co-IP, Epitomics), and mouse
monoclonal anti-FEN1 (4E7) antibody (for rabbit FEN1 co-IP,
Abcam), followed by incubation with HRP conjugated
secondary antibodies and visualization using a Thermo
Supersigal detection kit.

FANCA Stimulates FEN1 Activity
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Results

FEN1 incises 5’ RNA flap differently from the DNA
counterpart

In order to test whether FANCA interacts with FEN1, we
overexpressed and purified full-length human FEN1 protein
(Figure S1A). Considering the length of the in vivo substrate of
FEN1, we designed 15-nt 5’ DNA and RNA flaps (Figure S1B).
Initial incubation of the purified protein with the flap structures
showed that FEN1 incised both the DNA and RNA flap
structures (Figure 1A). Intriguingly, FEN1 incised the DNA flap
differently from the RNA counterpart. FEN1 had two major
incision sites on the 15-nt DNA flap with one right at the
junction site (Figure 1A, DNA panel, arrow 2) and the other at
-1 base inside the junction site (Figure 1A, DNA panel, arrow
1). However, FEN1 cut the RNA flap only at the -1 position
inside the junction (Figure 1A, RNA panel). Furthermore, FEN1
incised the RNA flap significantly more efficiently than the DNA
flap (Figure 1A, compare lanes 1-7 with 8-14; Figure 1B).

FANCA stimulates the 5’ flap endonuclease activity of
FEN1

Since FANCA and FEN1 share the same substrate
specificity, i.e. 5’ flap structures and single-stranded RNA [46],
we hypothesize that FANCA physically and functionally
interacts with FEN1. Physical interaction between FANCA and
FEN1 has never been reported previously. In order to examine
whether FANCA interacts with FEN1 in cells, we prepared
whole-cell extracts of the FANCA-null and FLAG-FANCA-
complemented cells (FANCA -/- and +/+ respectively in Figure
2A). Next, we performed a co-immunoprecipitation assay of the
extracts using a mouse anti-FLAG antibody and detected
FANCA and FEN1 using a goat anti-FANCA and a rabbit anti-
FEN1 antibodies respectively (Figure 2A, top panel). As shown
in Figure 2A, When FANCA was pulled down by the anti-FLAG
antibody, FEN1 followed, indicating that FANCA interacts with
FEN1 in cells. To confirm the physical interaction, we
performed the co-immunoprecipitation assay using a FEN1
antibody (Figure 2A, bottom panel). Again, FANCA was
steadily detected in the pull-down lysate. These results
indicated that FANCA and FEN1 interact with each other in
human cells.

To test whether FANCA functionally affects the catalytic
activity of FEN1, we purified human wild-type FANCA to near
homogeneity (Figure S1A). Next, we titrated the purified
FANCA in a flap endonuclease assay using suboptimal
amounts of FEN1 (Figure 2B, 0.2 nM for DNA flap and 0.1 nM
for RNA flap respectively). To rule out the possibility of the
stabilizing effect of proteins on FEN1, we diluted purified FEN1
and FANCA proteins in a buffer with 1 μg/μl BSA. Incision of
the 15-nt DNA and RNA flaps by FEN1 alone is ~11% and ~4%
of the total substrate respectively. However, addition of
increasing amount of FANCA greatly enhanced the flap
endonuclease activity of FEN1 by up to 8-fold for RNA flap and
4.5-fold for DNA flap within the titration range (Figure 2B).
These data establish that FANCA physically interacts with
FEN1 and functionally stimulates the flap endonuclease activity
of FEN1 in a concentration-dependent manner.

FANCA increases the enzyme efficiency of FEN1
To determine how FANCA affects the flap endonuclease

activity of FEN1, we performed a steady-state analysis of FEN1
by titration of the DNA and RNA flap substrates in the presence
or absence of FANCA (Figure S2). The obtained incision rate
(v) and the substrate concentration [S] were fit into the
Michaelis-Menten equation v = Vmax[S] / (Km+[S]) in a nonlinear
manner (Figure 3). As shown in Figure 3, FANCA resulted in
~4-5 fold increase in FEN1 enzyme turnover rate on the DNA
flap (kcat. 0.125 vs. 0.026). However, FANCA reduced the DNA
flap substrate affinity of FEN1 (Km 13.5 vs. 33.9). Overall,
FANCA increased the enzyme efficiency of FEN1 by 2-fold
(kcat/Km 1.9 pM-1s-1 vs. 3.7 pM-1s-1). A similar result was
obtained with the RNA flap substrate (Figure 3), i.e., FANCA
increased the turnover as well as Km of FEN1 with a 1.7-fold
overall increase in enzyme efficiency. This result is distinct
from that of PCNA which decreased the Km of FEN1 [25], as
well as that of WRN or RFC, which increased the Vmax but did
not alter substrate binding [28,57].

