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Acute lymphoblastic leukemia (ALL) is a malignancy with high heterogeneity in its
biological features and treatments. Although the overall survival (OS) of patients with
ALL has recently improved considerably, owing to the application of conventional chemo-
therapeutic agents, approximately 20% of the pediatric cases and 40–50% of the adult
patients relapse during and after the treatment period. The potential mechanisms that
cause relapse involve clonal evolution, innate and acquired chemoresistance, and the
ability of ALL cells to escape the immune-suppressive tumor response. Currently,
immunotherapy in combination with conventional treatment is used to enhance the
immune response against tumor cells, thereby significantly improving the OS in patients
with ALL. Therefore, understanding the mechanisms of immune evasion by leukemia cells
could be useful for developing novel therapeutic strategies.

Keywords: acute lymphoblastic leukemia, immunoediting, immunotherapy, tumor immune evasion, immune cells
INTRODUCTION

Acute lymphoblastic leukemia (ALL) is a group of lymphoid neoplasms derived from B- and T-
lymphoid progenitors that are clinically and genetically heterogeneous (1–5). The incidence of ALL
is rapidly growing worldwide, and it is estimated to be one in 100,000 persons/year globally (6, 7),
with a peak prevalence between 1 and 4 years old (7, 8) and during the fifth decade of life (5, 9, 10).
The overall survival (OS) for pediatric patients is >90% in high-income countries but is lower in
middle- and low-income countries (11)—for instance, in Mexico, the global survival rate reported of
children with ALL was 63.9%, the event-free survival rate was 52.3% after an average follow-up of
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3.9 years (12), and it had a high rate of early mortality (12.1%)
(13). Unfortunately, OS in adults with ALL is worst. Even though
most adult patients can reach initial complete remission using
recently developed treatments, only 40–50% (<20% in patients
aged 60 years or older) of the 5-year OS is achieved (5, 14–17).
Relapse, defined as the return of the disease in patients who reach
initial complete remission, is one of the main obstacles in
achieving improved survival rates (18) and occurs in
approximately 20% of children and >50% of adults (19, 20).
Most relapse incidences appear during treatment (early relapse: <30
months after diagnosis) or after treatment completion (late relapse:
<2 years). Despite the use of diverse anticancer agent combinations
(chemotherapy, radiotherapy, and allogeneic hematopoietic stem
cell transplantation), patients who experience relapse have a higher
probability of treatment failure and death (21). The survival rate of
relapsed patients is approximately 50% and worse in relapsed cases
where the central nervous system is affected (22–24). Cancer
treatment has been based on the use of chemotherapeutic agents
that are unable to differentiate between normal and cancer cells.
Emerging therapeutic schemes to treat leukemia are based on the
knowledge that the immune system plays an important role in
tumor cell identification and elimination (25–28). In order to
develop new anti-leukemic therapies, it is necessary to understand
the mechanisms underlying the displacement of transformed
hematopoietic cells by normal hematopoietic progenitors and the
immune evasion processes by which the tumor cells hijack the
immune system (25, 26). This review focuses on the mechanisms
of immune system evasion of ALL cells and its potential for
developing new treatments.
IMMUNE SYSTEM AND TUMOR EVASION

The human immune system comprises leukocytes, bone marrow
(BM), and other organs. Leukocytes include neutrophils,
monocytes, eosinophils, basophils, dendritic cells, lymphocytes (T
and B cells), and natural killer (NK) cells. By discriminating self
from non-self, the human immune system is responsible for
protecting the body from diseases caused by exogenous and
endogenous agents. To differentiate between self or non-self, the
immune system employs fundamental biochemical differences
among cells, such as the absence of methylated cytosine residues
in DNA and glycoprotein composition (29, 30). The two immune
responses recognized are innate and acquired/adaptive (cell-
mediated immunity and humoral immunity). The innate
immune response, which is present from birth, activates a non-
specific immune response in the presence of self-molecules, such as
endogenous damage-associated molecular patterns (DAMPs),
Toll-like receptor ligands, and non-self-molecules in a cytokine
release-dependent manner (31). Acquired immune response
involves antibody production by B cells and antigen presentation
toT helper cells to stimulate cytotoxic T cells (CTLs), also knownas
CD8 + T cells, which induce the elimination of non-self elements
and produce immune memory cells (30).

The cell-mediated immunity is activated when a specific CTL
is stimulated to initiate the lysis of pathogens, infected cells, and
Frontiers in Immunology | www.frontiersin.org 2
tumor cells; thus, this protects the body against infection and
tumor growth, spreading, and metastasis (31). To prevent tumor
emergence, the immune system eliminates oncogenic viral
infections, induces the inflammatory microenvironment, and
destroys malignant cells (32, 33). Although tumor cells are self
in origin, they differ from their normal counterparts in their
biochemical and antigenic characteristics and biological
behavior. Cancer cells express tumor-specific neoantigens that
arise from an inefficient DNA damage repair system and which
are presented to the CTLs by the human leukocyte antigen
(HLA) system class I. Then, tumor cells are killed through a
combination of direct perforin-dependent destruction and by
increasing tumor immune sensitivity through the release of
inflammatory cytokines, such as interferon (IFN) alpha (INF-
a) and tumor necrosis factor (TNF) (30, 34, 35). However, tumor
cells have an acquired mechanism to evade the immune system
to avoid their destruction (Figure 1).

In 1908, Ehrlich proposed the role of the immune system in
controlling cancer development. Later, Burnet (1957) suggested
that lymphocytes are tasked with identifying and eliminating
mutated cells (29, 30) and the presence of an immunological
mechanism for eliminating or inactivating potentially dangerous
mutant cells before tumor clinical manifestations, a concept
called “immunological surveillance” (36). Currently, the role of
the immune system in malignant cell elimination is
unequivocally established. The quality control of the immune
system to fight against tumor cells involves immune cells and
their associated molecules, with the CTLs and NK cells being the
major components (34, 37). These cells act as tumor suppressors
by patrolling the human body and destroying transformed cells
before tumor progression. The anti-tumor immune response
attacks the tumor through activated lymphocytes to trigger
apoptosis by producing perforin and granzyme B to damage
the extracellular membrane and enter targeted tumor cells,
expressing Fas-L, TNF-related apoptosis-inducing ligand, and
IFN-gamma (IFN-g) (38–40). However, tumor cells can evade
immune surveillance mechanisms, and indirectly, the immune
system selects tumor cells that carry mutations in genes involved
in the immune detection and elimination pathways, leading to
cancer progression (Figure 1). Despite that CTLs detect tumor
cells, they frequently fail to control tumor growth (41, 42). CTL
dysfunction could be induced by a continuous stimulation of the
tumor antigens and by an immunosuppressive tumor
microenvironment (TME), driving the T cells to a functionally
exhausted state and cancer progression (42, 43). The interaction
between the immune system and cancer establishment is
called immunoediting.

