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The rise of antibiotic resistance calls for new therapeutics target-
ing resistance factors such as the New Delhi metallo-p-lactamase 1
(NDM-1), a bacterial enzyme that degrades p-lactam antibiotics.
We present structure-guided computational methods for design-
ing peptide macrocycles built from mixtures of .- and p-amino
acids that are able to bind to and inhibit targets of therapeutic
interest. Our methods explicitly consider the propensity of a pep-
tide to favor a binding-competent conformation, which we found
to predict rank order of experimentally observed ICsq values across
seven designed NDM-1- inhibiting peptides. We were able to de-
termine X-ray crystal structures of three of the designed inhibitors
in complex with NDM-1, and in all three the conformation of the
peptide is very close to the computationally designed model. In
two of the three structures, the binding mode with NDM-1 is also
very similar to the design model, while in the third, we observed
an alternative binding mode likely arising from internal symmetry
in the shape of the design combined with flexibility of the target.
Although challenges remain in robustly predicting target back-
bone changes, binding mode, and the effects of mutations on
binding affinity, our methods for designing ordered, binding-
competent macrocycles should have broad applicability to a wide
range of therapeutic targets.
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Despite the impact of vaccination and antibiotics, emerging
pathogens remain a major threat to public health. In par-
ticular, the rise of bacteria resistant to p-lactam antibiotics
threatens the clinical utility of one of the primary classes of
antibacterial drugs (1). Resistance also hinders the clinical
management of sepsis, currently the most common cause of
death in hospitals, and is a major concern for treating bacterial
infection more generally (1, 2). Mechanisms of resistance are
diverse, but many resistant pathogens employ p-lactamase en-
zymes that are able to degrade f-lactam antibiotics (3). The New
Delhi metallo-p-lactamase 1 (NDM-1) was identified in Sweden
in 2008 and in many other countries around the world shortly
thereafter (4-6). This enzyme can degrade even B-lactams of last
resort, such as the carbapenems (4, 7). As we enter an era in
which even the most chemically diverse p-lactam antibiotics are
susceptible to degradation by pathogen lactamases with broad
substrate specificities, the prospects for developing new,
degradation-resistant chemical variants of these antibiotics grow
fainter. This makes the strategy of combating resistance mech-
anisms with an inhibitor coadministered with an existing
B-lactam antibiotic more attractive. However, there is no drug
that is currently clinically approved to inhibit NDM-1 or any
other metallo-B-lactamase (8).
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The current drug discovery process has shown exponentially
decaying efficiency over the past several decades in terms of new
drugs found per research dollar invested (9). Many factors con-
tribute to this inefficiency, including the large numbers of lead
compounds that show poor pharmacokinetic, pharmacodynamic,
or toxicological properties in late-stage animal or clinical studies.
A key early-stage bottleneck is the process of screening hundreds
of thousands of candidate molecules in order to identify an initial
hit. Rational structure-based drug design methods, which pro-
pose a small pool of candidate molecules for experimental
screening that is likely to be enriched for hits, represent an at-
tractive alternative to undirected screening-based approaches to
address this bottleneck. Since these methods allow larger pools
of initial hits to be identified at lower experimental cost, they
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Peptide macrocycles are a promising class of drugs, but their
weakness is conformational flexibility: target affinity can be
limited by an unfavorable transition from a disordered un-
bound state to an ordered bound state. We introduce general
computational methods for stabilizing peptide macrocycles in
binding-competent conformations as part of the process of
designing for binding to a target protein. As a proof of prin-
ciple, we apply our methods to create inhibitors of the New
Delhi metallo-f-lactamase 1, an antibiotic resistance factor.
Predictions of peptide rigidity correlate with experimental suc-
cess, allowing designs to be prioritized for synthesis and testing.
These methods should contribute to the design of peptide
macrocycle inhibitors of diverse targets of therapeutic interest.
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could also help to ease later-stage bottlenecks by providing more
choice for lead identification and optimization, permitting can-
didates with higher probabilities of late-stage success to be
carried forward.

High-affinity binding of a drug to its target depends on having
a large free-energy gap between the bound and unbound states:
the enthalpic favorability of the interactions between drug and
target must outweigh the entropic cost of binding. Design methods
generally focus on maximizing favorable interactions between a
designed molecule and a target protein to maximize affinity and
specificity. Unfortunately, as such methods append chemical
groups to increase interactions with the target, the designed
molecule becomes more flexible. This creates a mounting entropic
cost associated with ordering the molecule so that it can bind,
which reduces affinity and also introduces the possibility that the
molecule may adopt alternative conformations that permit off-
target interactions, which would hinder specificity (10). An ideal
design method would maximize the favorability of intermolecular
interactions between a drug and its target while simultaneously
maximizing the rigidity of the drug in the unbound state, since
both factors are critical for binding.