Both N- and C-terminals of FANCA are required for the
stimulation of FEN1 activity

We previously showed that FANCA has a nucleic acid
binding domain at the C terminal and this domain confers the
preferential binding of FANCA to ssRNA, ssDNA, and 5’ flaps
[58]. To test whether the nucleic acid binding domain of
FANCA affects the stimulation of FEN1 by FANCA, we used
two truncation mutants of FANCA, Q772X and C772-1455 for
FEN1 assay. Q772X is a Fanconi anemia disease-causing C-
terminal truncation mutant. C772-1455 is the complementing
C-terminal fragment of Q772X (Fig. 4A). Using 10 nM of protein
that is sufficient for the WT protein to exert its stimulation, we
found that both mutants showed drastic reduction in stimulating
FEN1 endonuclease activity (Figure 4B and 4C, last two lanes
in each panel). These results indicate that both the N-terminal
and the nucleic acids binding C-terminal of FANCA are
indispensable for FEN1 stimulation and that the DNA binding
domain by itself is insufficient to regulate FEN1 activity.

Pathogenic FANCA mutants are significantly less
efficient in stimulating FEN1 activity

To evaluate whether stimulation of FEN1 by FANCA is
physiologically relevant to Fanconi anemia, we created 5 more
FANCA point mutations and purified them to near homogeneity
(Fig. 4A). D598N, R951W, R1055W, R1117G, and F1263Δ are
selected from FANCA mutations that cause Fanconi anemia
[59,60]. D598N, R951W, R1055W, and R1117G are
pathogenic missense point mutations. F1263Δ is a one residual
deletion mutant representing one of the most prevalent
pathogenic point mutations. Using 10 nM of protein, we found
that all of the FANCA disease-causing mutants have defects in
stimulating the endonuclease activity of FEN1 (Figure 4B and
4C). These results clearly demonstrate that mutations in
FANCA significantly affect its ability to stimulate FEN1 and the
interaction between FANCA and FEN1 is relevant to the
etiology of Fanconi anemia.

FANCA Stimulates FEN1 Activity
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Figure 1.  FEN1 incises 5’ RNA flap differently from the DNA counterpart.  (A) FEN1 endonuclease assays were performed
with increasing amounts of FEN1 (0.25, 0.5, 1, 2, 4, 8 nM) with both the 15-nt DNA and RNA 5’ flaps (2 nM). Diagrams of the 5’ flap
substrates were shown on top of each set of reactions. Reaction products (indicated by an arrow) were resolved in 10% denaturing
polyacrylamide gel. (B) Quantitation of FEN1 endonuclease assays in A by incision rate. Error bars represent standard deviations of
three independent experiments. *, p<0.05 when compared the RNA and DNA flap reactions within the same FEN1 concentration.
doi: 10.1371/journal.pone.0082666.g001
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Figure 2.  FANCA interacts with FEN1 and stimulates its incision activity.  (A) Reciprocal co-immunoprecipitation was
performed in FANCA-null (-/-) and FLAG-FANCA-complemented (+/+) cells. FLAG-FANCA was pulled down by a mouse FLAG
antibody and FEN1 was pulled down by a rabbit FEN1 antibody (Bethyl). Detection of the FANCA and FEN1 was carried out by
antibodies with different origins as described in Materials and Methods. (B) FANCA stimulates FEN1 activity. Both the DNA (black)
and RNA (green) flap substrates were used at 2 nM. The concentration of FEN1 was 0.2 nM for DNA flap and 0.1 nM for RNA flap.
The concentration of FANCA indicated were 2.5, 5, 10 nM. FANCA+/FEN1- lanes: 10 nM of FANCA. Reaction products were
resolved in 10% denaturing polyacrylamide gel. Arrows point to the incision sites. The incision rate is quantified and shown on the
bottom. **, p<0.01; *, p<0.05 when compared to the reaction with FEN1 alone.
doi: 10.1371/journal.pone.0082666.g002

FANCA Stimulates FEN1 Activity
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Discussion

