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ABSTRACT

Transcriptional regulatory networks specify regula-
tory proteins controlling the context-specific expres-
sion levels of genes. Inference of genome-wide regu-
latory networks is central to understanding gene reg-
ulation, but remains an open challenge. Expression-
based network inference is among the most popular
methods to infer regulatory networks, however, net-
works inferred from such methods have low overlap
with experimentally derived (e.g. ChiP-chip and tran-
scription factor (TF) knockouts) networks. Currently
we have a limited understanding of this discrepancy.
To address this gap, we first develop a regulatory
network inference algorithm, based on probabilistic
graphical models, to integrate expression with auxil-
iary datasets supporting a regulatory edge. Second,
we comprehensively analyze our and other state-of-
the-art methods on different expression perturbation
datasets. Networks inferred by integrating sequence-
specific motifs with expression have substantially
greater agreement with experimentally derived net-
works, while remaining more predictive of expres-
sion than motif-based networks. Our analysis sug-
gests natural genetic variation as the most informa-
tive perturbation for network inference, and, identi-
fies core TFs whose targets are predictable from ex-
pression. Multiple reasons make the identification of
targets of other TFs difficult, including network archi-
tecture and insufficient variation of TF mRNA level.
Finally, we demonstrate the utility of our inference al-
gorithm to infer stress-specific regulatory networks
and for regulator prioritization.

INTRODUCTION

Transcriptional regulatory networks specify the molecular
regulators (such as transcription factor (TF) proteins and

signaling proteins) of target gene expression, and are im-
portant for specifying gene expression patterns in diverse
dynamic processes such as development, stress response and
disease. Regulatory networks have two components: struc-
ture and parameters (1). The structure specifies which reg-
ulators regulate which genes, and the network parameters
specify how combinations of TFs and signaling proteins
functionally regulate the expression of a gene. In recent
years, there has been significant progress in revealing the
structure of regulatory networks (2-4); however, our un-
derstanding of network parameters and how genome-wide
regulatory networks drive overall system behavior is limited
even in well-studied systems such as yeast.

Regulatory network reconstruction using either experi-
mental or computational methods has been challenging for
a number of reasons. First, any single experimental tech-
nology is not sufficient to reveal the circuitry. For exam-
ple, while ChIP-chip and ChIP-seq assays are used to reveal
the structure of the network, many events might be associ-
ated with non-functional binding and discriminating func-
tional and non-functional binding is in itself non-trivial (5).
In contrast, regulatory connections inferred by genetically
perturbing a TF are not able to discriminate between direct
and indirect effects. Second, regulatory networks tend to be
context-specific; that is, the set of regulatory connections
that are active may vary significantly between conditions
(6). Experimentally generating such datasets for all condi-
tions and time points is not feasible, and therefore a limited
number of TFs known to be associated with specific condi-
tions have been examined (e.g. MSN2/4 in various stresses
(1,7), HOG1, SKOI for osmotic stress (1)). Computational
network inference methods that use genome-wide expres-
sion profiling for a set of conditions have served as scal-
able approaches that are complementary to experimentally
defining networks because expression datasets are com-
monly available across multiple species and contexts. Fur-
thermore, expression-based network reconstruction meth-
ods can be used to predict expression levels of genes in new
conditions or in response to a perturbation. However, when
applied to infer eukaryotic regulatory network structure,
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the success of different methods has been modest (8), al-
though the reasons for this low performance are not com-
pletely clear. In particular, poor performance of these meth-
ods could be because of a number of reasons, such as, the
inability of expression alone to discriminate between causal
and correlational edges, lack of variation in the expression
level of regulators, post-transcriptional and translational
control of gene expression.

To address these challenges, we make two contributions.
First, we developed a regulatory network inference algo-
rithm to integrate diverse regulatory genomics datasets in
order to reconstruct a transcriptional regulatory network.
Our approach is based on a probabilistic graphical model
(PGM)-based representation of regulatory networks (9) and
extends our previously published algorithm (Roy et al. (10)).
Our work is motivated by the success of prior-based meth-
ods for network inference (11-14), however unlike these
existing approaches our approach to integrating diverse
datasets uses structure priors (15-17), which to our knowl-
edge have not been applied to genome-scale networks with
thousands of genes. Our approach can be used to integrate
different numbers of prior data sources and at its minimum
requires expression and sequence motifs, which are easily
available for most species and conditions. Second, we per-
formed an extensive comparison of networks inferred using
different classes of methods on different types of large scale
perturbation studies to identify important determinants of
predictive performance. We use several metrics to evaluate
the quality of the inferred networks based on the structure
of the network, the ability of the network to predict expres-
sion, as well as, the ability to recover evolutionarily con-
served co-expression patterns.

We apply our method and metrics to study transcrip-
tional regulatory networks as well as to gain insight into
the context-specific regulation for the yeast Saccharomyces
cerevisiae. Yeast serves as a good model system for our
study because a significant portion of its regulatory network
has been interrogated using different complementary exper-
imental methods including ChIP-chip (18,19), TF knock-
out (20,21) and protein binding arrays (22). In addition,
yeast has large collections of gene expression profiles mea-
sured under different types of genetic and environmental
perturbations including single gene knockouts, natural ge-
netic variation and environmental stresses. We compare dif-
ferent classes of network reconstruction methods on differ-
ent types of large scale expression datasets. These methods
range from those that assume linear or non-linear relation-
ships among regulators and target expression profiles, as
well as those that have used priors to improve network in-
ference but using approaches different from ours. We find
that adding sequence motifs as priors greatly improves the
quality of the structure of inferred regulatory networks and
the network can predict the effect of knocking out a TF. An
important outcome of our analysis is insight into the type
of perturbation that is most useful for inferring these net-
works; we suggest that natural genetic variation is the most
useful type of perturbation in yeast and likely in human. We
find that all methods are able to recover some TF target re-
lationships, however, there are some TFs that are inherently
unpredictable by any method. Finally, we use our method
to create an expansive regulatory network [for yeast] that
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integrates motif, ChIP and knockouts and to infer stress-
specific regulatory networks. We use the network’s ability
to predict expression to prioritize regulators in a condition-
specific manner and identify known regulators as well as
novel regulators, including RNA binding proteins, that have
not been implicated in these stresses.

MATERIALS AND METHODS

Probabilistic graphical model-based integrative approach to
regulatory network inference

A regulatory network is defined as a network that describes
regulatory relationships between TFs and target genes, and
a regulatory edge indicates that the expression levels of a
target gene changes as a function of activity of its regulator
(1). To represent such networks we use PGMs, which are
powerful models for representing and modeling the struc-
ture and function of regulatory networks (9,23). In a PGM,
there are two main components: a graph structure G, and
a set of parameters ®. The graph structure describes the
statistical dependencies among the nodes, each node rep-
resenting a regulator or a target gene. The parameters de-
scribe how the regulator set of a gene specifies the target
gene expression level. PGMs are a very general class of
mathematical models; the specific model we use is called
a dependency network (24). In such networks, a regula-
tory network is constructed by solving a set of per-gene re-
gression problems, where the expression of a gene is pre-
dicted as a function of its upstream regulators. Our inte-
grative network reconstruction method, MERLIN+Prior,
is based on a Bayesian framework of learning PGMs and ex-
tends our previous purely expression-based network infer-
ence method, MERLIN (10), to integrate additional non-
expression datasets. We first briefly describe the MERLIN
approach and describe our extensions to integrate addi-
tional datasets as model priors.

The MERLIN+Prior network inference algorithm. The
overall intuition of our approach is that there can be a large
number of regulators that can potentially explain the ex-
pression of a gene. However, one can use additional non-
expression datasets to provide support for a regulatory in-
teraction. By incorporating these additional datasets, we
aim to identify a regulatory interaction between a regulator
and a target gene that might not be evident based on expres-
sion alone. The MERLIN algorithm is based on a Bayesian
framework of learning a PGM representing the regulatory
network and uses a graph prior distribution to encourage
learning a modular regulatory network. In this framework,
we need to find the graph structure, G and parameters ® that
can best explain the given dataset D, P(G, ®|D), which by
Bayes rule is proportional to the data likelihood P(D|G, ©),
prior distribution of the parameters, P(®|G) and a prior dis-
tribution over the graph P(G):

P(G,®©|D) x P(D|G, ®)P(®|G)P(G).
In MERLIN, we defined a prior distribution over
a graph as, P(G) = HX,—>X;€QP(X]' - Xi)nx,ﬁx&gl -

P(X; — X;), where P(X; — X;)is the probability of an edge
being present in the prior graph.
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To integrate different types of datasets we extend the
MERLIN edge prior as follows:

1
L4exp(—(p + BR i + 2p BE x wh )’
where p denotes the sparsity parameter, B indicates the
modularity parameter and f; ; specifies the tendency of a

regulator X to regulate other genes in X;’s module, f;; =
dj
d

P(X; — X) =

where d; »; is the number of targets of X; in X;’s mod-
; : :

ule and d; is total number of targets of X;. B* control the
importance of the k" prior network, and w’]‘ ; quantifies our
confidence in the edge X; — X; in the k™ prior network. In-
creasing B* and w’/‘ increase the prior probability to add

the edge X; — X; to the network. The different types of reg-
ulatory evidences that can be integrated in our approach in-
clude sequence-specific motif instances within the promoter
of a target gene, presence of a TF binding on the target
gene, as well as measured effect on expression of genes af-
ter TF knockout or knockdown (Figure 1). The version of
the above prior that uses the module prior is called MER-
LIN+Prior. In addition we also tested another version of
this approach that does not use the module prior (8% = 0)
called the PGG+Prior.

The MER LIN+Prior network inference algorithm is sim-
ilar to the MERLIN algorithm and iterates between two
steps: (i) update the graph structure given the current mod-
ule assignment, (ii) update the module assignments given
the current graph structure (10). In the first step, the algo-
rithm performs a greedy score-based search to add the edge
that improves the overall score of the network. In the second
step, the algorithm uses the regulatory program inferred in
previous step and similarity in expression profiles to update
the module assignments. The score of an edge is defined by
the increase in the pseudo likelihood of the model on adding
the edge together with the change in the model prior (in-
cluding the current module assignments and additional pri-
ors to support the edge). This requires us to define the distri-
bution over the parameters, P(®|G) and the data likelihood,
P(D|G, ©). To maximize P(O|G) we set O to its maximum
likelihood setting. The data likelihood, P(D|G, ®) is

D

P(DIG,®) = [ Px"IG, ©).
d=1

Here, x? = {x¢, x{, ...x%} is the joint assignment of expres-
sion values of all the n genes in " sample in the dataset,
D = {x!, x?, ..x/P!}. In a dependency network, which is the
type of PGM we use, the likelihood of the joint assignment
x? over random variables is approximated by the pseudo
likelihood (24), which decomposes as a product over indi-
vidual conditional probability distributions for each ran-
dom variable X;, given its parents R;:

n |D|

P(|G.0) =[[[] P(X: = x{IR; = x§ . 6.

i=1d=1

The term P(X; = x§l|R,- = X%,-’ ;) is estimated as a multi-
variate conditional Gaussian distribution. The algorithm
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starts with a given initial module assignment (as input) and
iterates between these two steps until convergence (the delta
likelihood of the model becomes lower than a threshold) or
after a fixed number of iterations. Further details of how
the modules are defined based on co-expression and co-
regulation and how it is iteratively updated are described
in (10).

Selecting the prior parameters for MERLIN and PGG. To
set the prior parameter when using one prior network (Mo-
tif), we tested different values of the prior parameter gMetf
€{0.5,1,2,3,4, 5} for PGG+Prior and selected the param-
eter that produced highest AUPR (BMetl = 5). Similarly we
tested values of MU € {3, 4, 5, 6, 7} for MERLIN+Prior
and found (BM°U = 5) to give the best AUPR. Other
MERLIN-specific parameters including sparsity, modular-
ity and clustering cut-off parameters were set to default con-
figurations of —5, 4 and 0.6, respectively, which were se-
lected by applying MERLIN (without prior) to a simulated
network in a cross validation framework, as previously de-
scribed in (10). A similar strategy was used for other meth-
ods with multiple input configurations as described in the
method descriptions below.