The central assumption of immunoediting is that CTLs
recognize tumor antigens and drive immunological tumor
elimination or model cancer development before re-emerging.
This process could select cancer cells with mutations that confer
resistance to immune effectors and survival advantages in a
tumorigenic environment (44, 45). Immunoediting comprises
three phases: elimination, equilibrium, and evasion (30). These
mechanisms have been extensively reviewed elsewhere; thus,
they are briefly summarized here.
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Elimination phase involves the recognition and killing of
transformed cells and nascent tumors by the immune system
through antibody production. This process starts with the
recruitment of macrophages, dendritic cells, and infiltrating
lymphocytes (NK and natural killer T cells) into the tumor site
(46) to suppress angiogenesis and induce immunogenic necrotic
tumor cell death, promote regulatory T cells (Tregs) apoptosis,
and induce M1 pro-inflammatory macrophage activity to defeat
tumor progression (47). Moreover, INF-g and interleukin-12 (IL-
12) enhance cytotoxic responses by NK and CTL cells,
promoting tumor death by apoptosis and the release of
reactive oxygen and nitrogen intermediates (47). Tumor-
specific CD8+ and CD4+ T cells infiltrate the tumor site after
the recognition of tumor-specific or tumor-associated antigens
through HLA class I and class II molecules, respectively, which
facilitate the immune mechanisms in synergy with B cells.
Cancer cells that are not eradicated during the elimination
phase remain in dormancy or equilibrium (Figure 1) (33, 43).

Equilibrium is the longest phase where cancer remains
clinically undetectable, suggesting that tumor cells coexist with
the immune system for up to several years (47, 48). Evidences
have shown that immune-mediated cancer dormancy is
regulated by CD8+ and CD4+ T cells and IFN-g (49, 50).
Through IFN-g/STAT1 pathway activation, IFN-g inhibits
tumor cell proliferation and establishes tumor dormancy
without destroying malignant cells (30). However, IFN-g can
Frontiers in Immunology | www.frontiersin.org 3
facilitate tumor escape and relapse by inducing tumor antigen
loss, upregulating programmed death 1 (PD1) ligand (PD-L1) in
tumor cells and recruiting myeloid-derived suppressor cells
(MDSCs) and tumor-associated macrophages (TAMs) to the
tumor site (50).

Escape is the phase where tumor cells that have evaded the
immune surveillance system acquired additional DNA mutations
and epigenetic changes and have great effectiveness to proliferate
and evade apoptotic mechanisms (51). Although new mutations
could drive the expression of tumor-specific antigens that are
recognized by CTL cells (52), tumor cell-intrinsic alterations and
TME modifications (e.g., nutrient depletion, metabolic stress, and
cytokine regulation) lead to poor immune response and tumor
progression (53). Long-term glucose deficiency in the TME results
in low T cell response, cytokine production impairment, T cell
“anergy” state, and T cell autophagy to save energy (54, 55). Lipid
reduction may result in a lower tryptophan concentration in the
extracellular environment, which can inhibit CTL proliferation (47,
56). Acquisition of gain-of-functionmutations by tumor cells could
lead to lowor lackofantigenicityproperties, resulting inhijackingof
immune mechanisms. Mutations can also induce abnormal HLA
expression or antigen processing machinery dysregulation; in fact,
HLA class I downregulation is described in 40–90% of human
tumors (45, 51). Altered PD-1 or PD-L1 expression on tumor and
host cells is also observed, which can inhibit T cell activation and
enhance the immune tolerance ofmalignant cells, facilitating tumor
FIGURE 1 | Immune surveillance and cancer development. Emerging malignant cells are identified and eliminated by the immune system; however, certain acquired
gene mutations in tumor cells allow them to remain undetected by the immune surveillance system, resulting in cancer.
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immune escape (57, 58). Chronic PD-L1 expression,
predominantly by TAMs, prolongs the immunosuppressive TME,
likely by tumor-specific T cells, as if they were malignant cells (57).
Studies in ALL have shown that leukemic blasts express ligands for
NK cell receptors, the natural killer group 2 member D (NKG2D)
and DNAX accessory molecule-1, to avoid their destruction (59).
Lownumbers and impairedNK-cell-mediatedcytotoxicity couldbe
due to a reduced level of activating receptors (NKp46, NKp30,
NKp44, and NKG2D). Cancer cells can also alter NK cell function
by modulating the NK cell surface receptors, releasing soluble
factors with immunosuppressive properties such as IL-10 and
transforming growth factor beta (TGF-b). The signaling
lymphocytic activation molecule-associated protein adaptor, in
addition to the overexpression of human leukocyte antigen G
(HLA-G), which induced immune tolerance and decreased
NKG2D expression in NK cells, contributes to the escape of
leukemia cells from immune surveillance (60, 61). Thus, the
immune system indirectly promotes tumor progression through
the selection of poorly immunogenic malignant clones (44, 45).
Table 1 lists the general mechanisms involved in the evasion phase.
IMMUNE EVASION MECHANISMS IN ALL

Several studies have shown that solid and liquid tumors share
immune evasion mechanisms. Studies on B cell precursor (pre-B)
ALLmousemodels to analyze the cytotoxicity effect of CTLs onnon-
immunogenic leukemic cells revealed that leukemic blasts, which are
not eliminated by the initial immune response, remain in a dormant
state during immune surveillance until an immune-evasive clone
emerges, which requires a loss of immunogenic antigens for immune
escape (77). In addition, it was proposed that ALL displayed
immunological ignorance or immune tolerance (described as poor
immunogenic clones that fail to alert the immune sensing
mechanisms and avoid immune response) because leukemia cells
lack or only a subset of them express relevant co-stimulatory
Frontiers in Immunology | www.frontiersin.org 4
accessory molecules (CD80 and CD87, respectively), showing
deficient T cell activation (78, 79). Moreover, the relatively low
mutation burden in ALL in comparison to other tumors could
reduce neoantigen production and induce a low immunogenic
response (80–82). Nevertheless, the presence of tumor-infiltrating
lymphocytes asCD8+Tcells inpediatricpatientswithALLsuggests a
potentially robust antitumor immune response (83). In addition, by
predicting mutated neoepitopes in leukemia, at least one neoepitope
was found in 88% of the cases, which can be recognized byCTLs and
induce an anti-tumor response (84).However, B cell leukemia fails to
function as an antigen-presenting cell (APC)which, in addition to its
rapid dissemination, could affect the initiation and execution of anti-
leukemia immunity through non-activation of T cells, which may
promote immunosuppressive TME and tumor cell survival (55, 85–
87). InALL, it has beenproposed that tumor-specificTcells arenever
properly activated; they are instead deleted or anergized upon initial
antigen presentation (80, 85). Data from pre-B cells ALL show that
the T cells become anergic after interleukin-10 (IL-10) expression,
which is induced by CD40 activation (80, 85). Abnormal IL-10 and
CD40 expression has been found in patients with ALL (78, 79, 88–
90), and polymorphisms within the IL-10 gene promoter region
(-G1082A) that influences the IL-10 plasma levels have been
associated with ALL prognosis (78, 91, 92).