We previously reported computational methods, implemented
within the Rosetta software suite (11), for designing and vali-
dating rigidly structured peptide macrocycles built from mixtures
of natural and nonnatural amino acids (12-14). Rigidly struc-
tured peptide macrocycles should lose less conformational en-
tropy on binding, and our working hypothesis is that this can
address the problems hindering flexible meso-scale molecules
and enable higher-affinity binding. Peptide macrocycles also
combine many of the attractive properties of large-molecule
(protein) therapeutics and of small-molecule drugs (15). Like
protein therapeutics, peptide macrocycles present large surface
areas for high-affinity, specific recognition of targets. This shared
property of meso-scale and large-molecule therapeutics could
account for their higher observed success rates when they reach
clinical phases of testing (16). At the same time, macro-
cyclization and incorporation of p-amino acids reduce recogni-
tion by the immune system and sensitivity to proteases, both of
which are factors limiting the use of cellularly produced proteins
as drugs (13, 17). Like small molecules, peptide macrocycles can
be produced in large molar quantities, stored robustly, and ad-
ministered relatively easily. Some natural peptide macrocycles,
such as cyclosporine A, show oral bioavailability and cell per-
meability comparable to small-molecule drugs (18).

Starting with the X-ray crystal structure of NDM-1 bound to
L-captopril, a weak small-molecule inhibitor of NDM-1 (19-21),
we adapted our peptide macrocycle design methods to create
inhibitors of NDM-1 that are simultaneously optimized for fa-
vorable interactions with the target and for rigidity in the binding-
competent conformation. We promoted the latter by designing
favorable internal interactions in this conformation and by stra-
tegic incorporation of rigidifying building blocks to render alter-
native conformations less favorable. Through enzyme inhibition
assays and crystallographic studies, we show that our top design
inhibits NDM-1 with 50-fold greater potency than the p-captopril
control while binding to the active site in the designed binding
mode and adopting the designed binding conformation. Unlike
conventional drug screening approaches involving enormous
compound libraries, our methods allowed us to shift most of the
high-throughput exploration to in silico stages of the pipeline and
to find hits from an initial experimental screen of only seven
peptides. The computational methods developed here represent a
general means of designing rigidly structured peptide macrocycles
to bind to proteins of therapeutic interest, applicable to many
targets beyond NDM-1.
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Results and Discussion

Rationale and Approach for Structure-Guided Design. NDM-1 is
competitively inhibited by both L- and p-isoforms of captopril.
Although the p-isoform is reported to be a 25-fold more potent
inhibitor (21), only the L-isoform had an available X-ray crystal
structure (Protein Data Bank [PDB] ID 4EXS) that we could use
as a starting point when we began our peptide design work
(Fig. 14) (20). L-captopril occludes the NDM-1 active site cleft.
Adjacent to this cleft are an ordered front loop (FL) consisting
of amino acids 210 through 228 and a flexible hinge loop (HL)
consisting of amino acids 64 through 73. The HL shows consid-
erable conformational heterogeneity from one crystal structure to
another or even in copies of the molecule in the asymmetric unit
of a single crystal structure (Fig. 1B). The HL flexibility presents a
major challenge for the design of larger inhibitors able to make
more molecular contacts. For purposes of computational peptide
design, we supposed that the observed HL conformations in
available crystal structures represent relatively low-energy con-
formations of this loop. Since the conformation in chain B of PDB
structure 4EXS presents Phe70 in a position likely to permit fa-
vorable hydrophobic interactions with an inhibitor, we chose this
conformation for our in silico design work.

L-captopril resembles a D-cysteine-L-proline dipeptide with a
methyl group replacing the terminal amine. When it binds to the
NDM-1 active site, the sulfur atom intercalates between and
binds to the two catalytic zinc atoms, and the proline fills the
space of the active site cleft (Fig. 1C). In silico, we converted the
L-captopril methyl group in the 4EXS structure to an amine,
yielding a D-cysteine-L-proline dipeptide “stub” bound in the
NDM-1 active site. We then extended this stub, prepending a
three-residue polyglycine chain by an amide bond to the p-cys-
teine, and similarly appending a three-residue polyglycine chain
to the C terminus of the L-proline to yield an eight-residue
peptide (Fig. 1D). Using the Rosetta generalized kinematic
closure method (12, 13), we sampled conformations of this chain
that were compatible with an amide bond linking the two termini
and with favorable intramolecular backbone hydrogen bonding,
keeping the D-cysteine-L-proline starting stub fixed.