When using multiple prior networks (ChIP, Motif and
Knockout), we trained a binary classifier, to estimate the
relative importance of different prior networks. The classi-
fier was trained to predict if a TF-target pair interacts or
not, and the feature vector of the pair consisted of confi-
dence of the edge in each of the prior networks (and 0 if the
edge was not observed in that prior network). We defined
the positive set as the intersection of edges in the Maclsaac
network and edges in which the target’s expression was sig-
nificantly altered after TF knockout from Kemmeren et al.
(25). This positive set constitutes 1,026 edges (~27%) of the
Maclsaac gold-standard. We defined a negative set based
on the complement of the positive set with the same size of
random edges. We enforced an additional constraint that if
there are k' edges in the positive set that are in the /" prior
network, we should have the same number of edges from
the /" prior network in the negative set. This was impor-
tant because if the number of elements without a feature
(with value of 0) was higher in negative set, the classifier
would only need to distinguish between 0 and non zero to
separate elements in positive and negative set and we will
observe an erroneous high accuracy. By having the same ra-
tio of missing features in the positive and negative sets, we
ensured that the classifier will not be biased toward pres-
ence or absence of a feature. We used 1assoglmfunction in
Matlab and trained a classifier (in a 10-fold cross validation
scheme) to predict the label of an edge based on its weight
in the given prior networks. We used the regression coeffi-
cients of this model to set the relative importance of differ-
ent prior networks (Mol = 2, gChIP — 5 gKnockout _ 3 5y
We compared this setting with an alternative setting where
all the prior networks had the same importance (MU =
BENP — gKnockout — 5y and observed that even though both
configurations perform better than the model inferred us-
ing only Motif prior network, the model with different im-
portance values for different prior networks perform better.
Because we used part of the Maclsaac network for learn-
ing the hyper parameters, there is danger of overestimating
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Graph structure prior-based integrative network inference

Different types of prior
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Figure 1. Overview of our approach to integrate diverse regulatory genomic datasets as structure priors. X; and X; denote a regulator (such as a transcription
factor) and a target gene respectively. For each candidate edge X; — Xj, different sources of prior networks can be used. The figure shows three different
types of prior networks: ChIP, Motif and Knockout. Each prior network can be weighted, for example w% denotes the weight of the regulatory edge in
the motif network. Different prior networks are combined to specify the prior probability of an edge using a single logistic function with prior parameters
BY, M, BK, BC. BY controls for network sparsity, while the other parameters specify importance of the prior networks. The regulatory network is itself
represented as a dependency network learned by estimating a set of conditional probability distributions. In the example, the conditional distribution of
the target gene Xy is specified by three regulators, X7, X>, X3. W denotes a particular form of conditional probability distributions that is parameterized

by ©.

the performance on the Maclsaac gold standard. However,
we find that the majority of true positive edges are from the
portion of gold standard that was not included in this train-
ing set (Supplementary Table S1) suggesting that the prior
parameter training is not resulting in over fitting.

Prior networks. Our MERLIN+Prior approach is flexi-
ble and can incorporate different types of prior networks.
Here we considered three types of prior networks, Mo-
tif, ChIP and Knockout. For the motif prior network, we
used position-specific matrices from Gordan et al. (22)
and position-specific matrices from YeTFaSCo (26). We
scanned yeast promoters defined by 1000 bp upstream of
the first ATG of a gene using the TestMotif program (27).
For the ChIP-chip prior network, we used two ChIP-chip
networks (18,28). We also had a prior network based on ge-
netic knockouts in YPD (20,29). In each case we created the
edge weights using a percentile rank (when ranking edges
based on their P-value). In the case of motif and ChIP-chip,
where we had two prior networks each, we took the union
of the two networks and summed the edge weights for com-
mon edges. We expect the gold standard and prior edges to
overlap, however, the prior edge weights give a noisy obser-
vation of the gold standard edge. The details of these net-
works and their overlap with the gold standard networks
are described in Table 1.

Description of existing network inference methods compared

We used four freely available expression-based network in-
ference methods to compare to our method: (i) GENIE3,
(i) LARS-EN, (iii) Inferelator, (iv) TIGRESS.

GENIE3. GENIE3 is a dependency network learning al-
gorithm which uses tree-based ensembles and was one
of the best performers in the DREAM network infer-
ence challenge (8). We downloaded MATLAB implemen-
tation of GENIE3 (30) from the software’s webpage (http://
homepages.inf.ed.ac.uk/vhuynht/software. html). GENIE3
has two main parameters: the number of trees, and the num-
ber of features to be used at each split. For each of these
settings we tested multiple configurations: number of trees,
nb_trees € {100, 500, 1000,1500, 2000, 10 000} and num-
ber of features examined at each tree split, K€ {sqrt.,all},
where sqrt will use the square root of the number of reg-
ulators, while a1l will use all the regulators. We selected
the one that produced highest AUPR on Maclsaac network
(nb_trees = 10000 and K = sqrt). We extracted the top
1 million edges, and used the reported edge confidences to
create precision-recall curves.

LARS-EN. LARS-EN is based on elastic net regression
that combines both L1 and L2 regularization for variable
selection method and was shown to perform better than
LASSO in many cases while producing a sparse model (31).
We used MATLAB implementation of LARS-EN from
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Table 1. Statistics of different prior networks used
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#overlap with #overlap with
#overlap with YEASTRACT  YEASTRACT  #overlap with Hu

Network #edges #regulators Htargets Maclsaac (%) type > 2 (%) count > 3 (%) (%)

Motif 187079 197 5506 1856 (49%) 1844 (44%) 1837 (48%) 1457 (14%)
ChIP 229936 318 5557 2281 (60%) 1758 (42%) 2112 (55%) 1237 (12%)
Knockout 96 809 262 5543 564 (15%) 833 (20%) 800 (21%) 8756 (85%)

The first three columns show the number of edges, number of regulators and the number of target genes. The last three columns show the number of edges
from the prior networks overlapping with each of the gold standard networks. In parentheses are shown the percentage of the gold standard edges that

number corresponds to.

Imm3897 package downloaded from http:/www2.imm.
dtu.dk/pubdb/views/publication_details.php?id=3897 in a
stability selection procedure (see section ‘Stability selection
scheme for learning networks’). In each run of the LARS-
EN, for each target gene, we used the expression profile of
that gene as response and the expression profile of all can-
didate regulators as regression variables. If a target gene
was one of the candidate regulators, we removed that gene
from the regression variable matrix. We tested L2 regular-
ization parameter, lambda2, € {lE-6, 1E-5, 1E-4, 1E-3,
1E-2, 1E-1}, while allowing cross-validation to select the
L1 penalty. We used the LARS-EN inbuilt cross validation
routine with K=5 fold cross validation, for each value of
lambda?2 tested. Changing L2 did not significantly change
the performance of the inferred networks (AUPR was the
same up to 4" decimal digit, we used lambda2 = 1E-6).

Inferelator. Inferelator is a network inference method that
uses ordinary differential equations (ODEs) to model the
dynamic nature of the regulatory networks and was re-
cently extended to incorporate biological prior knowledge
(11,32). We used the unweighted version of the motif net-
work as the prior network for Inferelator. The latest imple-
mentation of the Inferelator package was provided by the
Bonneau lab (23 October 2014). The Inferelator package
has two methods for incorporating priors: modified elas-
tic net (MEN) and bayesian best subset regression (BBSR).
We tested both MEN and BBSR methods with the recom-
mended prior weight settings (both high and low) and used
MEN with prior weight = 0.01 (high setting) as this gave
the best AUPR. We set the degradation rate (tau) to 20.1
based on literature (33).

TIGRESS. TIGRESS (34) is a network inference method
that uses least angle regression (LARS) in a stability se-
lection framework, and was ranked among the best per-
formers in the DREAMS network inference challenge (8).
We downloaded the MATLAB implementation of the algo-
rithm from http://cbio.ensmp.fr/~ahaury/svn/dream5/html/
index.html. TIGRESS parameter settings are R: number of
resamplings that should be used to run stability selection
(default = 1000); «: controls the randomization level and
i1s a scalar 0 < a < 1, where if a=1, no randomization is
used (default = 0.2); L: number of LARS steps that should
be considered (default = 5). We tested multiple different pa-
rameter settings: R = {200, 500, 1000}, L ={3, 5, 10, 15, 20,
25,30} and « = {0.1,0.2, 0.3, 0.5} and selected the one that
produced highest AUPR on the Maclsaac network (number
of resamplings, R = 1000, o = 0.3 and L = 30).

Stability selection scheme for learning networks. We ran
MERLIN and PGG (with and without prior), and LARS-
EN algorithms within a stability selection framework
(35,36) to estimate edge confidence. Stability selection is a
subsampling approach to estimate confidence in the model
structure in model selection problems including the struc-
ture learning and clustering. The Inferelator and GENIE3
approaches have their own built-in subsampling frame-
works that output an edge confidence. Existing work in
expression-based network inference (34), and also our own
experiments (Supplementary Figure S1), have shown that
stability selection can greatly improve the quality of the in-
ferred network. In our stability selection scheme, for each
dataset we produced 100 random subsets with the same
number of genes and randomly selected a subset of columns
equal to half the size of the original dataset. We learned the
model on each subset and merged the resulting networks. In
the merged network, the weight of each edge corresponds
to the frequency of observing that edge in the 100 learned
models. Running these methods on different subsamples,
datasets, and with different parameter settings is time in-
tensive; to exploit the parallel nature of this approach, we
used the resources of the UW-Madison Center For High
Throughput Computing (CHTC, http://chtc.cs.wisc.edu).

Description of expression datasets

Yeast expression datasets. 'We used different yeast expres-
sion datasets for different computational experiments (Ta-
ble 2). Briefly, there were four computational tasks we ad-
dressed in this paper: (i) regulatory network inference, (ii)
validation of inferred networks based on predictive power,
(ii1) validation of inferred networks based on conserved
co-expression, (iv) inference of condition-specific networks.
For inference of the regulatory networks using our exist-
ing inference algorithms, we prepared three different types
of expression datasets (Table 2): (i) natural variation (Nat
Var), (i1) knock-out experiments (Knockout), (iii) response
to stress (StressResp). For natural variation dataset, we used
combination of expression datasets from Brem et al. (37),
Smith et al. (38) and Zhu et al. (39). For the Knockout
dataset, we combined the expression datasets from Chua
et al. (21) and Hu et al. (20). For Stress response dataset,
we used expression data from Gasch ez al. (40). When com-
bining multiple datasets for one type of perturbation (natu-
ral variation or knockout) we only used the genes that were
present in the intersection of those datasets after prepro-
cessing. For preprocessing, in each dataset, for each column
we subtracted the mean and divided by the standard devi-
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ation. If more than 20% of the measurements of a column
were missing, we removed that column. For each gene, if
more than 50% of its measurements were missing, we re-
moved that row from the dataset, otherwise we filled the
missing values of a gene with the average expression value
of that gene. If a gene was repeated multiple times, we col-
lapsed the repeated rows by taking their average. Biological
replicates of samples were collapsed by taking their average.

For assessing the predictive power of different inferred
networks (inferred using any of the three above datasets),
we used the expression dataset from Kemmeren er al.
(25). This dataset served as a ‘hold-out’ set as it was not
used for learning any of the networks. For the experi-
ments on evolutionary conserved edges, we used expres-
sion datasets of short time series under salt and heat shock
in six different species of yeast (Candida albicans, Can-
dida glabrata, Kluyveromyces lactis, Saccharomyces castellii,
Schizosaccharomyces pombe and Saccharomyces cerevisiae)
from Wapinski et al. (41), Roy et al. (42) and Thompson et
al. (43). Finally, for learning condition-specific regulatory
experiments, in addition to datasets from Gasch et al. (40)
we used additional expression datasets of yeast under os-
motic stress from Ni et al. (44), Wapinski et al. (41), Lee et
al. (45) and Chasman et al. (46).

Human expression datasets. We used multiple gene ex-
pression datasets from human lymphoblastoid cell lines
(LCL) to represent two types of perturbation: stress re-
sponse and natural variation (Supplementary Table S2). Al-
though there is regulator perturbation data for multiple TFs
from Cusanovich et al. (47), we used this to derive our
gold standard regulatory network (see below) and therefore
could not use it for network inference. LCLs, including the
GM 12878 cell line, are among the most well-studied cell
lines and have similar types of perturbation datasets as in
yeast. For natural variation type of data, we used the expres-
sion dataset from Geuvadis (48) (EBI ArrayExpress acces-
sion E-GEUV-3) and Niu ef al. (49) (Gene expression Om-
nibus (GEO) accession GSE23120). For stress response, we
searched in GEO for studies using LCLs and downloaded
several datasets. These include a dataset from Benton et
al. (50) (GSE20320), Junaid et al. (51) (GSE29141), For-
rester et al. (52) (GSE41840), Luca et al. (53) (GSE44248),
Su et al. (54) (GSE51709), Glover et al. (55) (GSE71521)
and two other datasets (GSE22639, GSE51454). Each sam-
ple was first normalized by subtracting the mean (RNA-
seq datasets were first log transformed) followed by collaps-
ing any replicates. We combined all stress response datasets
into one dataset (201 samples in total, after collapsing repli-
cates), and quantile normalized the data (quantilenorm
function in MATLAB). We selected 4084 genes that were
observed in all the datasets.