Immune tolerance mechanisms that protect healthy tissues are
hijacked by cancer to maintain immune escape through the
modulation of additional processes, such as metabolically
essential amino acid (tryptophan and arginine) depletion,
immunosuppressive cytokine (TGF-b and IL-10) overproduction,
expansion of Tregs,MDSCs,macrophages, and expression of T cell
response inhibitors and co-inhibitory ligands (e.g., PD-L1) (93).
Studies focused on ALL suggest that defective antigen presentation
on MHC-I molecules is involved in immune evasion (94).
Alterations in the expression and functionality of HLA class I
(essential for CTL cytotoxicity) or II (important for CD4+ T cell
response) are commonly observed in solid tumors (95, 96). The
downregulation or loss of cell surface expression ofHLA-I and high
TABLE 1 | Potential mechanisms of tumor immune evasion.

Mechanism Features Tumor types References

Malignant cell selection Low effectiveness to eliminate mutated cells ALL, breast, bladder, colorectal, CML, esophageal, endometrial, HN,
hepatocellular, gastric, glioblastoma, lung, lymphoma, melanoma,
pancreatic, prostate, ovarian

(62–67)
Gain of DNA and epigenetic mutations that
increase the proliferation ability
Resistance to immunity-induced apoptosis (by
abnormal function of IFNg receptor or tyrosine
kinases association)

Altered expression of HLA
antigens and co-stimulatory
molecules

Reduced of HLA-I antigen expression ALL, CLL, AML, CML, breast, cervical, colorectal, gastric,
hepatocellular, lymphoma, lung, melanoma

(55, 60, 68,
69)Abnormal expression of co-stimulatory molecules

(CD80 or CD86)
Poor stimulation of T cells
Reduced CTL response

Chronic PD-L1 expression
by host cells

Prolongated immunosuppressive state in the
tumor microenvironment

ALL, CML, breast, colorectal, esophageal, gastric, HN, lung,
melanoma, ovarian, sarcoma

(55, 57, 58,
70, 71)

Repressed T-cell function
T cell dysfunction Reduced T-cell response ALL, CLL, breast, glioblastoma, lung, hepatocellular, melanoma,

ovarian, sarcoma
(55, 62,
72–76)Cytokine production impairment

T-cell ”anergy” and autophagy
November 2021 | Volume 12 | A
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resistance to NK-cell-mediated killing has been described in ALL
(97–101)—for instance, the C2 epitope that is encoded by HLA-C
has been found to be overrepresented in patients with ALL. Given
that C2 is a high-affinity ligand of the natural killer cell inhibition
receptor (KIR2DL1), it has been suggested thatC2maydecrease the
destruction of leukemic blasts and increase the probability of late
relapse in patients with ALL (>2.5 years) by reducing the cytotoxic
capacity of NK cells (99). The absence ofHLA class II expression in
leukemic T-cells and its regulator class II trans activator has been
reported (102). Recently, HLA class II expression was associated
with a better prognosis in adult T cell leukemia/lymphoma (103).

Other mechanisms, such as disrupted immune checkpoint
expression and high production of suppressor factors by CTLs,
alterations in the anti-inflammatory/pro-inflammatory cytokine
ratio, cytotoxic abnormalities, and other cell populations with
altered functions, and aberrations in the immunophenotype of
the lymphoid lineage have been proposed to avoid immune
surveillance by ALL cells (Figure 2) (85, 104).

Disrupted Immune Checkpoint Expression
and High Production of Tumor Suppressor
Factors by Cytotoxic T Cells
Cytotoxic cells are the major components of the immune system
that counterattack tumor cells. The overexpression of co-inhibitory
ligands for specific receptors on cancer cell surfaces to disrupt T cell
response is one of the primarymechanisms developed to hijack the
immune system. The cell surface molecules CD28, cytotoxic T-
lymphocyte-associated protein 4 (CTLA-4), inducible co-
stimulator (ICOS), PD1, and PD-1L are basic ligands that induce
co-stimulatory or inhibitory signals in T cells to maintain immune
system homeostasis (Figure 2A) (105). In the early immune
response stages, CD28 facilitates and maintains the CD4+ and
CD8+Tcell response.CTLA-4 arrestsT cell activationby triggering
an inhibitory signal within the T cell, affecting critical peripheral T
cell tolerance and function (106). CD28 and CTLA-4 share ligands
and are necessary to avoid inappropriate or prolonged CD4+ and
CD8+ T cell activation. Both molecules have been found to be
constitutively expressed in acutemyeloid leukemia (AML) blasts at
diagnosis and have an increased expression in leukocytes from the
peripheral blood of these patients compared with that of healthy
controls, likely favoring AML cell escape fromT cell activation and
its effector functions (107).Anevaluationof theCTLA-4expression
revealed that this co-inhibitory molecule was elevated in T cells in
patients with high-risk ALL (108); in addition, CTLA-4 solubility
was significantly elevated in 70% of B-ALL pediatric patients with
active disease (109). Furthermore,CTLA-4overexpressionhasbeen
correlated with the percentage of leukemic B cells and poor
prognosis in pediatric patients (108, 110), and a high serum
CTLA-4 level has been detected in patients with B-ALL who died
from the disease (111). Thus, the disputedCTLA-4 expression from
ALL cells could be a potential mechanism of immune surveillance
escape (109, 112).

PD-1 and PD-L1 overexpression has been reported to evade the
host immune system in numerous cancer types (105, 110, 113). PD-
L1 and PD-L2 are ligands of PD-1, which is an important inhibitory
immune checkpoint that suppresses T cell activity after antigen
activation. In fact, CTL function inhibition by PD-1 expression has
Frontiers in Immunology | www.frontiersin.org 5
been observed in patients with AML (113). CTLA-4 and PD-1
expression in hematological malignant cells has been suggested as
an immune evasion strategy to promote leukemia blast survival and
prevent efficient recognition and destruction by anti-tumor T cells
(107, 110). Studies using a mouse model of disseminated AML and
in transplanted patients before relapse have shown that sustained
inhibitory signaling mediated by CTLA-4 and PD-1 on T cells
correlates with a T cell exhaustion stage, reduced T cell effector
function, and lower cytotoxicity (114, 115). Data from ALL
evidenced a decrease in PD-1 expression on CD4+ and CD8+ T
cells after the inhibition of myeloid–epithelial–reproductive tyrosine
kinase, a gene associated with the induction of an antiapoptotic gene
expression signature in B-ALL cells, leading to increased T cell
activation (116). Abnormal expression of checkpoint molecule PD-
1 has been reported in BM biopsies from adult patients and in T
cells of pediatric cases with ALL (108, 117). In addition to the
observations in ALL, upregulation of both malignant and
infiltrating immune cells from B cell lymphomas and T cells of
peripheral blood mononuclear cells from patients with chronic
myeloid leukemia (CML) exhibits the relevance of PD-L1 in
hematological malignancies (118–120). PD-L1 overexpression is
correlated with poor prognosis in ALL (113) and has been found
to be one of the most expressed inhibitory markers in pediatric ALL
blast, whose expression is increased in relapsed patients with ALL
(108, 115). Other checkpoint molecules are T cell immunoglobulin
and mucin domain-containing protein 3 (TIM-3) and lymphocyte-
activation gene 3 (LAG-3). TIM-3 is involved in apoptosis, and
Tregs expressing TIMP3 have a higher suppressor function than
Tregs negative to TIMP3 (121). LAG-3 expression has been
detected in highly immunosuppressive T cells and correlates with
an increased expression of IL-10 production by Tregs (122, 123).
TIM-3 and LAG-3 have been found to be subexpressed in the BM of
patients with ALL, in contrast to healthy subjects (117).