For each conformation sampled, we designed sequences to
maximize favorable interactions with the target while favoring
the designed conformation (see below) using Rosetta side-chain
packing methods, sampling L- and D-amino acids at positions
able to accommodate each respectively (Fig. 1E). This was fol-
lowed by a Monte Carlo-based refinement procedure in which
we sampled small perturbations of the peptide conformation
using generalized kinematic closure, reoptimizing side-chain
identities and rotamers for each conformation sampled. We fil-
tered this initial pool of several hundred designs based on the
number of internal hydrogen bonds, shape complementarity to
the target, and atomic clashes (Materials and Methods). To assess
diversity of backbone conformations in the filtered population,
we assigned each amino acid residue to one of four conforma-
tional bins, designated A, B, X, and Y, and representing left-
handed a-helical, left-handed f-strand, right-handed a-helical,
and right-handed p-strand conformations, respectively; these are
described in greater detail in SI Appendix, section 2.1.6. We se-
lected peptides with diverse backbone bin strings, and since we
hypothesized that rigidity would be a key determinant of success,
these were subjected to in silico conformational landscape
analysis using the Rosetta simple_cycpep_predict protocol (12,
13) to identify designs predicted to fold to the binding-
competent conformation in the absence of the target. We used
the Py, metric described previously (12, 13, 15), which ap-
proximates the fractional occupancy (Boltzmann weight) of the
designed conformation amid large sets of alternative conforma-
tions generated by extensive conformational sampling. Py,
values close to 0 indicate little predicted propensity to favor the
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Fig. 1. Computational design approach for generating peptide macrocycle inhibitors of NDM-1. (A) Structure of NDM-1 (PDB ID 4EXS), chain B. The active site
binds catalytic zinc atoms and is flanked by an ordered FL and a flexible HL. Hydrophobic amino acid residues on the inner face of the HL, and metal-
coordinating residues, are labeled. (B) Comparison of a subset of NDM-1 crystal structures. PDB IDs 3RKJ, 3S0Z, 3ZR9, and 4HL1 are shown in gray. In lavender
and green are PDB ID 4EXS, chains A and B, respectively. Where most of the structure, including the FL, is rigid, the HL shows extensive conformational
flexibility, putting inner-face hydrophobic side chains (labeled) in diverse positions. (C) Crystal structure of NDM-1 active site (green) with L-captopril (purple)
bound (PDB ID 4EXS, chain B). Active-site zinc atoms are shown beneath the surface as spheres. (D) In silico conversion of L-captopril to a p-proline, L-cysteine
dipeptide (purple) flanked by polyglycine sequences (pink). (E) Rapid in silico sampling of closed conformations of a peptide macrocycle containing the o-
cysteine, L-proline stub (purple), and flanking sequences (pink) in the context of the NDM-1 active site, using the generalized kinematic closure approach. For

each closed conformation, Rosetta design heuristics were used to find side-chain identities and conformations (represented here by spheres).

binding-competent conformation, while values close to 1 indicate
high predicted propensity for the binding-competent conforma-
tion (SI Appendix, section 1.5.4).

Inhibitory Activity of Designed Peptides. We chose seven designs
for synthesis and experimental characterization, designated
NDM1i-1A through NDM1i-1G, as shown in Fig. 2. These de-
signs were selected for having favorable Rosetta peptide-target
interaction energies, possessing diverse backbone conformations
and intramolecular hydrogen bond patterns, and presenting hy-
drophobic side chains to interact with Leu65, Met67, Phe70, and
Val73 on the inner hydrophobic face of the NDM-1 HL. The
selected peptides were all optimized primarily for favorable in-
teractions with the target during the design process, with folding
propensity promoted by favoring conformationally constrained
D- and L-proline residues. As such, they had Py, values that
ranged from 0.64 (NDM1i-1C) to 0.96 (NDM1i-1G).

We synthesized and purified the seven peptides and carried
out NDM-1 inhibition assays using 1.5 pM nitrocefin as the
substrate (Fig. 2, column v) at different designed inhibitor con-
centrations. ICsy values were estimated as described in SI Ap-
pendix, section 3.3. As a positive control, we used the b-captopril
isoform (a more potent inhibitor than the L-captopril starting
point for design), which had an ICs, value of 59.7 + 6.3 uM (SI
Appendix, Fig. S1). High-quality fits to the data for all peptides
and controls were consistent with the expected 1:1 stoichiometry
of binding (see SI Appendix, section 3.3 for details). All of the
peptides but NDM1i-1C had ICs, values lower than p-captopril,
with the top peptide, NDM1i-1G, having an ICs, value of 1.2 +
0.1 pM, more than 50 times more potent than pD-captopril.