Evaluation of different network inference methods

We used multiple strategies to evaluate the structure and the
function of networks inferred from different types of meth-
ods and datasets.

Gold standard regulatory networks.  For yeast we had three
gold standard standards, one from Maclsaac et al. (56), and
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two from YEASTRACT (57). The Maclsaac network is the
most well-known gold standard for yeast and was used for a
large comparative study for many purely expression-based
network inference algorithms (8). The YEASTRACT is a
curated database of experimentally validated (and poten-
tial) regulatory interactions between TFs and target genes
from different types of experiment (e.g. direct like ChIP-
chip or indirect like TF overexpression or knockout). One
of the YEASTRACT networks, referred here as type >2,
included edges found in two or more different types of ex-
perimental assays. The second YEASTRACT network, re-
ferred here as count >3, included edges that were detected
in three or more experiments (regardless of the assay type).
The statistics of these networks are given in Table 3. For our
experiments of different types of priors and gold standards,
we used a fourth gold standard from Hu et al. (20), which
was derived from knockouts of TFs. For human, our gold
standard network was a functional regulatory network con-
sisting of the intersection of functional edges and binding
edges defined by Cusanovich et al (47). After intersecting
the TFs and target genes with those that had expression,
our gold standard had 6,389 edges connecting 17 TFs and
2755 target genes.

Area Under the Precision-Recall (AUPR) and Receiver op-
erating characteristic (AUROC) curves. The AUPR and
AUROC are established metrics to assess the similarity of
the inferred network to a known gold standard. To compute
the precision-recall curve we sorted the edges by decreasing
confidence. For precision, we computed the percentage of
the top k of N edges that were in the gold standard network,
where N is the maximum number of edges in the inferred
network. Similarly, for recall, we computed the percentage
of the edges in the gold standard network that are in the
top k edges of the inferred network. To produce the preci-
sion and recall and receiver operating characteristic curves
and calculate the area under the curves, we used the AUC-
Calculator Java package (58). AUPRs and AUROCs were
computed for all three yeast gold standard networks using
networks inferred by applying the different network recon-
struction methods on three expression datasets (Nat. Var,
StressResp, Knockout, Table 2).

Assessing the effect of the prior networks on the inferred net-
works. To assess the impact of the prior network on the
inferred networks including overestimation of performance,
we performed two different analyses: first, we split the edges
of the gold standard networks that were in the prior net-
work and those that were not (See Table 1 for the number of
edges in gold standards and prior networks). Next we com-
puted the AUPR on these two parts of the gold standard
using networks inferred on the Nat Var dataset using both
methods that used prior or did not use prior (Supplemen-
tary Figure S2A—C). This analysis shows that on part of the
gold standard that does not have prior support, the prior-
based methods perform only slightly worse than methods
that do not use prior support. Second, we examined differ-
ent types of prior and gold standard networks. This is im-
portant because, in practice, we expect that the prior is a
weighted network that has some overlap in edges with the
gold standard, otherwise, the prior would not be helpful.
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Table 2. Number of genes, regulators and samples in each expression dataset

Nucleic Acids Research, 2017, Vol. 45, No. 4 e21

Dataset #genes #Regulators #experiments Used in

Natural variation (Nat. Var) 5661 537 377 Inference (Figure 2)

Knockout 5978 536 539 Inference (Figure 2)

Stress response (StressResp) 6138 536 173 Inference (Figure 2)

Hold out data 5478 533 2605 Validation (predictable targets, Figure 2)

Heat stress 6137 536 24 Condition specific inference (Figure 7)

Osmotic stress 4711 465 23 Condition specific inference (Figure 7)

Evol. cons. (S. cerevisiae) 5304 529 30 Validation (evolutionary conservation, Figure S6)

Rows correspond to different datasets and columns show different statistics.

Table 3. Statistics of different gold standard networks used, the number of edges, the number of regulators and the number of target genes

Network #edges #regulators Htargets
Maclsaac 3802 114 1883
YEASTRACT (type > 2) 4219 119 2167
YEASTRACT (count > 3) 3818 119 2067
Hu 10 101 264 2334

However, depending upon the source of the network, we
might observe better or worse performance on a given gold
standard network. We used ChIP, motif and knockout net-
works separately as a prior for the MERLIN-P algorithm,
and compared these inferred networks to the Maclsaac gold
standard (56) and a knockout-based gold standard from Hu
et al. (20). We note that the Motif and ChIP priors are inde-
pendent of the knockout gold standard, and the knockout
prior is independent of the Maclsaac gold standard (Sup-
plementary Figure S3). This analysis showed that the prior-
based framework remains beneficial compared to non-prior
based network inference methods even when the prior and
gold standard are obtained from different experimental ap-
proaches.

Identifying predictable transcription factors. We defined
predictable TFs based on the Maclsaac gold standard reg-
ulatory network. For each TF in the Maclsaac network,
we computed the significance in overlap of the targets of
this TF with the predicted targets of this TF in a purely
expression or expression+prior based network. A TF was
considered predictable if the overlap was significant based
on a corrected hypergeometric test P-value < 0.05 with
the Benjamini-Hochberg correction for multiple hypothesis
testing.

Calculating the predictive power of networks. For a given
inferred network we obtain the regulators for each target
gene in the top 30K edges of the network. We construct a
linear model for each target gene where the expression of the
target gene is a linear function of the expression of its regu-
lators. We estimate parameters of this model on the dataset
that was used to infer the network, and then test the model
on an unseen dataset (in this case expression dataset from
Kemmeren ez al. (25)). As a measure of predictive power,
we calculate the Pearson correlation between the predicted
expression profile and actual expression profile of the tar-
get gene. To assess the significance of the observed corre-
lation values, we produce 100 random networks. In gener-
ating a random network, we satisfy two conditions: (i) the
in-degree of the target gene in the random and actual net-

work should be the same, and (ii) the regulator set of target
gene in the random and actual network should not have any
overlap. For each target gene we compute the correlation of
predicted and observed expression profiles in all the random
networks. We calculate the significance of predicting the tar-
get gene’s expression level by counting the number of times
the correlation in a random network was higher than the
correlation in the actual network. Finally, for a given net-
work, we calculate the percentage of target genes that was
significantly predicted better than random (<0.05).

Fraction of functional edges. We obtained the knockout
dataset from Kemmeren et al. (25), which used LIMMA
(59) to estimate the differentially expressed genes under the
deletion of another gene. For a given network, we calculated
the fraction of functional edges as the percentage of the top
30K edges that were associated with a significant change (p-
value < 0.05) in expression of the target gene in the deletion
strain of the regulator gene.

Evolutionary conservation of edges. We further evaluated
the yeast inferred networks based on evolutionary conser-
vation of correlation values. Edges in an inferred network,
defined by the top 30K edges, were considered to have evolu-
tionarily conserved signatures if the orthologous TF-target
edge in another species were more co-expressed than or-
thologous non TF-target pairs (not in the top 30K edges),
based on a KS-test (P-value < 0.05). We obtained the ex-
pression dataset from six different yeast species (C. albicans,
C. glabrata, K. lactis, S. castellii, S. pombe and S. cerevisiae)
measured under various stress conditions (41-43). We first
compared the distributions in S. cerevisiae, the species for
which we specifically inferred networks. Next for each of
the five remaining species, we mapped the edges from the
inferred network to the second species using one-to-one or-
thology from Wapinski et al. (60). Briefly, for a given edge,
we mapped the TF and target gene from S. cerevisiae to
the corresponding orthologous gene in the second species
(only if this mapping was 1-to-1). This resulted in 3880—
22 728 edges, with S. pombe having the fewest edges and
S. castellii having the largest number of edges. We created
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the foreground distribution using the correlation between
the regulator and target gene in the mappable edges and the
background as all possible pairs of regulators and targets
spanning these edges but excluding the TF-target inferred
pairs.

Inference of condition-specific regulatory networks and regu-
lator prioritization

As a second application of our prior-based integrative net-
work learning approach, we inferred condition-specific reg-
ulatory networks. To infer the condition-specific networks
for heat and osmotic stress datasets, we created 20 subsam-
ples with 14 measurements for each dataset. We ran MER-
LIN+Prior on each subsample separately using as prior the
top 30K edges of our expansive regulatory network (that is
the network inferred on Nat.Var. dataset when using ChlIP,
Motif and Knockout as prior networks). We set g = 5 for
prior importance parameter. We generated a consensus net-
work for each of these stress conditions. The heat shock or
osmotic stress response (OSR)-specific network was defined
by the set of edges in 3 or more of the 20 sub samples.

Given a learned network on training expression dataset,
we rank regulators based on the overall importance of the
regulator to accurately predict the expression levels of genes
in a given condition. The importance of a regulator is de-
fined by the sum of the importance of all of its outgoing
edges, and is therefore a function of its degree as well as the
predictive model learned in the training set. For each gene,
J.lety; be then x 1 vector of expression values in 7 different
time points or samples associated with a specific condition.
We assume the expression of a gene is a linear combination
of the expression of its regulators. Let X; denote n x k ex-
pression matrix, each column representing the expression
levels of one of j’s k regulators, and X ;\; represent the ex-
pression matrix without the /" regulator. Let {Bo, B1, ...Bx}
denote the regression coefficients calculated in the training
set (Nat.Var for these experiments). The importance of the
edge between regulator i and target gene j, is defined by the
change in the mean squared error between two linear mod-
els:

, 1
Ampy, .y, = - (Ily; = X;Bj115 — Ily; — X, Bjll3)

A positive value of importance means that removing the
edge increases the error of the model, and higher the differ-
ence the more important is an edge. If the regulator /s target
set is g;, then the importance of iis } ., Aimpy,_, y.

RESULTS

Addition of prior greatly improves the inferred network struc-
ture; however, methods are comparable for predicting expres-
sion

We compared five purely expression-based network in-
ference methods and three prior-based methods that in-
cluded priors across different types of datasets. The non-
prior expression-based network inference methods include
GENIE3 (30), LARSEN (31), TIGRESS (34), MERLIN
(10) and PGG (Per Gene Greedy network inference which
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does not incorporate modules, ‘Materials and Methods’
section). Our prior-based methods included PGG+Prior,
MERLIN+Prior and Inferelator (11). The difference be-
tween PGG+Prior and MERLIN+Prior is that MER-
LIN+Prior includes a module prior while PGG+Prior does
not. In these experiments, we only used the motif prior net-
work for all three prior-based methods because this is the
most readily available non-expression dataset for an organ-
ism.

We used five evaluation metrics to evaluate the quality
of the inferred networks: (i) area under the precision-recall
curve (AUPR), (ii) number of predictable TFs, (iii) frac-
tion of target genes for which their expression can be ac-
curately predicted in a test condition, (iv) fraction of func-
tional edges between a TF and target gene inferred from
significant change in expression of the target gene if the TF
is knocked out, (v) evolutionary conservation of TF-target
co-expression. The AUPR measure and the number of pre-
dictable TFs evaluated the connectivity structure of the net-
work, whereas the remaining three assessed the parameters
or functional aspect of the network. We computed these
metrics on networks inferred on three different types of
datasets (Table 2): natural genetic variation (Nat Var, (37—
39)), large scale regulator knockout followed by genome-
wide expression profiling (Knockout, (20,21)) and a large
compendia of stress response expression profiles (Stress-
Resp, (40)).