In this study, we aimed to unveil the function of the
preferential 5’ flap and RNA binding activity of FANCA [46] and
found a novel physical and functional interaction between
FEN1 and FANCA. We demonstrated that FEN1 incises a RNA

flap more efficiently than its DNA counterpart and FANCA
further stimulates this incision catalyzed by FEN1. More
importantly, all six pathogenic FANCA mutant proteins we
tested were defective in this interaction to different degrees,
indicating that the interaction between FEN1 and FANCA

Figure 3.  FANCA stimulates the 5’ flap endonuclease activity of FEN1 by enhancing enzyme efficiency.  Steady-state
analysis was perform by increasing the flap substrate concentration (0, 2, 6, 20, 60, 200 nM) and fixing amounts of FEN1 (0.2 nM
for DNA flap, 0.1 nM for RNA flap) and/or FANCA (10 nM) in three independent FEN1 endonuclease assays. Vmax is determined as
described in “Material and Methods”. Error bars represent stand errors. A paired t-test was performed to determine the statistical
significance of FEN1 endonuclease activity between with and without FANCA. **, p<0.01; *, p<0.05.
doi: 10.1371/journal.pone.0082666.g003
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Figure 4.  Pathogenic FANCA mutant proteins are inefficient in stimulating FEN1 endonuclease activity.  (A) SDS-PAGE
analysis of purified FANCA mutant proteins. Proteins were subjected to 10% gel electrophoresis and the gel was stained with
Coomassie Brilliant Blue R-250. D598N, R951W, R1055W, R1117G, F1263del, and Q772X are pathogenic FANCA mutants. C772–
1455 is C-terminal residues 772–1455 of FANCA. All peptides shown were tagged with hexahistidine at their N termini. Protein
markers in kilodaltons were indicated on the left. (B) FEN1 endonuclease assays were performed with WT and mutant FANCA
protein for both 15nt length DNA and RNA 5’ flap substrates. The concentration of FEN1 was 0.2 nM for DNA flap and 0.1 nM for
RNA flap. The concentration of FANCA was 10 nM. Reaction products were resolved in 15% denaturing polyacrylamide gel. Arrows
point to the incision products. The incision rate is quantified and shown on the bottom. (C) Quantitation of three independent FEN1
endonuclease assays in B by incision rate. Error bars represent stand errors. A paired t-test was performed to determine the
statistical significance of FEN1 endonuclease activity between WT and mutant FANCA. *, p<0.05.
doi: 10.1371/journal.pone.0082666.g004
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physiologically contributes to the pathogenesis of Fanconi
anemia.

Intriguingly, before we study how FANCA may affect FEN1
activity, we observed that FEN1 alone, different from a
previous study reporting that FEN1 does not cleave the 5’ RNA
flap structure [61], incises the 5’ RNA flap more efficiently than
its DNA counterpart (Figure 1). This is obviously beneficial to
its function in RNA primer removal during maturation of
Okazaki fragment. Additionally, the incision pattern for the RNA
flap is different from the DNA flap (Figure 1). It showed that
FEN1 only cleaves the RNA flap substrate at the -1 position
inside the junction (Figure 1A, RNA panel) which is actually a
DNA base pair. However, there were two cleavage sites on the
DNA flap substrate: one at the junction site and the other at -1
base inside the junction site (Figure 1A, DNA panel). This is
different from a previous study showed that mammalian FEN1
cuts DNA flaps only at the -1 position inside the junction site
[61]. Our data supports that the nature of the 5’ flap affects the
incision sites and efficiency of FEN1 initially proposed by
Bambara’s group [62].

FEN1 interacts with >30 proteins and plays pivotal roles in
several DNA metabolic pathways including maturation of
Okazaki fragments, rescue of stalled replication forks, long-
patch base excision repair, nucleotide excision repair, non-
homologous end-joining, resolution of di- and tri-nucleotide
structures, and apoptotic DNA fragmentation [6,7,11–19].

Besides the physical interaction we showed in Figure 2 and
the shared substrate specificity of FEN1 and FANCA for 5’ flap
and RNA, our confocal microscopy result showed that FANCA
perfectly colocalizes with replication forks in unstressed human
cells (Qian et al, unpublished data), indicating that FANCA is
associated with the normal replication machinery where FEN1
is known to be found for regular maintenance of replication
forks. Additionally, it is estimated that more than 106

replication-stalling DNA lesions per cell per day form in
humans. Because the number of Okazaki fragments per cell
cycle is about 20-50 X 106 in humans, one replication fork
stalling event may associate with about 20-50 Okazaki
fragments theoretically [16,29,63]. This estimate suggests that
FEN1 is likely to encounter and interact with FANCA that is
recruited to maintain stability of replication forks [44–46]. Our in
vitro result with the 15-nt 5’ RNA and DNA flaps demonstrated
that FANCA is likely to be involved in the removal of RNA/DNA
primers by facilitating FEN1 action during maturation of
Okazaki fragments.