ICOS (CD275) is involved in maintaining immune reactions
and has a relevant role in Tregs function and differentiation,
which protects tumor cells from immune cells in the TME (124,
125). Significant Tregs accumulation in the BM-TME and
upregulation of ICOS ligand (ICOS-L) have been observed in
AML, suggesting that ICOS-L contributes to the conversion and
expansion of Tregs and preserves the immunosuppressive
environment. Additionally, ICOS-L and ICOS expression was
found to be a predictor of OS and disease-free survival in patients
with AML (126). Although there is no information regarding
ICOS or ICOS-L in ALL, the relevance of ICOS in ALL immune
escape is supported by studies showing that ICOS is part of the
intracellular region of the signaling domain complexes that
activate and induce cytotoxicity against target cells during
chimeric antigen receptor (CAR) T cell immunotherapy (127).

Alterations in the Anti-inflammatory/Pro-
Inflammatory Cytokine Ratio
Inflammation is an immune response to body damage and is
mediated by cytokines, which are relevant players involved in
oncogenic processes, such as cell proliferation, apoptosis
inhibition of mutated cells, and promotion and progression of
cancer development (128). Cytokines are classified as pro-
inflammatory (IL-1b, IL-6, IL-15, IL-17, IL-23, IFN-a, and
November 2021 | Volume 12 | Article 737340
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TNF-a) and anti-inflammatory (IL-4, IL-10, IL-13, and TGF-b).
Interestingly, an inflammatory marker analysis of neonatal blood
reported that children who developed pre-B ALL had a cytokine
signature (lower concentrations of the cytokine IL-8, soluble IL-6
receptor a, and TGF-b1 and higher concentrations of IL-6, IL-
17, and IL-18) (129). Increased CCL2 and IL-8 concentrations of
T cell-polarizing cytokines (IFN-g and IL-12) and cytokines
associated with infectious processes, such as TNF-a and IL-6,
have been detected in patients with ALL at diagnosis, suggesting
a pro-inflammatory state (130–133). These findings could be
associated with immune cell activation by endogenous molecules
that are released after tissue injury or cell death to generate an
immune response against cancer (133, 134). The pro-
inflammatory environment in the BM of patients with
leukemia is facilitated by hematopoietic and stromal cells.
However, studies indicate that cancer cells hamper immune
activation by creating an anti-inflammatory TME by
overproducing anti-inflammatory cytokines and by blocking
the release of pro-inflammatory cytokines, thus successfully
evading immune surveillance (128, 135). In CML, AML, and
ALL, cancer cells express TGF-b and IL-10 to reduce
Frontiers in Immunology | www.frontiersin.org 6
immunogenicity (136, 137). Studies in mouse models with B-
ALL have shown that TNF-a is secreted by B-ALL cells, and this
leads to increased invasiveness and significant prolongation of
surviving leukemia cells (138), which is an important mediator of
leukemia-induced NK cell dysfunction. Thus, it is fundamental
for NK cell immune evasion in childhood B cell ALL (139).
Although IL-4 has shown antitumor effects and ALL cell
suppression (140), it has been suggested that IL-4 expression
in leukemia cells could reduce immunological recognition by
decreasing HLA-class II molecule expression (132).

IFN-g and interleukin 6 (IL-6) are among the most important
cytokines associated with immune response in cancer (141). IFN-g
gene expression is reduced in patients withALL, suggesting that the
immune system is disrupted and leukemia cellsmay take advantage
of defective IFN-g production to promote escape from immune
surveillance (142, 143). IL-6 contributes to lymphocyte and
monocyte differentiation and induces antibody secretion by B
cells. The low antibody production and decreased cellular
immunity derived from abnormal IL-6 expression detected in
ALL cases (Figure 2B), in addition to the association between
single-nucleotidepolymorphisms in the IL-6geneandsusceptibility
A B

DC

FIGURE 2 | Immune evasion mechanisms that are potentially involved in the progression of acute lymphoid leukemia (ALL). (A) Low MHC-I and co-stimulatory
ligands but high co-inhibitory lead to the inactivation or depletion of the CD8+ T-cell cytotoxic function. (B) Abnormal expression of anti-inflammatory cytokines (TGF-
b, IL-4, and IL-10) reduces the cytotoxic T lymphocyte (CTL) population, and the pro-inflammatory cytokines (MCP1, TNF-a, IL-6, IL-12, and IFN-g) are responsible
for malignant cell destruction. (C) Immune cell enrichment, such as MDSCs, Tregs, and M2 macrophages, generates a favorable microenvironment for ALL cells and
inhibits the activation and differentiation of CTLs and natural killer cells. (D) The plasticity of ALL cells leads to immunophenotype switching, which can reprogram
immune evasion pathways. It has been proposed that these mechanisms could together contribute to the dissemination and progression of ALL. ALL, acute
lymphoblastic leukemia; AML, acute myeloid leukemia; CD, cluster differentiation; CTLs, cytotoxic T lymphocytes; CTLA-4, cytotoxic T-lymphocyte-associated protein
4; ICOS, inducible co-stimulator; ICOS-L, inducible co-stimulator ligand; IFN-g, interferon gamma; IL, interleukin; M2, M2 macrophages; MCP1, chemoattractant
protein-1; MDSC, myeloid-derived suppressor cells; MHC-I, major histocompatibility complex class I; NK, natural killer; PD1, programmed death 1 ligand; PD-L1/2,
programmed death 1/2 ligand; TCR, T-cell receptor; TNF-a, necrosis factor alpha; Treg, regulatory T-cell.
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Jiménez-Morales et al. Immunosuppressive Evasion Mechanisms in ALL
to ALL (the genotype of which correlated with IL-6 serum levels),
are evidence of the relevance of this cytokine in this malignant
disease (141, 144, 145).