To compute the AUPRSs, we used three networks as gold
standards. One gold standard was from Maclsaac et al.
(56), which was used also by the DREAM network infer-
ence challenge that compared a large number of expression-
based network inference methods (8). The other two gold
standards were from YEASTRACT (57) and included: (1)
edges that were found in two or more different types of ex-
perimental assays (e.g. ChIP-chip and TF knockout, ‘type
>2’), (ii) edges that were detected in three or more ex-
periments regardless of the assay type (‘count > 3°). Fig-
ure 2A(i) shows the PR curves of networks inferred using
the natural variation data. We find that methods that in-
corporate priors (MERLIN+Prior, PGG+Prior and Infer-
elator), achieve higher AUPRs compared to methods that
do not. Among the different prior-based methods, MER-
LIN+Prior (which combines sequence-specific motifs and
network modularity) is the best performing approach. This
high performance for the prior-based methods was ob-
served for other datasets and different gold standard net-
works (columns in Figure 2A(ii)). Supplementary Figure
S4B reports the precision of inferred network from differ-
ent methods on different datasets at several recall points
(also available in Supplementary Table S3). As expected,
for prior-based methods, we observed higher precision at
the same recall point, compared to purely expression based
methods. Although the AUPR is a more precise measure
for network reconstruction because of the large number of
non-interactions, area under receiver operating character-
istic (AUROQC) is also often reported for computationally
inferred networks (8). We computed AUROC using each of
the gold standards and observed significant improvement
in methods that incorporate prior (Supplementary Figure
S4A). The performance of the methods using priors de-
pends both on the gold standard, and, extent of overlap be-
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Figure 2. Evaluation of different prior and non-prior based network inference methods. (A(i)) Precision-Recall curves comparing the networks inferred
by applying eight different methods, GENIE3, LARS-EN, TIGRESS, PGG, MERLIN, Inferelator, PGG+Prior and MERLIN+Prior, to the natural
variation (Nat. Var) dataset. Methods with prior (Inferelator, MERLIN+Prior, PGG+Prior) used the motif network as prior. Precision and recall values
are computed using the Maclsaac ChIP-chip network as the gold standard. (A(ii)) Area under the Precision Recall curve (AUPR) values of these eight
methods using three different expression datasets (Nat. Var, Knockout, StressResp) computed on three different gold-standard networks. These gold
standard networks include the Maclsaac network from (A(i)) and two variants of the YEASTRACT network. (B) Number of predictable regulators defined
by the TFs whose target sets can be inferred well by the inferred networks. The number of predictable regulators are estimated using the eight network
inference methods on the three expression datasets. (C) Percentage of predictable target genes defined by the fraction of target genes whose expression can
be predicted better than 95% of random networks. (D) Percentage of functional edges (with significant knockout effect) in the inferred networks from the
different methods on three expression datasets. Blue line shows the performance of the top 30K edges from the motif network. Analysis in B-D was done

using the top 30K edges in each inferred network.

tween the prior network and the gold standard. We there-
fore computed AUPRs for the part of the gold standard
with prior and without prior. We find the prior-based inte-
grative framework to perform slightly worse on parts of the
network without prior (Supplementary Figure S2). Further,
when the prior and gold standard are obtained from dif-
ferent types of experiments, the gold standard can be more
accurately predicted with our framework compared to with-
out using prior (Supplementary Figure S3, see Supplemen-
tary Note for more details.)

While AUPR is an edge-based measure that assesses how
well candidate regulatory edges are ranked by a method,
examining other components of the network can provide
a more fine-grained assessment of a method. To this end
we identified ‘predictable TFs,” defined as TFs with signifi-

cant overlap between their targets in the gold standard and
the inferred networks. We selected top 30K edges from each
inferred network to assess statistical significance based on
the hypergeometric test with Benjamini-Hochberg correc-
tion for multiple hypothesis testing (‘Materials and Meth-
ods’ section). A method with more predictable TFs is con-
sidered superior to a method with fewer predictable TFs. As
a baseline we used the motif network which we provided as
a prior to the methods. We found that motifs alone can re-
cover targets of several TFs, but this is lower than both our
methods with prior. Our prior-based methods, PGG+Prior
and MERLIN+Prior recovered 40 predictable regulators,
while the non-prior based methods recovered targets of 10—
20 regulators in Nat.Var, Figure 2B), suggesting that the
prior-based methods were more successful in predicting the



e2l Nucleic Acids Research, 2017, Vol. 45, No. 4

network structure. Among the non-prior based methods,
MERLIN and PGG had the largest number of predictable
TFs (Figure 2B). Overall, our comparison based on both
AUPR and the number of predictable TFs, which assess
the structure of the inferred networks, showed that meth-
ods that used motifs as a prior were significantly better than
methods without prior. To assess the robustness of this met-
ric to the size of the network, we selected different network
sizes and repeated our analysis. We observed similar trends
across different network sizes, which suggest this analysis is
robust to the number of selected edges (Supplementary text,
Supplementary Figure S5).

Having determined that the ability of a method to infer
network structure is significantly improved by integrating
motifs, we next evaluated the functional aspect of the in-
ferred networks by examining the ability of the network to
predict expression. We did this in two ways. First, we trained
a linear model using the network structure inferred by a
method using a particular expression dataset and tested it
on an unseen holdout dataset (Figure 2C, predictable tar-
gets). Second, we asked whether the targets of TFs pre-
dicted by the network inference methods exhibited signifi-
cant change in expression when the TF is perturbed (Figure
2D, functional edges). For both these questions we used a
recently generated knockout dataset from Kemmeren et al.
(25) that profiled the mRNA expression levels response to
1484 individual gene knockouts as part of a large genetic
knockout study in S. cerevisiae. This data was not used for
training and served as an independent validation dataset.
As for the predictable TF metric, we found consistent re-
sults with this metric on networks with different numbers
of edges (Supplementary text, Supplementary Figure S5).

To define the fraction of predictable targets in an inferred
network, we used the linear model trained on the origi-
nal dataset (dataset used to infer the network) and pre-
dicted the expression of all the target genes (as a func-
tion of expression of their regulators) in the new hold-
out dataset (‘Materials and Methods’ section). All meth-
ods infer networks that are significantly more predictive of
expression compared to the purely motif-based network,
underscoring the importance of expression-based datasets
for inferring network structure and parameters (Figure 2C,
blue line). The purely expression-based methods (GENIE3,
LARS-EN, TIGRESS, PGG and MERLIN) are able to
perform very well as far as this metric is concerned (Figure
2C). In fact, prior-based methods suffer in predictive power
compared to the non-prior counterparts (e.g. PGG versus
PGG+Prior, and MERLIN versus MERLIN+Prior). This
result shows the importance of assessing inferred network
models using both structure and parameters: while purely
expression-based methods are not able to recover as many
ChIP-chip edges as the expression+prior-based methods,
their ability to predict expression in new conditions is as
good or better than methods that are able to more accu-
rately recover the structure of the network.

To assess the extent to which the inferred networks are
functional, we measured the agreement between genes that
are differentially expressed in a TF knockout from Kem-
meren et al. (25) and the predicted targets of the same TF
in the inferred network (Figure 2D, ‘Materials and Meth-
ods’ section). For each edge in the inferred network that
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was examined in the knockout dataset, we asked whether
the perturbation of the regulator in that edge significantly
affected the expression of its target (P-value < 0.05). We
called these edges ‘functional’ and calculated the percent-
age of functional edges in the inferred network. Consistent
with our observation of predictive power of target gene ex-
pression, we find that both our prior and non-prior-based
methods are able to perform at par, producing similar frac-
tions of functional edges. Among the methods that used
a prior, MERLIN+Prior and PGG+Prior performed bet-
ter (15-17%) compared to Inferelator (10-12%) on different
datasets.

Finally, we used evolutionary conservation to assess the
functional aspect of the inferred network structures (‘Mate-
rials and Methods’ section). To this end, we obtained the ex-
pression dataset from six different yeast species (C. albicans,
C. glabrata, K. lactis, S. castellii, S. pombe and S. cerevisiae)
measured under various stress conditions (41-43). Using
MERLIN+Prior, we find that the edges inferred in the net-
work are significantly more correlated than edges in back-
ground across all species (Supplementary Figure S6A-F).
Repeating this experiment using the networks inferred using
other methods (on Nat. Var. dataset, Figure S6G-L), we ob-
served that MERLIN+Prior remained the method with the
most significant difference among other prior-based meth-
ods. The correlation of edges inferred by purely expression-
based methods (MERLIN, PGG, TIGRESS and GENIE3)
tend to have more significant KS-test P-value, which is likely
because the selected TFs of a target gene are more predic-
tive and correlated with the expression of the target gene if
expression alone is used as a criteria for network inference.
In summary, our prior-based network inference approach
is able to infer network structures with the highest structure
accuracy compared to existing approaches and are as pre-
dictive of gene expression as all methods compared. This
suggests that integrating expression with sequence-specific
motifs can infer regulatory networks with both physical and
functional edges.

Genetic variation is the most informative type of dataset for
inferring regulatory networks in yeast

Although the integration of different types of expression
and non-expression datasets can improve the quality of in-
ferred networks, the type of experimental perturbations can
influence the quality of the inferred network structure. Such
perturbations include single gene knockouts, natural varia-
tion and environmental perturbations. Hence, we used our
comparative analysis of performance of different methods
on different datasets described before to examine the im-
pact of the type of perturbation on the quality of inferred
networks. We find that the networks inferred using natu-
ral variation data have the highest AUPRSs for all methods
(Figure 2A(ii)) and the highest number of predictable reg-
ulators (Figure 2B). This difference is more significant for
the methods that did not use prior, which is expected be-
cause the prior establishes a constraint on the inferred net-
works. When examining the predictive power of networks
inferred from the different types of datasets assessed using
the number of expression-predictable target genes (Figure
2C), we find that Nat.Var. is the best for the TIGRESS,
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PGG and MERLIN methods (both with and without prior
versions), tied with the StressResp data for LARS-EN and
better than the Knockout data for GENIE3 and Inferelator.
Finally, based on the number of functional edges we find
a slight advantage for the networks inferred on Knockout
dataset, even though this dataset was produced from dif-
ferent studies (20,21) and independent from the Kemmeren
et al. dataset (25) used to extract the functional edges. Im-
portantly, the fraction of functional edges inferred using the
Nat.Var. dataset is never the worst for any of the methods
compared. These results suggest that among the different
types of large-scale perturbations compared in this study,
natural genetic variation data is the most informative type
of perturbation for inferring network structure as well as for
learning parameters.

To assess the generality of this observation, we examined
various human expression datasets as well (Supplementary
methods, Supplementary Figure S7). We focused on data
from LCLs because a large amount of ChIP-seq data ex-
ists for the Gm12878 LCL from the ENCODE project (61)
and is the cell line of choice in human genetic variation
studies (48,49) as well as different stress-like perturbations
(See ‘Materials and Methods’ section for details). Com-
pared to stress, we find that datasets that measure the im-
pact of genetic variation had higher AUPRs, especially in
the no-prior case (Supplementary Figure S7A), had higher
fraction of functional edges (Supplementary Figure S7C)
and had greater fraction of predictable targets (Supplemen-
tary Figure S7D). As we incorporate prior, the difference
between the different types of perturbations is reduced and
we observe an increase in the number of predictable TFs for
stress response at higher prior settings (Supplementary Fig-
ure S7B). Our initial results in human offer promising evi-
dence that genetic variation is a better type of perturbation
for lymphoblastoid network inference.

Comparison of inferred networks from different methods
identifies inherently predictable and unpredictable TFs

We next examined the extent to which the methods agreed
on the inferred networks across datasets and the predictable
TFs originally introduced in Figure 2B. As expected, prior-
based methods were less sensitive to the choice of the
dataset and agreed more with each other, than purely
expression-based methods (Supplementary text, Supple-
mentary Figure S8). The specific TFs that are predictable
by the different methods are shown in Figure 3. Even
though the number of predictable regulators from differ-
ent methods vary, there are some overlaps between these
lists. Because of the similarity among the PGG and MER-
LIN methods and their prior versions, we compared which
TFs were predictable by either PGG/MERLIN and ei-
ther LARSEN, TIGRESS, GENIE3 or Inferelator. In all,
there are 57 predictable TFs among the list of TFs in
the Maclsaac gold standard network. Among the 57 pre-
dictable regulators we find TFs that are predictable by dif-
ferent categories of methods. Seven TFs (GCR1, HAPI,
HAP4,INO2, MET32, STE12 and ZAP1) were predictable
by all categories of methods (GENIE3, TIGRESS, LARS-
EN and PGG or MERLIN). Thirty of the 57 TFs are
predictable by at least one of the expression-based meth-
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ods on one of the datasets, and there are 23 TFs that are
predictable by at least two (for example GCN4 and CINS
are predictable by LARS-EN and PGG or MERLIN). On
the other hand, there are 26 TFs (for example GAL4 and
REBI) that are predictable only by prior-based methods
(Inferelator, PGG+Prior or MELRIN+Prior) and half of
these TFs (14) were predictable by Inferelator and PGG or
MERLIN+Prior. Taken together, these results show that
despite the variability and dependence on the different
datasets, methods for inferring networks are mutually con-
sistent with each other with considerable overlap among the
specific set of TFs that are predictable. Such common pre-
dictions are indicative of network components that are ro-
bustly identifiable by different methods and can be used to
study what aspects of a network can be identified based on
expression-based network inference methods. Several addi-
tional TFs were predictable uniquely by MERLIN+Prior
or PGG+Prior (SKO1, SWIS5, YAPG6, etc.). The complete
set of predictable TFs provides an upper bound on what can
be predicted based on expression-based network inference
methods.