FEN1 participates in the long-patch base excision repair of
non-bulky DNA lesions (oxidation, methylation, base loss, etc)
by interacting with Pol β, APE1, Lig 1, PCNA and Neil1 for
efficient removal of the damaged bases and 5’ flaps
[17,18,64,65]. FANCA was also shown to be involved in base
excision repair through stabilizing the glycosylase Neil1 [66].
Our result indicated that FANCA additionally interacts with
FEN1 to facilitate removal of 5’ DNA flap catalyzed by FEN1.
Our findings suggest that the Fanconi anemia pathway may
directly regulate the excision repair of DNA lesions caused by
oxidative stress explaining the oxidative stress sensitive
phenotype of Fanconi anemia cells [67].

Because of the preferential binding of FANCA to 5’ flap
structures [46], we hypothesized that FANCA may facilitate
loading FEN1 to the 5’ flap substrate and therefore increase
the substrate affinity of FEN1. However, FANCA increased
both the turnover rate and Km of the endonuclease activity of
FEN1 (Figure 3). Based on these results, we speculate that
FANCA may regulate the endonuclease activity of FEN1
through two possible mechanisms: (i) Direct protein-protein
interaction between FANCA and FEN1 that changes FEN1
conformation and increases its endonuclease turnover and (ii)
competition for the 5’ flap substrate between FANCA and FEN1
that reduces substrate affinity of FEN1. It is conceivable that
reduced substrate affinity of FEN1 in the presence of FANCA
may also cause faster release of the incision product and
therefore help FEN1 to turnover. Overall, these possible
mechanisms result in about two-fold increase in FEN1 enzyme
efficiency. This possible mechanism is supported by the data
that both non-nucleic-acids-binding N- and nucleic-acids-
binding C-terminals of FANCA are required for FEN1
stimulation (Figure 4). It remains to be determined how FANCA
exactly interacts with FEN1, but it is distinct from WRN, RFC,
and PCNA in interacting with FEN1. Both WRN and RFC
increased the turnover of FEN1 without affecting the substrate
affinity, on the other hand, PCNA increased the substrate
affinity of FEN1 without changing the turnover rate [25,28,57].

The next interesting question remaining to be answered is
whether FANCA affects other activities of FEN1. Like FANCA,
the gap-dependent endonuclease as well as the exonuclease
of FEN1 is important for rescue of stalled replication forks
[7,47,48]. It has been shown that defects in the gap-dependent
endonuclease and exonuclease of FEN1 cause chronic
inflammation and cancers [22]. Coincidently, deficiency in
FANCA also results in inflammation and cancers [50–52].
Based on the physical and functional interactions between
FANCA and FEN1, it is conceivable that FANCA may regulate
the gap-dependent endonuclease as well as exonuclease
activities of FEN1 and therefore contribute to suppression of
inflammatory responses and maintenance of genomic stability.

Supporting Information

Figure S1.  (A) SDS-PAGE analysis of purified FANCA and
FEN1 proteins. Proteins were subjected to a 10% gel and the
gel was stained with Coomassie Brilliant Blue R-250. Protein
markers in kilodaltons were indicated. (B) Diagrams and
sequence sequence of the 15-nt DNA and RNA flaps.
(PDF)

Figure S2.  Kinetic analyses of FEN1 endonuclease activity
were performed with or without WT FANCA protein for
both 32P-labeled 15-nt length DNA and RNA 5’ flap
substrates with increasing amount of non-labeled “cold”
substrates to a final concentration of 0, 2, 6, 20, 60, 200
nM. The concentration of 32P-labeled “hot” substrates was 1
nM. The concentration of FEN1 was 0.2 nM for DNA flap and
0.1 nM for RNA flap. The concentration of FANCA was 10 nM.
Reaction products were resolved in 15% denaturing
polyacrylamide gel. Arrows point to the incision products. The
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incision product band is quantified, converted to the final
concentration and shown on the bottom.
(PDF)
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