Other cytokines and chemokines, such as IL-1, IL-7, IL-8, CCL2,
CXC-10, andCXCL-12, could contribute to immunotolerance (112,
146). In fact, IL-1, IL-7, and CXCL12 expression favors ALL cell
surveillance in the BM-TME (146, 147). Through the induction of
CCL2 by periostin, this molecule stimulates the proliferation and
dissemination of ALL (146, 148).

Abnormal Cytotoxic andOther Cell Populations
and Alteration of Their Functions
The abnormal proliferation of immune cell populations is
another important mechanism for preventing immune attacks
in cancer. Two distinct T cell subsets are involved in the immune
system against cancer. The first is CTLs that kill cancer cells, and
the second is cells required for the activation and proliferation
of APCs.

Tregs (CD4+ CD25+ Foxp3+) are involved in tumor
development and progression by inhibiting anti-tumor immunity
in theTME(93, 149).Underphysiological conditions, Tregs play an
essential role in self-tolerance and immune homeostasis processes
by suppressing normal and pathological immune responses and by
eliminating a broad range of pathogenic microorganisms and
malignant cells (85, 150–152). The correlation between tumor-
infiltrating Treg levels and prognosis has been described in several
malignancies, includingALL, suggesting thatTregsmaybe involved
in the immune evasion process (149, 153–156). Indeed a high
number of Tregs in the BM and peripheral blood of ALL cases has
been associated with poor prognosis (153, 154, 157, 158). Studies in
BM-TME have shown that immunosuppressive cytokines, such as
IL-10 and TGF-b, are secreted by Tregs (Figure 2C) (159).

One of the biological features of patients with ALL is the
presence of severe cytopenia and poor reconstitution of the
innate and adaptive immune system. Although normal
lymphoid and myeloid cells are present in ALL BM, the early
compartment of progenitor hematopoietic cells is reduced in
number and activity, including NK cells, MDSCs, and
macrophages (93, 130, 160).

NK cells represent 5–20% of the lymphocytes in peripheral
blood and are relevant in early antitumor immune response by
lysing the tumor cells due to cytokine release. Based on CD56
and CD16 expression, two principal subpopulations of NK cells
were identified: cytotoxic NK cells or cNK (CD56dim CD16+)
and regulatory NK cells or NKregs (CD56highCd16-). cNK are
abundant in peripheral blood (95% of the NK) and inflammation
sites and show a higher cytotoxic capacity than NKregs, which
predominate in lymphoid nodes (33). Natural cytotoxic receptor
expression is a relevant mechanism to stimulate responses
against tumor cells and has been observed to be downregulated
in ALL BM (33). In recent years, several studies have provided
evidence of the fundamental role of NK cells in the onset,
development, and establishment of ALL (59, 139, 161, 162).
ALL NK cells at diagnosis had an inhibitory phenotype
associated with impaired function due to abnormal NK ligand
expression (139). Torrelli et al. (59) observed a higher expression
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of the ligands for NK cell-activating receptors, Nec2, ULBP1, and
UBLP3, on the surface of the blasts from children in contrast to
adults with ALL, which could be associated with the worse
clinical evolution of ALL in adults than in children (59).
Differences in NK cell activity among molecular ALL subtypes
have been described, with increased NK cell-activating ligand
expression (NKG2D and DNAM1) in patients with ALL carrying
the fusion gene BCR-ABL (Philadelphia chromosome: Ph+), in
contrast to Ph negatives (59). Additionally, Ph+ cells are more
susceptible to NK cell killing activity than ALL cells carrying no
known molecular markers and were enhanced in Ph+ adult
cases; B-ALL with MLL-AF4 gene and T-ALL cases displayed a
high density of the NKG2D ligand and UL16-binding protein
(ULBP-1) (59). NK cells from child and adult patients have
shown aberrant functions, such as low degranulation of
granzyme B (117, 139). In a cohort of child patients with B cell
ALL sampled at diagnosis, end induction, and maintenance,
evidence of altered NK phenotype and function compared to
age-matched controls was revealed. It should be emphasized that
the NK abnormalities were partially corrected during the
maintenance phase of the ALL treatment and were inducible in
healthy NK cells after co-culture with ALL blasts in vitro by TGF-
b1 release (139). In fact, leukemic cells secrete IL-10 and TGF-b
in order to evade the effect of CTLs and NK cells (137).
Furthermore, a direct contribution of the TME to the
exhaustion of NK cell functions by the CRTAM/Necl-2
interaction was reported in ALL. Indeed the decreased NK cell
content and their depleted cytotoxic capacity in peripheral blood
are two of the predominant immune surveillance problems in
acute leukemia (139). Current investigations focusing on in vitro
activation and NK cell expansion protocols to treat ALL
are underway.

MDSCs are a heterogeneous population of regulatory
immature cells derived from monocytes or granulocytes that
are involved in immunosuppression in patients with cancer
(163). MDSCs consist of two main subpopulations (monocytic
MDSCs—MO-MDSCs and polymorphonuclear MDSCs—
PMN-MDSCs) that suppress the activation, proliferation, and
cytotoxicity of effector T and NK cells and induce the
differentiation and expansion of Tregs (163–165). The role of
MDSCs in ALL remains incomplete. Recently, it was reported
that patients with B cell ALL at diagnosis have a higher number
of MDSCs than healthy subjects, which was even higher during
induction chemotherapy (166). Furthermore, Zahran et al. (163)
detected increased MDSCs in pediatric patients with B cell ALL
compared to healthy controls. Moreover, these authors observed
a relationship between PMN-MDSCs and the levels of peripheral
and BM blast cells and CD34 + cells, suggesting that PMN-
MDSC cells provide a suitable immune-suppressive state for B
cell ALL tumor progression. A reduction in PMN-MDSC
population was related to complete post-induction remission
(163). The high number of these cells in pediatric patients with B
cell ALL suggests that the increased levels and activity of MDSCs
and Tregs could explain the immunosuppression state observed
in this malignancy (163). MDSCs secrete TGF-b and IL-10 that
have direct immunosuppressive effects and induce Treg
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expansion, which suppressed tumor-specific T cell responses
(167) (Figure 2C).