Using a prior network improves our ability to construct
functional regulatory networks, however, there are still nu-
merous TFs whose targets in the Maclsaac gold standard
network are not predictable using expression. We call such
TFs as ‘unpredictable TFs’. There can be multiple reasons
for the inability to recover the targets of such TFs: (i) the
TF does not vary in the expression dataset and therefore is
a poor predictor of a target gene’s expression, (ii) the TF’s
mRNA level is not predictive of its target gene’s expres-
sion levels because of more complex regulatory programs
of such TFs (e.g. post-transcriptional or post-translational
regulation), (iii) certain topological properties of the gold-
standard network might make a TF more or less predictable.

To assess whether unpredictable TFs arise because of
their lack of variation at the mRNA level, we examined
the out-degree (number of predicted targets) of these TFs
as well as the variance in expression of TFs in the Nat.Var
dataset. Our rationale for using the out-degree is that if the
TFs do not vary at the mRNA level, they are likely not good
predictors of expression of any target gene (Figure 4A and
B). The predictable TFs have higher out-degree (KS test P-
value < 0.00024) and greater variation (KS test P-value <
0.0123) suggesting that the predictable TFs have a tendency
to be good predictors of expression. However, given that
there were several unpredictable TFs with high out-degree,
this alone is unlikely to explain the predictable and unpre-
dictable TFs.

We next asked if the unpredictable TFs were more or less
transcriptionally regulated based on the rationale that more
complex transcriptional regulation would make it more dif-
ficult to infer their regulatory state from mRNA alone. To
this end we compared the in-degrees (the number of regu-
lators of a TF) of the predictable and unpredictable TFs
in the Maclsaac network (Figure 4C). The greater the in-
degree of a gene, the more complex is the regulatory pro-
gram of a gene. We observed that the difference in in-degree
of predictable and unpredictable TFs is not significant in
the Maclsaac network (KS test P-value < 0.4399) suggest-
ing that the complexity of the transcriptional program of
the regulators does not explain the unpredictable TFs. Sim-
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ilarly we asked whether unpredictable TFs are more heav-
ily targeted by post-translational modifications by exam-
ining their in-degree in kinase/phosphatase-substrate net-
works (62,63) (‘Materials and Methods’ section). However,
here too we did not see a significant difference in the in-
degree of predictable and unpredictable TFs (KS test P-
value < 0.4625, Figure 4D). Thus, we did not find support
for the unpredictable TFs to have a significantly more com-
plex transcriptional or post-translational regulatory input
program; however, we are limited by the lack of context
specificity of these existing interactions.

To examine whether the reasons for failing to capture the
targets of the unpredictable TFs is due to the discrepancy
between a TF’s mRNA level and its activity on a target gene,
we used network component analysis (NCA) (64). NCA is
an approach to infer the ‘hidden’ activity levels of TFs for a
given network structure and the expression levels of genes.
Briefly, for a given network structure, NCA assumes that the
expression profiles of target genes of a regulator is a linear
combination of an unobserved regulator signal. It then in-
fers these signals and the weights of the linear combination.
These inferred signals can be interpreted as ‘hidden activ-
ity’ of the TFs. We applied NCA to infer the activity levels
of TFs using the Maclsaac network structure and Nat.Var.
expression dataset. If the inferred TF activity is more cor-
related to TF mRNA levels of predictable TFs compared to
unpredictable TFs, one can conclude that using TF mRNA
levels as proxies for its activity is responsible for the diffi-
culty in predicting targets of unpredictable TFs. However,
comparison of the NCA inferred levels to actual mRNA
levels of the TFs shows that the absolute value of correla-
tion of unpredictable TFs is only moderately lower than the
predictable TFs (KS test P-value < 0.0464, median for un-
predictable TFs (0.2636) is lower than that for predictable
TFs (0.3794), Figure 4E). Thus, the discrepancy between
the mRNA levels and the actual TF’s activity level plays a
minor role in unpredictable TFs.

Finally, we asked if the architectural properties of the
subnetworks associated with unpredictable TFs versus pre-
dictable TFs are different. Network motifs (65) are repeat-
ing subnetworks and form core building blocks of a larger
network. It was recently shown that regulators in positions
of three node motifs are under evolutionary constraint and
tend to be conserved between species (66). We used FAN-
MOD tools (67) to find network motifs in the Maclsaac net-
work restricting to the subnetwork with interactions only
between the 86 TFs (the rest of the 28 TFs were not con-
nected to the TF-TF subnetwork). This network had 23
feed forward loops, which included 11 TFs that were in the
‘driver’ position, that is, they have no incoming regulators.
Among these 11, 10 were predictable TFs (hypergeomet-
ric P-value < 1E-3). Furthermore, out of 12 TFs in first
passenger position, 10 are predictable TFs (hypergeomet-
ric P-value < 1E-2) but out of 11 TFs in second passenger
position, only 4 were predictable (hypergeometric P-value
< 0.86). This suggests that predictable TFs tend to be up-
stream in a regulatory cascade. It is therefore likely that ar-
chitectural properties associated with the network are asso-
ciated with the ease with which we can predict a regulator’s
targets.

PAGE 14 OF 22

Taken together these results suggest that with the excep-
tion of the network motif position, no single factor is solely
responsible for the difficulty in predicting the targets of the
unpredictable TFs, however, several of the properties tested
here each contribute, albeit in small ways, to the difficulty
of identifying targets of unpredictable TFs.

Unpredictable TFs are associated with surrogate TFs that
share similar functional pathways

So far we characterized the differences between the pre-
dictable and unpredictable TFs; next, we asked if there are
specific regulators in the inferred networks that are pre-
dicted to regulate the targets of the unpredictable TFs, and
if these regulators are functionally related to the unpre-
dictable TFs. We examined target sets of each TF in the
Maclsaac network and asked what MERLIN+Prior TFs
were significantly associated with them (significant overlap
of the MERLIN+Prior TF’s targets with the targets of the
TF in the Maclsaac network based on hypergeometric test
P-value < 0.05). Of the 91 Maclsaac TFs that had at least 5
target genes in the Maclsaac network, we found 78 TFs that
were associated with one or more MERLIN+Prior TFs. We
call these MERLIN+Prior TFs as the ‘surrogate TFs’ of the
Maclsaac TF. A subset of these 78 TFs were the predictable
TFs (Table S4). Interestingly, in many cases, one or more of
the MERLIN+Prior TFs was also more correlated to the
NCA-inferred activity of the Maclsaac TF than the expres-
sion level of the Maclsaac TF itself (Table S4, MERLIN
TFs in top20 column), indicating that the MERLIN+Prior
TFs better explain the expression levels of the targets of the
Maclsaac TF than the Maclsaac TF.

MERLIN TFs that serve as surrogates for a Maclsaac
TF’s target set might be involved in the same pathway as the
Maclsaac TFs. To test whether the surrogate TFs predicted
by MERLIN+Prior were in the same functional pathway
as the Maclsaac TF, we counted the number of genetic
and physical interactions (from BioGRID database (62))
between a Maclsaac TF and its corresponding enriched
regulator from MERLIN+Prior. Considering all Maclsaac
TFs and associated MERLIN TFs as two separate sets, we
found significantly higher number of genetic and physical
interactions spanning these two TF sets compared to what
is expected by random (genetic interactions z-score 5.351,
physical interactions z-score 4.740, P-value < 1E-5). These
results suggest that expression-based inference methods can
infer either the target set of a TF accurately, or infer a regu-
lator that is functionally associated with the TF of interest.

Inferring condition-specific networks and prioritizing regula-
tors

The previous sections have shown that both expression and
non-expression datasets are important for inferring reg-
ulatory networks. Furthermore, our MERLIN+Prior ap-
proach is able to reconstruct regulatory networks that have
high quality structure (as measured by AUPR and the num-
ber of predictable TFs) and is functionally accurate (as mea-
sured by the percentage of predictable target genes, the per-
centage of edges that can predict the impact of TF knock-
outs and evolutionary conservation of TF-target correla-



PAGE 15 OF 22

tion). However, thus far, we used only sequence-specific mo-
tifs to have as unbiased a comparison to our gold stan-
dards that were derived from ChIP-chip and/or TF knock-
outs. We next sought to create a larger, expansive regula-
tory network for yeast that combined ChIP-chip, sequence-
specific motifs and TF knockout data as three different
prior networks within the MERLIN+Prior framework us-
ing Nat.Var. as the training dataset (‘Materials and Meth-
ods’ section). This network has a significantly improved
agreement with the gold standard network structure as mea-
sured by AUPRs, number of predictable TFs (Figure SA
and B), ability to predict expression of target genes (Fig-
ure 5C) and the ability to recover functional edges (Fig-
ure 5D). While the improvement in structure (AUPR and
predictable TFs) is expected because the Maclsaac network
was largely derived from ChIP-chip experiments (18), the
improvement in the functional part of the network (predic-
tive power and functional edge recovery) were notable be-
cause only a small fraction of the predictable targets (16%0)
and functional edges (7%) came from the positive training
set used to set the prior parameters (‘Materials and Meth-
ods’ section). We used this regulatory network to address
two target applications relevant to condition-specific reg-
ulatory networks: (i) prioritize regulators associated with
a specific stress, (ii) infer condition-specific regulatory net-
works.

Predicting important regulators for different stresses. An
important application of a genome-scale regulatory net-
work is to identify important regulators of a process (e.g.
response to a particular stress) that can then be tested ex-
perimentally. We therefore prioritized regulators based on
their ability to predict the expression level of target genes
in a new condition. We considered the compendia of stress
response experiments from Gasch et al. (40) each experi-
ment comprising 5-24 time points. To rank the regulators
in a given stress condition, we calculated a measure of im-
portance for the regulators in a given stress condition us-
ing the top 30K edges of the expansive regulatory network
(‘Materials and Methods’ section). Briefly, we first learned
linear regression functions for each target gene using the
regulators in the top 30K edges and the Nat.Var. dataset.
Next, using these regression functions, we predicted the ex-
pression levels of target gene from the expression level of its
regulators in the new conditions. We computed the change
in prediction error when the regulator is removed from the
network. The importance of a regulator was the sum of the
change in prediction error across all predicted target genes
of this regulator. The larger the total prediction error on reg-
ulator removal, the more important the regulator. We then
ranked all the regulators in the inferred network based on
this measure of importance.

We applied our ranking strategy to predict important reg-
ulators for the available stress conditions: osmotic stress,
heat shock, amino acid starvation, stationary phase and ox-
idative stress. Several of the highly ranked regulators are
known to be involved in response to stress. For example,
MSN2/4, key regulators of stress response (68), HOGI,
a member of MAPK family (which are involved in signal
transduction pathways in OSR (69)) and TUPI1 (involved
in response to osmotic stress (70)) (Figure 6A), were all
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ranked highly in osmotic stress. Similarly, GCN4, MET28
and MET32, which are involved in amino acid starvation
and sulfur metabolism, are ranked in the top 30 regulators
for amino acid starvation. Several regulators were ranked
highly in multiple conditions suggesting that the same reg-
ulator might be important for multiple stresses. To identify
regulators with different condition-specific patterns we clus-
tered the regulators based on their ranking in different con-
ditions (Figure 6B). We observed many interesting patterns
in the resulting clusters that are indicative of the specificity
of regulators in different subsets of conditions. For exam-
ple, cluster C3 contained regulators that were ranked high
in all of the conditions and included regulators like USV1
and GRES3. Both these regulators are known to be involved
in multiple stresses (USV1: in growth on non-fermentable
carbon sources, as well as osmotic stress; GRE3 associated
with osmotic, oxidative, heat shock stresses). We also ob-
serve clusters that contain regulators that were ranked high
only in some conditions. For example, cluster C2 is associ-
ated with regulators ranked highly in Diamide, DTT treat-
ment and Menadione, cluster C15 was associated with Di-
amide Treatment and Nitrogen depletion, and C14 was as-
sociated with Hyper and Hypo-osmotic stress and Mena-
dione. The full list of regulators ranked per condition is
available as a Supplementary Dataset (Table S5) and can be
used to guide validation studies using genetic perturbation
studies.