Since a robust peptide therapeutic design pipeline would
benefit considerably from computational metrics that could
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reliably rank designs to prioritize syntheses and experiments, we
next examined which metrics best correlated with experimental
success across our initial batch of designs. As noted above, the
free energy of binding of a flexible molecule to a fixed target can
be decomposed as the sum of two terms: AGp;ging, the interac-
tion free energy between the molecule and the target in the
bound complex, and AGy4ine, the free energy of ordering the
flexible molecule into the conformation adopted in the complex.
Rosetta estimates of AGy;,q,g using the difference in energy
between the bound and unbound conformations (with limited
conformational sampling of side chains across replicates) had
little correlation with observed ICsy values (Fig. 34). Since

AGouing = —RTIn(Keg) = —RTIn(:), where f is the fractional

occupancy of the folded state at equilibrium, we can estimate
folding free-energy changes using the Py, metric described
above as the approximate value of f (SI Appendix, section 1.5.4).
Such estimates of AGying, Which are based on near-exhaustive
sampling of the conformations of the peptide macrocycle in
isolation, converge robustly and correlate well with the logarithm
of the ICsy value—so well that the rank order of computed
AGy4ing values matches the rank order of experimental ICsg
values (Fig. 3B). Comparisons to conformational sampling sim-
ulations using earlier versions of the Rosetta energy function
reveal that improvements to the energy function accuracy using
small-molecule fluid simulations for parameter tuning (22, 23)
have improved the correlation between estimated AG,4ine and
observed ICs, (SI Appendix, Fig. S2). There are several possible
explanations for the lack of correlation between our AGyinging
estimates and the observed ICs, values. First, the differences in
the interaction energies across these seven designs are likely to
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Fig. 2. Designed eight-residue peptide macrocycle inhibitors of NDM-1, designated NDM1i-1A (A) through NDM1i-1G (G). (/) Amino acid sequences (AA) and
backbone conformational bins (Bin) of designed peptides. In this and the following two columns, L-amino acids are shown in cyan and p-amino acids in
orange. Backbone conformational bins are described in S/ Appendix, section 2.1.6. (ii) Peptide design computer models shown as stick representations.
Intramolecular backbone hydrogen bonds are shown as green lines. Sequence numbering is as shown in i. (iii) Space-filling computer models of designed
peptides in the NDM-1 active site, with NDM-1 shown in gray. The HL, FL, and interacting residues Phe70 and Val73 are indicated. (iv) Conformational
landscape analysis performed with the Rosetta simple_cycpep_predict application, showing computed energy of the peptide modeled in isolation plotted
against rmsd to its designed binding conformation. Each point represents a separate conformational sampling attempt. Colors indicate the number of
intramolecular backbone hydrogen bonds observed in the sampled conformation. Ppe,, values are indicated, with the mean and SE of three independent
large-scale conformational sampling simulation replicates reported. (v) Experimentally measured activity of NDM-1 (vertical axis) in the presence of varying
concentrations of peptide (horizontal axis). Points are mean of three independent replicates, and error bars represent the SEM. Red curves show fits to the Hill
equation, with 1Csq values and fit confidence indicated on each plot. (Insets) Fit residuals.
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experimentally measured ICso values (vertical axis) with Rosetta-computed
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scribed in the S/ Appendix) obtained from computed energy landscapes
(for examples, see Fig. 2, column iv). Vertical error bars are as in A. Hori-
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simulations. The blue line shows the empirical line of best fit with R? value
indicated.

be small since all designs tested were extensively optimized
during the design process to maximize favorable interactions
with the target. Second, the Rosetta interaction energy is an
imperfect estimate of the actual binding free energy: entropic
costs of ordering the side chains and backbone of the target
(which can be substantial given the flexibility of the loops) are
neglected, and the Rosetta force field, like any molecular force
field, involves numerous approximations.