Macrophages are other essential immune cell populations of
the host and are composed of two subtypes: M1, which has
antitumor effects, and M2 (anti-inflammatory cells with
protumoral properties), which supports TME through the
induction of angiogenesis, metastasis, and immune suppression
(168–170). Macrophages have anti-tumoral activities at the
initial stages of solid and hematological tumor development;
however, TME impairs macrophage function, transforming them
into immunosuppressive cell types with pro-tumoral activities
(171). The frequency of M1 macrophages has been reported to be
notably reduced in adult patients with B-ALL compared to
controls, while M2 macrophages are increased (117). M2 is
divided into several subtypes, where TAMs, which are relevant
in solid tumor cell invasion, are included. Knowledge about the
role of macrophages in hematopoietic malignancies has been
obtained mainly from the study of lymphomas, where an
association between the number of TAMs in lymph node
biopsy and the prognosis of patients with classical Hodgkin
lymphoma (cHL) was found (172). In ALL, the production of M2
macrophages with immunosuppressive/tolerogenic properties
can be induced by tumor-mediated mechanisms (tumor-
derived cytokines and growth factors, etc.) (171). Furthermore,
it has been found that spleen leukemia-associated macrophages
(LAMs) stimulate the proliferation of T cell ALL and have high
migration, and their functional and phenotypic characteristics
are modified by an organ-specific microenvironment (169, 173).
Most LAMs have an M2-like phenotype. It has been reported
that this type of immune cells also secrete immunosuppressive
cytokines such as IL-10 and TGF-b (159).

Leukemia Cell Plasticity and
Immunophenotype Switching
During malignant hematopoietic disorders, such as acute leukemias,
intrinsic and extrinsic signals (including those participating in
immune surveillance) influence the cell differentiation pathway
and cooperate in abnormal fate decisions, highlighting the
relevance of a continuous homeostatic control to produce
elements of tumor suppression (174, 175). Switching of CML to
ALL in the blast crisis, AML cases relapsing as ALL, ALL converting
AML after chemotherapy, and mixed phenotypes (simultaneous
expression of both myeloid and lymphoid antigens) suggest that
linage-associated molecule expression contributes to immune
response disruption and facilitates cancer progression (174, 176–
179). Lineage switching in leukemia is more frequent in children
than in adults, and most cases are ALL converting to AML (180).
Studies have proposed that this process is a consequence of stem cell
plasticity (capacity to cell fate conversion in defined cells adopting
biological properties to the same or different lineages) since the
evidence shows that cancer cells are derived from the same founder
clone in leukemia lineage switching (180). Leukemias with lineage
switching appear to be more common in specific genetic subtypes,
such as those with KMT2A (MLL) gene rearrangements (180). The
absence of EBF1 expression in ALL allows early lymphoid
progenitors to differentiate into the myeloid lineage, and deletion
of PAX5 in mature B cells can induce conversion to different fates,
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including macrophages and T cells (176, 181). Low PAX5
expression has been reported in patients with ALL and very early
relapse-expressing AML genes, such as MPO and FLT3 (174). A
single-cell RNA-seq study revealed that plasticity coexists with
oncogenic and immune evasion programs in early T progenitor
ALL (174), suggesting that specific features acquired during lineage
conversion could contribute to immune evasion response in ALL. It
has been proposed that the plasticity of leukemic blasts in early
progenitor T cell ALL can modulate the treatment based on
inhibitors of the Notch pathway due to the coexistence of
transcriptional programs that are characteristic of lymphoid and
myeloid lineages. Additionally, immunoevasion signatures were
found to be activated in the TME—for example, the interaction
between hepatitis A cellular virus receptor 2 and galectin 9 is
associated with CD8+ T cell dysfunction (174). Studies aimed at
understanding leukemic blast plasticity could contribute to the
identification of potential therapeutic targets based on the
reversion of T cell depletion and consequently improve OS rates
in patients with ALL.
BONE MARROW TUMOR
MICROENVIRONMENT AND IMMUNE
SYSTEM EVASION

Immunological evasion is due to mechanisms inherent to the
TME. It is well known that malignant blasts maintain a close
interaction with normal cells within the BM niche and, at the
expense of normal hematopoiesis, remodel functionally and
structurally the BM-TME to favor ALL development and
promote tumor cell dissemination and chemotherapy
resistance (43, 47, 55, 112, 118, 182–184). BM-TME favors
tumor growth through polarization of host immunity to
prevent anti-cancer immune responses. Alterations in immune
cell populations in the TME are other mechanisms involved in
the immune evasion by leukemic cells—for instance, it has been
reported that the presence of leukemic cells in BM affects the
CD14-expressing monocytes and non-classical CD16-expressing
monocytes populations (185). Leukemic blasts have the capacity
for TME remodeling during disease progression and promote
monocyte differentiation into non-classical monocytes. In the
BM-TME, a decrease in CTLs and NK cells has also been
reported as well as an increase in suppressor immune cell
populations such as Tregs, M2 macrophages, and MDSCs to
support an immunosuppressive microenvironment (55). Mice
models of AML revealed that those leukemic cells reduce the
osteoblast population, modifying the lineage fate of
hematopoietic stem cells, which increase tumor burden and
reduce OS (186, 187). The interaction between leukemic blasts
and the different cell types has been associated with a major
surveillance of tumor cells (188). Besides this, ALL cells and the
primary mesenchymal stromal cells (MSC) within the niche
interact by using tunneling nanotubes (TN) that induce the
secretion of prosurvival cytokines IL-8, CCL2, and CXCL10,
driving stroma-mediated steroid resistance. By interruption of
the TN signal, the leukemogenic processes are inhibited; thus,
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pre-B-leukemic cells are resensitized with prednisolone
(189, 190).

ALL blasts also express surface molecules shared with
hematopoietic stem cells and interact with extracellular matrix
(ECM) molecules, soluble factors, and cytokines for ALL
promotion—for instance, it has been reported that integrins
have a role in the retention of leukemic blasts in the BM and
contribute to ALL dissemination from BM to the CNS and
chemoresistance (191, 192). Otherwise, the MSC-derived ECM
proteins, such as periostin and osteopontin in the niche,
stimulate the proliferation and dissemination of ALL. ECM of
the BM also represents a physical barrier that contributes to
immune evasion in the cell niche (193).

Another important alteration in the leukemic TME is the
increased levels of anti-inflammatory and immunosuppressive
cytokines, such as IL-10 and TGF-b, and the high expression of
PD-1 and TIGIT, which contribute to tumor progression and
immune evasion (43, 47, 55, 194). IL-1, IFN-g, TNF-a, and HLA-
G in the BM-TME may induce immune tolerance and then ALL
recurrence. Additionally, overexpression in BM-TME of
chemotactic cytokines such as CXCL12/CXCR4 and CCL25/
CCR9 (produced by stromal cells in the BM) has a role in ALL
and influences the outcomes and chemoresistance. Thus,
targeting the chemokine axis could significantly reduce tumor
burden in ALL (182).