Inferring condition-specific network topology

Our prior-based approach is general and can be used to re-
fine a given input network with condition-specific data to
obtain a condition-specific network. As a proof of princi-
ple of our approach to predict condition-specific network
topology from a small number condition-specific experi-
mental samples we used OSR and heat shock response
(HSR). For osmotic stress we combined datasets from
Gasch et al. (40) with time courses from two additional
sources (41,42) to produce a total of 23 samples. For heat
shock, we used the samples from Gasch et al. (40) only,
which had 24 samples per gene. We used our expansive reg-
ulatory network as a ‘skeleton’ network and then refined
it using a condition-specific network for OSR and for heat
shock using the MERLIN+Prior framework.

Our OSR-specific regulatory network connected 465 reg-
ulators to 4698 target genes. We evaluated the OSR-specific
network for its ability to recapitulate known important reg-
ulators of osmotic stress, namely HOG1, SKOI as well gen-
eral regulators of stress response, MSN2/4. We found an in-
crease in the number of predicted targets of both HOGT1 and
SKOL1 in the OSR-specific network compared to the skele-
ton network, but a decrease of targets of MSN2/4 (Figure
7A). This is likely because MSN2/4 is associated with gen-
eral stress response rather than a specific process.

To validate the predicted targets of important OSR-
specific regulators, we obtained the expression levels of
HOGI1, SKO1 and MSN2/4 knockout strains under salt
from Capaldi et al. (1). We compared the log ratio of ex-
pression levels in the knockout strain versus the wild type
of the predicted targets and non targets in the salt stress.
We found that the targets of MSN2/4 and SKOI1 are sig-
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nificantly down-regulated compared to non-targets (z-test
P-value < 1E-2) in the knockout versus wild type. We see
a similar shift in expression for HOG1 however the p-value
is not significant (t-test P-value < 0.17) (Figure 7B). Taken
together these results enabled us to gain confidence in the
ability of our prior-based framework to infer context spe-
cific regulatory networks.

Given that both SKO1 and HOGI gained additional reg-
ulatory edges compared to the condition unspecific prior
skeleton network, we asked if we could identify additional
regulators based on the change in connectivity between the
skeleton and the OSR-specific network. We ranked regula-
tors based on the difference in their target set size in the
prior and OSR-specific network. Among the top ranking
genes were several genes that so far have not been associ-
ated with OSR. In particular, one such regulator is GTSI.
Mutations in GTSI are known to have phenotypes in cell
size, sporulation and life span. Among other top regulators
were two RNA binding proteins namely JSN1 and PUF2
(Tables S6 and S7). RNA binding proteins play important
roles in the post-transcriptional processing and have been
shown to specifically affect the rate of mRNA turnover and
dynamics from P-bodies in osmotic stress (71). We observed
similar properties with the HSR-specific regulatory network
as well, which connected 536 regulators and 6115 target
genes. Interestingly, here we found RNA binding proteins as
well, but that were ordered differently from those in osmotic
stress. In particular, among the top ranking regulators is
GIS2, that also binds to mRNA and localizes to RNA pro-
cessing bodies. GIS2 is known to interact with HSP60 (62)
as well as other heat shock protein families such as SSA1
and SSA2 (62), implicating a novel role of GIS2 in heat
shock stress response.

In summary, our general prior-based framework can be
used to infer condition-specific regulatory networks and
to predict condition-specific regulators. Our predicted net-
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works recapitulate the targets of known important regula-
tors of the specific stress response and identify several novel
regulators.

DISCUSSION

Computational inference of genome-scale regulatory net-
works is a long standing challenge in systems biology es-
pecially in eukaryotic systems. Expression-based network
inference methods are among the most popular computa-
tional network reconstruction methods because genome-
wide expression datasets are widely available in different
conditions and contexts (3,72), and because they enable the

construction of predictive regulatory network models that
can predict the expression level of target genes in new con-
ditions or in response to perturbations (73,74). However,
expression alone may not be sufficient to infer regulatory
networks in eukaryotic systems (8). Here we developed a
general approach to integrate different types of regulatory
network evidences to infer a network and performed a com-
prehensive characterization of the potential factors that in-
fluence network inference from gene expression data. Our
work allowed us to gain several important insights into the
ability of expression-based network inference methods to
recover network topologies.
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Type of perturbation

Guidance into the utility of different types of datasets that
are available for network inference is greatly needed. While
it is clear that large compendia of perturbed expression pro-
files are important for network inference, it is not clear what
types of experimental perturbations are the most impor-
tant. An important insight that we gained from our analysis
was the utility of natural genetic variation in informing the
network structure. Irrespective of the method used, the nat-
ural genetic variation data was able to infer the networks
that were most accurate, both with respect to structure as
well as with respect to network parameters. We tested the
utility of natural genetic variation and stress perturbations
for inferring a regulatory network in human LCL and found
natural genetic variation to be more useful for this network
as well. However, the datasets in human are relatively small
in size compared to the size of the network inferred and we
could not examine knockout based datasets. Furthermore,
the relative impact of the prior is much less for human com-
pared to yeast. In particular, the prior provides evidence for
only 79 out of 539 candidate regulators, whereas the yeast
prior network included 197 out of the 537 candidate regu-
lators. Future work, which includes more controlled stress
related perturbations as well as regulator perturbation ex-
periments would be needed to provide further support of
this observation in humans and other multi-cellular organ-
isms.

Parameter prior versus structure prior based methods

Among the earliest prior-based methods for regulatory net-
work inference are those based on defining a prior on the
graph structure (15-17). For example, Werhli et al. (15)
defined an energy function to measure the similarity of a
candidate graph to an input prior graph, while Mukher-
jee et al. (17) and Hill et al. (75) make use of concordance
functions that measure the similarity of a candidate graph
with a prior graph. However, these approaches have relied
on the Markov Chain Monte Carlo, which are computa-
tionally expensive. While Hill et al. describe a more effi-
cient Empirical Bayes approach it has been applied to pro-
teomic data of tens of genes. On the other hand, parameter
prior based approaches (11,12,14,76) use priors to control
the extent of network sparsity. Briefly, these approaches are
based on a dependency network learning paradigm, where
network inference is addressed by solving a set of regres-
sion tasks. These methods assume an L1 (lasso, sparsity
imposing) or L1/L2 (sparsity with correlated regulators,
(11)) regularization and shrink regression weights of most
regulators to 0. The prior-based versions of these methods
use additional prior data to decrease the penalty for edges
with prior support. This decrease in penalty can be set us-
ing a hyper-parameter (11,76) or can be further modeled
as a regulatory potential parameterized by regulatory fea-
tures capturing properties of the regulator and target gene
(14). Such approaches are computationally more tractable
than the structure-prior based approaches and more suit-
able for inferring a genome-scale network. Our approach
was to impose a structure prior within a dependency net-
work learning framework to enable efficient network learn-
ing. Instead of having a fully Bayesian solution on the poste-
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rior graph structure, we used stability selection, an ensemble
learning approach that has been shown to improve purely
expression-based network inference (34). This provided a
way to approximate the posterior distribution over network
edges on a genome-wide scale and provided significantly im-
proved performance compared to a parameter prior-based
approach.

Supervised versus unsupervised network inference

While the approach taken in this work is to integrate ex-
pression with structure priors within an unsupervised net-
work learning framework, a complementary approach is
to integrate these data within a supervised network in-
ference (77-80). Under the supervised learning paradigm,
the ‘global” approach trains a single classifier to discrimi-
nate between interactions and non-interactions, while the
‘local’ approach trains a per-regulator classifier to learn
discriminative expression signatures of targets and non-
targets (80). Training examples in both local and global
approaches are derived from an established ground truth,
however, the local approach was shown to be more pow-
erful than the global approach (80). In contrast, in an
unsupervised learning framework, we do not assume the
presence of any known examples, which makes this frame-
work more broadly applicable but also makes the learning
problem and validation much harder. The two frameworks
also differ in the prediction of a new regulatory edge. In a
classification/supervised setting, the probability of presence
of new edges is computed independently and is dependent
upon the edges present in the training set. In the unsuper-
vised setting, the prior probability of an edge is assumed to
be independently computed based on non-expression (e.g.
sequence motif, ChIP binding) features. However, the in-
clusion of new edges are not independent of each other but
rather the result of the tradeoff between their prior probabil-
ity based ranking and their ability to explain expression of
a target gene. A third important difference is from the per-
spective of a target gene. In the local model setting, a target
gene can have a regulator only if there is an existing classifier
that is trained on this regulator. In contrast, in the unsuper-
vised setting there is no such constraint. For a target gene
with no prior information, our approach would behave sim-
ilar to an approach using only expression (Supplementary
text, Supplementary Figure S9). Despite differences in these
two learning paradigms, we note that both approaches are
dependent upon the quality of the structural priors. When
the structural priors are of high quality both approaches
would be benefitted and the discriminative nature of super-
vised learning could enable it to gain more performance im-
provement than an unsupervised learning framework (81).
However, when the priors are of low quality both learning
paradigms will likely suffer in performance. In an unsuper-
vised setting, because the structural priors are used only
as guides in the edge selection process in the final inferred
network, such an approach is robust in performance in the
presence of a large number of edges with unknown status
and/or noisy priors (Supplementary text, Supplementary
Figure S2A-C, (11)). An important direction of future work
is to systematically compare the sensitivity of local super-



PAGE 19 OF 22

vised methods and unsupervised methods with prior in the
presence of noisy priors.

Importance of estimating and evaluating both network struc-
ture and parameters

Expression-based network inference has been an active area
of research and a large number of methods have been devel-
oped (2-4,8). However, success has generally been measured
based on the ability of a method to recover the structure, but
not how well the network is able to make a prediction in a
new condition. We find that methods including ours that use
priors are able to recover the structure of the network much
better. However, when comparing methods based on their
ability to predict expression in new conditions, non-prior
methods often outperformed prior-based methods. This is
not surprising because the score improvement on adding a
particular edge in a prior-based framework is the sum of
the improvement in the expression likelihood, and the prior
probability of adding an edge. With a structure prior, the
algorithm may select an edge that does not improve the ex-
pression part of the score as much as in the case without
priors, but has a lower penalty (higher prior probability of
being present). Furthermore, if an edge contributes to im-
proved better predictive power in the training set, we expect
it to generalize to better prediction in the test set. However,
expression alone makes it difficult to discriminate between
a highly correlated TF/regulator-gene pair versus a true
causal relationship between a TF/regulator and a target
gene. Thus to gain mechanistic insight, in addition to having
good predictive power, methods that integrate expression
with other types of regulatory evidences are more relevant
than purely expression-based network inference methods.
Another important question that arises in the evalua-
tion of structure with prior-based approaches is the extent
to which the prior network influences the edges in the in-
ferred network and whether this overestimates the perfor-
mance of prior-based network inference methods. Overes-
timation can occur if the prior is a binary network and the
gold standard shares edges with the prior. In our experi-
ments, the prior is weighted and the shared edges with the
gold standard are expected to see the benefit of the prior.
We find that on parts of the network where there is prior
support, the performance is indeed significantly improved,
but for other parts (with no prior support) there is a minor
decrease in performance. This decrease in performance can
be explained by presence of false edges (with respect to the
gold standard) in the prior network. When multiple regu-
lators can explain the expression of a target gene equally
well, the prior network can help us to select the right reg-
ulator for that target gene. However, if the right regulator
is not present in the prior network, incorporating a noisy
prior can select the wrong regulators. These results show the
importance of the quality of prior network in the accuracy
of inferred networks: a noisy prior network (that includes
many false edges and does not include the true edges) can
greatly hamper the performance of the prior-based meth-
ods. Another potential case of overestimation is when prior
and the gold standard are from the same type of experimen-
tal assay, the inferred network is likely to appear more cor-
rect compared to the case when the prior and gold stan-
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dards come from a different assay. Therefore, when assess-
ing the performance of the method, different types of pri-
ors and gold standard networks should be considered. Our
results show that even when the prior and gold standard
networks are produced from different types of experimental
data, prior-based methods can improve the accuracy of the
inferred networks over purely expression-based networks
(Supplementary text, Supplementary Figure S3).

Inherently predictable and unpredictable TFs

Despite a large number of methods, the success of methods
has been modest for simple eukaryotes like yeast (8). By per-
forming a systematic comparison of different types of meth-
ods (with and without prior; linear and non-linear depen-
dencies), we were able to identify success and failure cases of
network inference. In particular there are some TFs whose
targets can be sufficiently well-predicted based on expres-
sion, whereas several TFs remain unpredictable. Network
architecture, variation in a TF’s mRNA level, as well as the
using a TF’s mRNA level as a proxy for its activity, might
play an important role in determining the predictability of
the targets of such TFs. Reassuringly, for several of these
unpredictable TFs, we found surrogate regulators that were
predicted to regulate a significant fraction of its targets and
were likely to be in a genetic or physical interaction with
the unpredictable TF. Thus the expression-based TFs were
in the same genetic interaction pathways and therefore rele-
vant to the ChIP-chip based TF. We expect that integration
of additional datasets that inform us of additional levels of
regulation (e.g. post-translation modifications of TFs) will
help improve the target identification of unpredictable TFs.

Identification of condition-specific networks and regulator
prioritization

Regulatory networks are fundamentally context-specific. A
simple approach to infer context-specific networks is to ‘re-
move’ TF-target edges where both or either the TF or target
gene is not expressed in the condition of interest (82,83).
However, the skeleton network might be incomplete and
miss edges that are unique to a new condition. While this
issue could be addressed by inferring networks ‘de novo’ in
the new condition, doing so is problematic because there are
typically not enough samples from the condition of inter-
est to learn a network. Instead, we propose a prior-based
approach where we first reconstruct the skeleton regula-
tory network inferred using multiple sources of data (not
available for one condition) and then refine the network
structure using condition-specific expression data. We pre-
dicted a global OSR-specific and global HSR-specific regu-
latory network and found our network to better recapitulate
the effects of important regulator knockouts than the non-
specific skeleton network. We also developed network regu-
lator prioritization schemes based on the network topology
that is sensitive to the condition of interest, thus predicting
regulators that are important for that condition. By apply-
ing our approach to different types of stress conditions we
revealed commonalities among the stress response regula-
tors as well as regulators that were unique to a few condi-
tions.
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In summary, expression-based network inference is an
important tool in systems biology research. In this work
we have addressed several critical questions that provide in-
sight into the approach, dataset and the limits of expression-
based network inference. As more organisms are sequenced,
we believe that our insights will inform the experimental de-
sign both for capturing the initial network structure as well
as for guiding experiments to refine the network.

IMPLEMENTATION AND AVAILABILITY

The MERLIN+Prior code, example datasets, our in-
ferred networks and documentation are available at https:
//bitbucket.org/roygroup/merlin-p.
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ACKNOWLEDGEMENTS

We thank the Center for high-throughput computing at
UW Madison for computational resources. We thank Sara
Knaack for generating the prior network for the human
LCL network inference and Deborah Chasman for assis-
tance in the validation of the yeast condition-specific net-
work analysis.

FUNDING

NSF CAREER Award [NSF DBI: 1350677]; Sloan Foun-
dation Research Fellowship [FG-BR2014-010]. Funding for
open access charge: NSF CAREER Award [NSF DBI:
1350677]; Sloan Foundation Research Fellowship [FG-
BR2014-010].

Confflict of interest statement. None declared.

REFERENCES

1. Capaldi,A.P, Kaplan,T., Liu,Y., Habib,N., Regev,A., Friedman,N.
and O’Shea,E.K. (2008) Structure and function of a transcriptional
network activated by the MAPK Hogl. Nat. Genet., 40, 1300-1306.

2. Markowetz,F. and Spang,R. (2007) Inferring cellular networks—a
review. BM C Bioinformatics, 8(Suppl. 6), S5.

3. De Smet,R. and Marchal,K. (2010) Advantages and limitations of
current network inference methods. Nat. Rev. Microbiol., 8, 717-729.

4. Bar-Joseph,Z., Gitter,A. and Simon,I. (2012) Studying and modelling
dynamic biological processes using time-series gene expression data.
Nat. Rev. Genet., 13, 552-564.

5. Spitz,F. and Furlong,E.E. (2012) Transcription factors: from
enhancer binding to developmental control. Nat. Rev. Genet., 13,
613-626.

6. Hughes, T.R. and de Boer,C.G. (2013) Mapping yeast transcriptional
networks. Genetics, 195, 9-36.

7. Huebert,D.J., Kuan,P.-F., Keles,S. and Gasch,A.P. (2012) Dynamic
changes in nucleosome occupancy are not predictive of gene
expression dynamics but are linked to transcription and chromatin
regulators. Mol. Cell. Biol., 32, 1645-1653.

8. Marbach,D., Costello,J.C., Kiiffner,R., Vega,N.M., Prill,R.J.,
Camacho,D.M., Allison,K.R., Aderhold,A., Allison,K.R.,
Bonneau,R. e7 al. (2012) Wisdom of crowds for robust gene network
inference. Nat. Methods, 9, 796-804.

9. Friedman,N. (2004) Inferring cellular networks using probabilistic
graphical models. Science, 303, 799-805.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

PAGE 20 OF 22

. Roy.S., Lagree,S., Hou,Z., Thomson,J.A., Stewart,R. and Gasch,A.P.

(2013) Integrated module and gene-specific regulatory inference
implicates upstream signaling networks. PLoS Comput. Biol., 9,
¢1003252.

. Greenfield,A., Hafemeister,C. and Bonneau,R. (2013) Robust

data-driven incorporation of prior knowledge into the inference of
dynamic regulatory networks. Bioinformatics, 29, 1060—1067.

. Li,C. and Li,H. (2008) Network-constrained regularization and

variable selection for analysis of genomic data. Bioinformatics, 24,
1175-1182.

. Lee,S.1., Chatalbashev,V., Vickrey,D. and Koller,D. (2007) Learning

a meta-level prior for feature relevance from multiple related tasks.
In: Ghahramani,Z (ed). Proceedings of the 24th international
conference on Machine learning (ICML 2007). ACM ICML "07, NY,
pp. 489-496.

. Lee,S.-I., Dudley,A.M., Drubin,D., Silver,P.A., Krogan,N.J., Pe’er,D.

and Koller,D. (2009) Learning a prior on regulatory potential from
eQTL data. PLoS Genet., 5, e1000358.

. Werhli,A.V. and Husmeier,D. (2007) Reconstructing gene regulatory

networks with bayesian networks by combining expression data with
multiple sources of prior knowledge. Stat. Appl. Genet. Mol. Biol., 6,
1544-6115.

. Imoto,S., Higuchi, T., Goto,T., Tashiro,K., Kuhara,S. and Miyano,S.

(2003) Combining microarrays and biological knowledge for
estimating gene networks via Bayesian networks. Proceedings /| IEEE
Computer Society Bioinformatics Conference. IEEE Computer Society
Bioinformatics Conference, 2, 104—113.

. Mukherjee,S. and Speed, T.P. (2008) Network inference using

informative priors. Proc. Natl. Acad. Sci. U. S. A., 105, 14313-14318.

. Harbison,C.T., Gordon,D.B., Lee,T.I., Rinaldi,N.J., Macisaac,K.D.,

Danford, T.W., Hannett,N.M., Tagne,J.-B., Reynolds,D.B., Yoo,J.
et al. (2004) Transcriptional regulatory code of a eukaryotic genome.
Nature, 431, 99-104.

. Lee,T.I., Rinaldi,N.J., Robert,F., Odom,D.T., Bar-Joseph,Z.,

Gerber,G.K., Hannett,N.M., Harbison,C.T., Thompson,C.M.,
Simon,I. et al. (2002) Transcriptional Regulatory Networks in
Saccharomyces cerevisiae. Science, 298, 799-804.

Hu,Z., Killion,PJ. and Iyer,V.R. (2007) Genetic reconstruction of a
functional transcriptional regulatory network. Nat. Genet., 39,
683-687.

Chua,G., Morris,Q.D., Sopko,R., Robinson,M.D., Ryan,O.,
Chan,E.T., Frey,B.J., Andrews,B.J., Boone,C. and Hughes, T.R. (2006)
Identifying transcription factor functions and targets by phenotypic
activation. Proc. Natl. Acad. Sci. U.S. A., 103, 12045-12050.
Gordan,R., Murphy,K.F., McCord,R.P., Zhu,C., Vedenko,A. and
Bulyk,M.L. (2011) Curated collection of yeast transcription factor
DNA binding specificity data reveals novel structural and gene
regulatory insights. Genome Biol., 12, R125.

Segal E., Shapira,M., Regev,A., Pe’er,D., Botstein,D., Koller,D. and
Friedman,N. (2003) Module networks: identifying regulatory
modules and their condition-specific regulators from gene expression
data. Nat. Genet., 34, 166-176.

Heckerman,D., Chickering,D.M., Meek,C., Rounthwaite,R. and
Kadie,C. (2001) Dependency networks for inference, collaborative
filtering, and data visualization. J. Mach. Learn. Res., 1, 49-75.
Kemmeren,P., Sameith,K., van de Pasch,L.A., Benschop,J.J.,
Lenstra, T.L., Margaritis,T., O’Duibhir,E., Apweiler,E., van
Wageningen,S., Ko,C.W. et al. (2014) Large-scale genetic
perturbations reveal regulatory networks and an abundance of
gene-specific repressors. Cell, 157, 740-752.

de Boer,C.G. and Hughes,T.R. (2012) YeTFaSCo: a database of
evaluated yeast transcription factor sequence specificities. Nucleic
Acids Res., 40, D169-D179.

Barash,Y., Elidan,G., Kaplan,T. and Friedman,N. (2005) CIS:
compound importance sampling method for protein-DNA binding
site p-value estimation. Bioinformatics, 21, 596-600.

Venters,B.J., Wachi,S., Mavrich,T.N., Andersen,B.E., Jena,P.,
Sinnamon,A.J., Jain,P., Rolleri,N.S., Jiang,C., Hemeryck-Walsh,C.
and Pugh,B.F. (2011) A comprehensive genomic binding map of gene
and chromatin regulatory proteins in Saccharomyces. Mol. Cell, 41,
480-492.

Reimand,J., Vaquerizas,J.M., Todd,A.E., Vilo,J. and Luscombe,N.M.
(2010) Comprehensive reanalysis of transcription factor knockout


https://bitbucket.org/roygroup/merlin-p

PAGE 21 OF 22

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

expression data in Saccharomyces cerevisiae reveals many new
targets. Nucleic Acids Res., 38, 4768-4777.

Huynh-Thu,V.A., Irrthum,A., Wehenkel,L. and Geurts,P. (2010)
Inferring regulatory networks from expression data using tree-based
methods. PLoS One, 5, e12776.

Zou,H. and Hastie,T. (2005) Regularization and variable selection via
the elastic net. J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 301-320.
Bonneau,R., Reiss,D., Shannon,P., Facciotti,M., Hood,L., Baliga,N.
and Thorsson,V. (2006) The Inferelator: an algorithm for learning
parsimonious regulatory networks from systems-biology data sets de
novo. Genome Biol., 7, R36.

Munchel,S.E., Shultzaberger,R.K., Takizawa,N. and Weis, K. (2011)
Dynamic profiling of mRNA turnover reveals gene-specific and
system-wide regulation of mRNA decay. Mol. Biol. Cell, 22,
2787-2795.

Haury,A.-C.C., Mordelet,F., Vera-Licona,P. and Vert,J.-P.P. (2012)
TIGRESS: trustful inference of gene regulation using stability
selection. BMC Syst. Biol., 6, 145.

Meinshausen,N. and Buehlmann,P. (2009) Stability Selection. J. R.
Stat. Soc. Ser. B Stat. Methodol., 72, 417-473.

Knaack,S.A., Siahpirani,A. EF. and Roy,S. (2014) A pan-cancer
modular regulatory network analysis to identify common and
cancer-specific network components. Cancer Inf., 13(Suppl. 5), 69-84.
Brem,R.B. and Kruglyak,L. (2005) The landscape of genetic
complexity across 5,700 gene expression traits in yeast. Proc. Natl.
Acad. Sci. U.S.A., 102, 1572-1577.