It iswell knownthat the immunosuppressivemicroenvironment
surrounding tumor cells represents a key cause of treatment failure;
therefore, BM-TME is the central target for reprogramming the
immune system in ALL and other hematological malignancies.
INTO THE FRONTLINE OF ALL
TREATMENT: TARGETING
THE IMMUNE CELLS

Initial ALL treatment comprises induction, consolidation, and
long-term maintenance therapy. The backbone of ALL therapy is
chemotherapy using drugs developed during the 1950s and 1960s
focused on leukemic cell eradication, normal hematopoiesis
restoration, and prevention of “sanctuary site” invasion, relapse,
and death (195, 196). Chemotherapy has achieved considerable
success in ALL survival (9); however, relapse occurring in
approximately 20% of patients with ALL is the main obstacle in
improving the OS rates. Adult patients with ALL have a higher risk
of relapse than pediatric patients, and the protocols used (adapted
frompediatric protocols) reach less than 50%of the success rate and
have lower minimal residual disease negative rates after induction
therapy (197). Allogeneic hematopoietic stem cell transplantation
(alloHSCT) has been an effective anti-leukemic therapy for patients
with ALL (198, 199) but is a highly toxic therapy, and disease
recurrences can occur within the time of immunosuppressive
treatment (200, 201).

Over the last two decades, multiple studies have attempted to
improve the OS of patients with ALL by incorporating new
agents into the treatment protocols and exploiting the immune
response against leukemia cells. Targeting of tumor cells is a
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promising therapeutic approach. Antibody-based therapeutic
strategies are being developed to select cells of the immune
system, enhance anti-tumor immune response, and reduce
damage to normal tissues (93, 202). T cell signaling pathway
inhibition (particularly PD-L1/PD-1), immune cell regulation,
and the prevention of tryptophan depletion by indoeamine-2,3-
dioxygenase are the most well-studied immunosuppressive
mechanisms in liquid tumors (93). Nevertheless, few trials
based on these pathways have been described for ALL
treatment. Monoclonal antibodies (mAbs), immune checkpoint
blockers, CAR T cells, and bispecific T-cell engagers (BiTEs) are
currently used in ALL treatments approved by the USA Food and
Drug Administration (FDA) (203–205). Approaches using
adoptive T cell therapy (ACT) and tumor neoantigens are
under investigation (93).

Monoclonal Antibodies
Antibodies are the basis for many new anti-cancer treatment
strategies due to their immunomodulatory properties and
capacity to promote the induction of anti-tumor immune
responses. These antibodies target self-tumor antigens or the
TME to inhibit tumor growth by increasing host immune
responses to antigens expressed by the tumor itself or by
reducing pro-tumorigenic factors generated in the tumor
stroma (206). CTLA-4-specific mAbs have been used in
human cancers, such as melanoma (206). Using the anti-
CTLA-4 mAb (ipilimumab) in combination with IgG4 mAb
(nivolumab), which disrupts the interaction between PD-1 and
PD-L1/PD-L2, in patients with relapsed/refractory cHL, non-
Hodgkin lymphoma, or multiple myeloma showed no significant
improvement in efficacy over single-agent nivolumab (207). The
anti-PD-1 anti-leukemic treatment is based on the maintenance
and expansion of tumor-specific memory T cells and NK cell
activation. This approach has been explored in diverse tumors,
including relapsed/refractory lymphoid malignancies; however,
its clinical application in ALL remains unknown. In ALL, CD-38
and CD-52 have been identified as target antigens of mAbs for
the treatment of relapsed T cell ALL. Currently, there are
ongoing clinical trials testing the efficacy of anti-CD38 mAbs
(isatuximab and daratumumab) and anti-CD52 mAbs
(alemtuzumab) with favorable results for better disease
prognosis (127).

Bispecific T Cell Engagers
BiTEs are bispecific recombinant glycoproteins with two single-
chain variable fragments (scFvs) connected by a flexible linker,
whose targets are membrane molecules (costimulators,
coinhibitors, adhesion, etc.) from both T cells and malignant
cells. BiTEs favor immune responses by creating an immune
synapse among tumor antigens and T cells (204). The
distribution of BiTEs depends on factors such as the diffusion
of the vascular endothelium, laminar flux rate, and interaction
with the target. Blinatumomab (anti-CD19/anti-CD3; AMG103)
is a BiTE that binds to CD3+ lymphocyte T and CD19+ B
lymphocytes. Although blinatumomab induces selective lysis of
tumoral cells, its half-life is short, and constant administration is
necessary for effect maintenance. The Children’s Oncology
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Group has incorporated blinatumomab in clinical trials in
patients with B cell ALL with a standard risk (1–9.99 years and
leukocyte count <50,000/ml) classification. Good results and
acceptable toxicity were observed; in addition, half of the
population had a significant twofold improvement in median
OS compared to patients with standard chemotherapy
regimens (208).

Studies in patients with relapse/refractory pre-B cell ALL
indicate that Treg proportion could determine the prognosis of
blinatumomab treatment. It was observed that blinatumomab
responders had a lower percentage of Tregs (4.82%) in peripheral
blood compared to non-responders (10.25%). Additionally, the
restoration of the activated T cell population was detected after
the in vitro depletion of Tregs in leukemic blasts, thus
highlighting the regulatory role of Tregs in the development of
the immune response in ALL (209).

The main disadvantage of BiTEs is the induction of cytokine
release syndrome (CRS) through proinflammatory cytokines and
aplasia of lymphocytes B (205). Although collateral effects in
clinical assays with blinatumomab have been reported (fever,
nausea, headache, neurological, and hepatic adverse effects), a
lower percentage of minimal residual disease in patients treated
with blinatumomab in contrast to patients with high-risk ALL
treated with conventional regimens was reported (204, 208, 210).

CAR T Cells
CAR is a synthetic construct formed by an extracellular scFvc
(that recognizes the tumor antigen) fused to a transmembrane
domain and to intracellular activating/co-stimulator motives
(CD3z, CD28, 4-1BB) (204, 211–213). CAR is transduced to T
cells (CAR T cell), and after the recognition of the tumoral
antigen, it promotes a cytotoxic effect on the target cell (205). It
has been reported that CAR T cells act independently of HLA
recognition. Therefore, this approach could be used in different
cases to overcome the lower HLA density of ALL malignant cells.
Furthermore, it is feasible to use CD4+ T and CD8+ T cells to
generate CAR T cells, which increases the effector and cytotoxic
potential of T cells (213).

CAR T cells have recently been approved by the FDA to treat
patients with leukemia and lymphoma (203–205), and several
clinical trials of CD19 CAR T cell therapy are being carried out in
ALL relapse patients, which have shown favorable results with
remission after 6 months in up to 90% of the patients, with 78%
OS and 67% event-free survival (214). However, in a group of
refractory/relapsed patients with B cell ALL, CD22 CAR T cell
therapy treatment achieved a complete remission of 70.5% in
comparison with those previously treated with CD19 CAR T
cells without success. CD22 CAR T cell-treated patients only
exhibited a moderate grade of CRS and neurotoxicity, and better
results were observed in patients undergoing alloHSCT (215). An
important advantage of CAR T cells is their capacity to interact
with malignant cells displaying different antigens, such as CD19,
CD20, and CD22 (212).