Smith,E.N. and Kruglyak,L. (2008) Gene—environment interaction in
yeast gene expression. PLoS Biol., 6, e83.

Zhu,J., Sova,P., Xu,Q., Dombek,K.M., Xu,E.Y., Vu,H., Tu,Z.,
Brem,R.B., Bumgarner,R.E. and Schadt,E.E. (2012) Stitching
together multiple data dimensions reveals interacting metabolomic
and transcriptomic networks that modulate cell regulation. PLoS
Biol., 10, ¢1001301.

Gasch,A.P, Spellman,P.T., Kao,C.M., Carmel-Harel,O., Eisen,M.B.,
Storz,G., Botstein,D. and Brown,P.O. (2000) Genomic expression
programs in the response of yeast cells to environmental changes.
Mol. Biol. Cell, 11, 4241-4257.

Wapinski,I., Pfiffner,J., French,C., Socha,A., Thompson,D.A. and
Regev,A. (2010) Gene duplication and the evolution of ribosomal
protein gene regulation in yeast. Proc. Natl. Acad. Sci. U.S.A., 107,
5505-5510.

Roy,S., Wapinski,I., Pfiffner,J., French,C., Socha,A., Konieczka,J.,
Habib,N., Kellis,M., Thompson,D. and Regev,A. (2013) Arboretum:
reconstruction and analysis of the evolutionary history of
condition-specific transcriptional modules. Genome Res., 23,
1039-1050.

Thompson,D.A., Roy,S., Chan,M., Styczynsky,M.P., Pfiffner.J.,
French,C., Socha,A., Thielke,A., Napolitano,S., Muller,P. ef al.
(2013) Evolutionary principles of modular gene regulation in yeasts.
Elife, 2, €00603.

Ni,L., Bruce,C., Hart,C., Leigh-Bell,J., Gelperin,D., Umansky,L.,
Gerstein,M.B. and Snyder,M. (2009) Dynamic and complex
transcription factor binding during an inducible response in yeast.
Genes Dev., 23, 1351-1363.

Lee,M.V., Topper,S.E., Hubler,S.L., Hose,J., Wenger,C.D., Coon,J.J.
and Gasch,A.P. (2011) A dynamic model of proteome changes reveals
new roles for transcript alteration in yeast. Mol. Syst. Biol.,7, 514.
Chasman,D., Ho,Y.-H.H., Berry,D.B., Nemec,C.M.,
MacGilvray,M.E., Hose,J., Merrill,A.E., Lee,M.V., WillLJ.L.,
Coon,JJ. et al. (2014) Pathway connectivity and signaling
coordination in the yeast stress-activated signaling network. Mol.
Syst. Biol., 10, 759.

Cusanovich,D.A., Pavlovic,B., Pritchard,J.K. and Gilad,Y. (2014)
The functional consequences of variation in transcription factor
binding. PLoS Genet., 10, e1004226.

Lappalainen, T., Sammeth,M., Friedlinder,M.R., ’t Hoen,P.A.C.,
Monlong,J., Rivas,M.A., Gonzalez-Porta,M., Kurbatova,N.,
Griebel, T., Ferreira,P.G. et al. (2013) Transcriptome and genome
sequencing uncovers functional variation in humans. Nature, 501,
506-511.

Niu,N., Qin,Y., Fridley,B.L., Hou,J., Kalari,K.R., Zhu,M.,

Wu, T.-Y.Y., Jenkins,G.D., Batzler,A. and Wang,L. (2010) Radiation
pharmacogenomics: a genome-wide association approach to identify

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

Nucleic Acids Research, 2017, Vol. 45, No. 4 e21

radiation response biomarkers using human lymphoblastoid cell
lines. Genome Res., 20, 1482-1492.

Benton,M.-A., Rager,J., Smeester,L. and Fry,R. (2011) Comparative
genomic analyses identify common molecular pathways modulated
upon exposure to low doses of arsenic and cadmium. BMC
Genomics, 12, 173.

Junaid,M.A., Kuizon,S., Cardona,J., Azher,T., Murakami,N.,
Pullarkat,R.K. and Brown,W.T. (2011) Folic acid supplementation
dysregulates gene expression in lymphoblastoid cells-implications in
nutrition. Biochem. Biophys. Res. Commun., 412, 688-692.
Forrester,H.B., Li,J., Hovan,D., Ivashkevich,A.N. and Sprung,C.N.
(2012) DNA repair genes: alternative transcription and gene
expression at the exon level in response to the DNA damaging agent,
ionizing radiation. PLoS One, 7, €53358.

Luca,F., Maranville,J.C., Richards,A.L., Witonsky,D.B., Stephens,M.
and Di Rienzo,A. (2013) Genetic, functional and molecular features
of glucocorticoid receptor binding. PLoS One, 8, ¢61654.

Su,D., Wang,X., Campbell, M.R., Song,L., Safi,A., Crawford,G.E.
and Bell,D.A. (2015) Interactions of chromatin context, binding site
sequence content, and sequence evolution in stress-induced p53
occupancy and transactivation. PLoS Genet., 11, ¢1004885.
Glover,K.P., Chen,Z., Markell,L.K. and Han,X. (2015) Synergistic
gene expression signature observed in TK6 Cells upon co-exposure to
UVC-irradiation and protein kinase C-activating tumor promoters.
PLo0S One, 10, €0139850.

Maclsaac,K., Wang,T., Gordon,D.B., Gifford,D., Stormo,G. and
Fraenkel,E. (2006) An improved map of conserved regulatory sites
for Saccharomyces cerevisiae. BM C Bioinformatics, 7, 113.
Teixeira,M.C., Monteiro,P., Jain,P., Tenreiro,S., Fernandes,A.R.,
Mira,N.P,, Alenquer,M., Freitas,A.T., Oliveira,A.L. and
Sa-Correia,l. (2006) The YEASTRACT database: a tool for the
analysis of transcription regulatory associations in Saccharomyces
cerevisiae. Nucleic Acids Res., 34(Suppl. 1), D446-D451.

Davis,J. and Goadrich,M. (2006) The relationship between
precision-recall and ROC Curves. In: Proceedings of the 23rd
International Conference on Machine Learning (ICML 2006 ). ACM
ICML 06, NY, pp. 233-240.

Ritchie,M.E., Phipson,B., Wu,D., Hu,Y., Law,C.W., Shi,W. and
Smyth,G.K. (2015) limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res., 43, e47.
Wapinski,I., Pfeffer,A., Friedman,N. and Regev,A. (2007) Natural
history and evolutionary principles of gene duplication in fungi.
Nature, 449, 54-61.

Gerstein,M.B., Kundaje,A., Hariharan,M., Landt,S.G., Yan,K.-K.,
Cheng,C., Mu,X.J.,, Khurana,E., Rozowsky,J., Alexander,R. ef al.
(2012) Architecture of the human regulatory network derived from
ENCODE data. Nature, 489, 91-100.

Stark,C., Breitkreutz,B.-J., Reguly, T., Boucher,L., Breitkreutz,A. and
Tyers,M. (2006) BioGRID: a general repository for interaction
datasets. Nucleic Acids Res., 34(Suppl. 1), D535-D539.
Sharifpoor,S., Nguyen Ba,A.N., Youn,J.-Y.Y., Young,J.-Y.Y., van
Dyk,D., Friesen,H., Douglas,A.C., Kurat,C.F., Chong,Y.T.,
Founk,K. ef al. (2011) A quantitative literature-curated gold standard
for kinase-substrate pairs. Genome Biol., 12, R39.

Liao,J.C., Boscolo,R., Yang,Y.-L., Tran,L.M., Sabatti,C. and
Roychowdhury,V.P. (2003) Network component analysis:
reconstruction of regulatory signals in biological systems. Proc. Natl.
Acad. Sci. U.S.A., 100, 15522-15527.

Alon,U. (2007) Network motifs: theory and experimental approaches.
Nat. Rev. Genet., 8,450-461.

Stergachis,A.B., Neph,S., Sandstrom,R., Haugen,E., Reynolds,A.P.,
Zhang,M., Byron,R., Canfield,T., Stelhing-Sun,S., Lee,K. et al.
(2014) Conservation of trans-acting circuitry during mammalian
regulatory evolution. Nature, 515, 365-370.

Wernicke,S. and Rasche,F. (2006) FANMOD: a tool for fast network
motif detection. Bioinformatics, 22, 1152-1153.
Martinez-Pastor,M.T., Marchler,G., Schiiller,C., Marchler-Bauer,A.,
Ruis,H. and Estruch,F. (1996) The Saccharomyces cerevisiae zinc
finger proteins Msn2p and Msn4p are required for transcriptional
induction through the stress response element (STRE). EMBO J., 15,
2227-2235.

Widmann,C., Gibson,S., Jarpe,M.B. and Johnson,G.L. (1999)
Mitogen-activated protein kinase: conservation of a three-kinase
module from yeast to human. Physiol. Rev., 79, 143-180.



e2l Nucleic Acids Research, 2017, Vol. 45, No. 4

70.

71.

72.

73.

74.

75.

76.

77.

Hanlon,S.E., Rizzo,J.M., Tatomer,D.C., Lieb,J.D. and Buck,M.J.
(2011) The stress response factors Yap6, Cin5, Phdl, and Skn7 direct
targeting of the conserved co-repressor Tup1-Ssn6 in S. cerevisiae.
PLoS One, 6, ¢19060.

Romero-Santacreu,L., Moreno,J., Pérez-Ortin,J.E. and Alepuz,P.
(2009) Specific and global regulation of mRNA stability during
osmotic stress in Saccharomyces cerevisiae. RNA, 15, 1110-1120.
Bonneau,R. (2008) Learning biological networks: from modules to
dynamics. Nat. Chem. Biol., 4, 658-664.

Chasman,D., Fotuhi Siahpirani,A. and Roy,S. (2016) Network-based
approaches for analysis of complex biological systems. Curr. Opin.
Biotechnol., 39, 157-166.

Kim,H.D., Shay,T., O’Shea,E.K. and Regev,A. (2009)
Transcriptional regulatory circuits: predicting numbers from
alphabets. Science, 325, 429-432.

Hill,S.M., Lu,Y., Molina,J., Heiser,L.M., Spellman,P.T., Speed,T.P.,
Gray,J.W., Mills,G.B. and Mukherjee,S. (2012) Bayesian inference of
signaling network topology in a cancer cell line. Bioinformatics, 28,
2804-2810.

Studham,M.E., Tjarnberg,A., Nordling, T. E.M., Nelander,S. and
Sonnhammer,E. L.L. (2014) Functional association networks as
priors for gene regulatory network inference. Bioinformatics, 30,
i130-i138.

Ambroise,J., Robert,A., Macq,B. and Gala,J.-L.L. (2012)
Transcriptional network inference from functional similarity and

78.

79.

80.

81.

82.

83.

PAGE 22 OF 22

expression data: a global supervised approach. Stat. Appl. Genet.
Mol. Biol., 11, 1-24.

Qian,J., Lin,J., Luscombe,N.M., Yu,H. and Gerstein,M. (2003)
Prediction of regulatory networks: genome-wide identification of
transcription factor targets from gene expression data.
Bioinformatics, 19, 1917-1926.

Mordelet,F. and Vert,J.-P. (2008) SIRENE: supervised inference of
regulatory networks. Bioinformatics, 24, 176-182.

Petri, T., Altmann,S., Geistlinger,L., Zimmer,R. and Kiiffner,R.
(2015) Addressing false discoveries in network inference.
Bioinformatics, 31, 2836-2843.

Maetschke,S.R., Madhamshettiwar,P.B., Davis,M.J. and Ragan,M.A.
(2014) Supervised, semi-supervised and unsupervised inference of
gene regulatory networks. Brief. Bioinform., 15, 195-211.
Magger,O., Waldman,Y.Y., Ruppin,E. and Sharan,R. (2012)
Enhancing the prioritization of disease-causing genes through tissue
specific protein interaction networks. PLoS Comput. Biol., 8,
¢1002690.

Yosef,N., Shalek,A.K., Gaublomme,J.T., Jin,H., Lee,Y., Awasthi,A.,
Wu,C., Karwacz, K., Xiao,S., Jorgolli,M. ez al. (2013) Dynamic
regulatory network controlling TH17 cell differentiation. Nature, 496,
461-468.