Although CAR T cell implementation in B cell ALL has
obtained favorable results, its implementation in T cell ALL
presents limitations because CAR T cells and malignant T cells
share similar expression profiles of target antigens, which gives
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rise to a non-specific cytotoxic activity incapable of
discriminating CAR T cells from malignant T cells, leading to
T cell aplasia and eventual immunodeficiency. Notwithstanding,
the identification of antigens, such as CD4, CD5, and CD7, on T
cell ALL shows promise for the use of CAR T cell technology, the
clinical trials of which are ongoing (127).

Limitations of CAR T cell therapy in ALL involve the
following (1): poor expansion and limited persistence in vivo
caused by defects in the design and manufacturing of CAR T cell
therapy (2), internalization of the CD19 glycoprotein and
resurgence in tumor cells (3), toxicity (CAR T cells present
numerous cellular interactions that could promote the cytokine-
mediated systemic inflammatory response), and (4) aplasia of B
cells and humoral deficiency that might promote infections (204,
205, 216).

Adoptive T Cell Therapy Using
Tumor Neoantigens
ACT is based on TIL expansion and infusion in patients
following lymphodepletion. ACT aims to generate a robust
immune-mediated antitumor response via infusion of ex vivo-
manipulated T cells. Studies have suggested that clinical
outcomes correlate with tumor mutational and neoantigen
load (217–219). Although ALL has been described as a
malignancy with low mutational load, a recent analysis
reported that it is possible to obtain immunodominant
neoantigens that could be used to develop neoepitope-CD8+ T
cells and treat patients with ALL (83, 220). To explore the
effectiveness of this strategy, 36 putative neoantigens from the
ETV6–RUNX1 fusion were tested, and 31 neoantigens were
immunogenic. The co-culture of HLA-specific APCs with
neoepitopes and isolated CD8+ tumor-infiltrating lymphocytes
results in TNF-a and IFN-g production. Therefore, this strategy
provides a possibility to consider the adoptive transfer of
neoepitope-CD8+ T cells as immunotherapy in leukemia and
could be used in the consolidation phase or subsequent
treatment (83).

Activation of Necroptosis
The suppression of cell proliferation in leukemic lineages has
significant challenges. On one hand, mAb treatment ablates the
main elements of the adaptive immune response, including T
and B cells, which could favor infection burst or immune-
mediated disease development (221, 222). On the other hand,
to increase tumor-specific T cell responses, it is necessary to
promote leukemic cell immunogenicity. To date, the primary
goal of several research groups has been to promote apoptosis in
malignant cells; however, this type of cell death is immune-
tolerogenic. Recent studies have shown that a new class of
targeted drugs (second mitochondrial activator of caspases,
SMAC) antagonizes diverse anti-apoptotic proteins (inhibitor
of apoptosis proteins) and, in combination with dexamethasone,
promotes increased immunogenic cell death (necroptosis) in
ALL (223, 224). Necroptosis is a regulated inflammatory mode
of cell death that is caspase-independent and presents highly
regulated necrotic features (225). Necroptosis produces the
release of DAMPs and proinflammatory cytokines, allowing a
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better cytotoxic function by tumor-specific T cells (225–227).
The activation of necroptosis has been explored as an anti-
leukemic therapy, and several SMAC mimetic compounds are
currently in phase I or II clinical trials to treat hematological
malignancies, including ALL (225, 228). The leading problem
with active necroptosis in ALL therapy is its potential to induce
immunogenicity. Observations from solid tumors suggest that
necroptosis is not always pro-inflammatory or immunogenic;
however, there are no reports of necroptosis in ALL (223, 229).
CONCLUSION

Despite defined treatment protocols, leukemia remains a global
health problem due to high relapse and treatment failure rates.
ALL studies suggest that immune response evasion by leukemic
cells could promote malignant cell proliferation and invasion.
The identification of leukemic cell strategies to deactivate
immune cells and induce an immunosuppressive TME to resist
apoptosis has been suggested to have potential implications in
the field of personalized immunotherapy for ALL—for example,
the infusion of co-stimulatory adapted CAR T cells to increase
cytotoxic T cell responses is a current option for ALL treatment.
The infusion of neoepitope-specific ALL cells to increase the
MHC response is also a potential alternative. Among the
treatments for patients with ALL, the induction of leukemic
Frontiers in Immunology | www.frontiersin.org 11
cells to become immunogenic is a promising alternative because
it promotes an immunogenic microenvironment and influences
direct malignant cell elimination. Further research into the
immune evasion mechanisms underlying ALL development
and progression is required to gain knowledge on the
molecular and cellular leukemogenesis mechanisms, which
could contribute to the design of new anti-ALL therapies.
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Jiménez-Morales et al. Immunosuppressive Evasion Mechanisms in ALL
GLOSSARY

ACT adoptive T cell therapy
ALL acute lymphoblastic leukemia
alloHSCT allogeneic hematopoietic stem cell transplantation
AML acute myeloid leukemia
APCs antigen-presenting cells
BiTEs bispecific T-cell engagers
CAR chimeric antigen receptor
cHL classical Hodgkin lymphoma
CML chronic myeloid leukemia
CTLA-4 cytotoxic T-lymphocyte-associated protein 4
CTLs cytotoxic T cells
CXCL IFNg-inducible chemokine (C-X-C motif) ligands
DAMPs damage-associated molecular patterns
EBF1 EBF transcription factor 1
ETV6 ETS variant transcription factor 6
FDA Food and Drug Administration
FLT3 Fms-related receptor tyrosine kinase 3
HLA human leukocyte antigen
HLA-G human leukocyte antigen G
IAP: ICOS inducible co-stimulator
ICOS-L ICOS ligand
IFN-g interferon gamma
IL interleukin
INF-a interferon alpha
KIR2DL1 natural killer cell inhibition receptor
KMT2A lysine methyltransferase 2A
LAG-3 lymphocyte-activation gene 3
LAMs leukemia-associated macrophages
mAbs monoclonal anti-bodies
MSCs mesenchymal stromal cells
MDSCs myeloid-derived suppressor cells
MHC major histocompatibility complex
MLL lysine methyltransferase 2A
MPO myeloperoxidase
NHL non-Hodgkin lymphoma
NK natural killer
NKG2D natural killer group 2 member D
NKT natural killer T
OS overall survival
PAX5 paired box 5
PD1 programmed death 1
PD-L1 programmed death 1 ligand
pre-B B cell precursor
RUNX1 RUNX family transcription factor 1
SAP (SLAM)-associated protein
scFvs single-chain variable fragment
SMAC second mitochondrial activator of caspases
TAMs tumor-associated macrophages
TIM-3 T-cell immunoglobulin and mucin domain-containing protein 3
Tregs regulatory T cells
TILs tumor-infiltrating lymphocytes
TME tumor microenvironment
TNF tumor necrosis factor
TRAIL TNF-related apoptosis-inducing ligand
TN tunneling nanotubes
ULBP-1 UL16-binding protein
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