The correlation between computed AGy,q, and observed
ICs supports our working hypothesis that rigidity in a binding-
competent conformation is a key determinant of high-affinity
binding when designing these meso-scale molecules: a favor-
able AGyaing is clearly necessary (but not sufficient, since fa-
vorable interactions are also needed) for high-affinity binding.
Completed designs can be evaluated using extensive energy
landscape calculations, as we describe with our Py, metric,
which estimates the probability that the design adopts the target
conformation (instead of the myriad other possible conforma-
tions). But how can AGy,4,g be optimized during design? We
were able to achieve this by implicit negative design (24), in-
corporating design-centric scoring terms that promote sequences
favoring the designed target conformation over other possible
conformations (SI Appendix, section 1.3). These included an
amino acid composition (“aa_composition®) term, which we
used to penalize fewer than three D- or L-proline residues to
discourage many alternative conformations in designs, and an
“hbnet” term, favoring designs with internal hydrogen bond
networks, which are unlikely to be compatible with most alter-
native conformations. In any given design challenge, the weights
and parameters of these terms can be adjusted to determine the
combination that best guides sequence design trajectories to
those sequences most favoring the target-binding conformation.

Inhibitory Activity of Variants of NDM1i-1G. We next carried out
in silico mutagenesis of the top inhibitor NDM1i-1G, examining
the effect on Py, of mutations at every position to each of 46
possible amino acid types. As shown in SI Appendix, Fig. S3, the
peptide is highly mutable, with many chirality-preserving muta-
tions, as well as some chirality-inverting mutations, preserving
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the fold propensity. We synthesized four point mutants that were
predicted to preserve the fold and to interact favorably with the
target: D-Argl—-D-Thr (rlt), L-Leu3—L-Tyr (L3Y), L-lle6—>L-
Leu (I6L), and L-Glu8—2-aminoisobutyric acid (ESAIB), along
with seven combinations of these mutations (SI Appendix, Figs.
S4 and S5). These peptides are designated NDM1i-2A through
2K. Several of these mutations increased 1Csqy values without
reducing computed AGyying values (SI Appendix, Fig. S6), sug-
gesting that the manual introduction of these mutations to an
optimized design weakened interactions with the target. A triple
mutation with an ICs, value of 1.8 + 0.1 uM (NDM1i-2J, bearing
mutations L3Y/I6L/ESAIB) showed greater inhibition than any
of the individual mutations or the L3Y/I6L double mutation
(NDM1i-2H). The ICs, value was close to that of the NDM1i-1G
(1.2 + 0.1 uM) starting point, suggesting that there are multiple
opportunities for finding variant inhibitors in the local sequence
space of these peptides. These experiments are described in
greater detail in ST Appendix, section 4.2.

Crystal Structures of Inhibitory Peptides Bound to NDM-1. To gain
greater insight into the inhibition of NDM-1 by some of the top
inhibitors, we crystallized the enzyme and solved structures by
X-ray crystallography in complex with peptides NDM1i-1F and
NDM1i-1G. Fig. 4 shows a comparison of the design and crystal
structure of NDM1i-1G bound to NDMI1. The binding mode
observed in the crystal structure closely resembles that in the
design, with the pD-Cys-L-Pro stub coordinating active-site zinc
residues as the L-captopril starting compound does. Peptide
residues L-Leu3 and L-Ile6 pack against NDM-1 HL residues
Met67 and Phe70, albeit with slightly different packing interac-
tions than designed. This is due to flexibility of the HL, which
moves in the crystal structure relative to the design structure (HL
backbone heavyatom rmsd 3.1 A), causing the peptide to rotate
slightly about the stub residues in the opposite direction (peptide
backbone heavyatom rmsd 1.8 A) (Fig. 4C). Despite this, the
internal conformation of the peptide remains rigid: when the
peptide portion of the design model is aligned with the peptide
portion of the crystal structure, the rmsd is 0.3 A (Fig. 4D).
Designed ionic interactions between NDM1i-1G residue D-Arg2
and NDM-1 residues Glul52 and Asp223 were blocked by the
binding of a zinc ion to the anionic NDM-1 residues (Upper
Insets in Fig. 4 A and B). Despite these differences, the binding
site and conformation are very close to the design model, dem-
onstrating the power of the computational design methods used.

Peptide NDM1i-1F differs from NDM1i-1G by an 16V mu-
tation, effectively replacing one methyl group by a hydrogen
atom. This small change results in an approximately two-fold
reduction in binding affinity. Differences in the crystal struc-
tures of NDM1i-1F and NDM1i-1G help to explain this. The Cg
atom in NDM1i-1G v-Ile6 is buried between Met67 and Phe70
on the HL hydrophobic face (Fig. 4B). When this atom is re-
moved, Met67 adopts an alternative conformation allowing a
small (0.7 A) shift of the HL to fill the void (SI Appendix, Fig.
S7). This rearrangement may account for the change in binding
affinity. Like NDM1i-1G, peptide NDM1i-1F binds in a binding
mode that resembles the design, with the HL shifting by 3.7 A,
and the peptide rotating in the opposite direction by 1.3 A
(backbone heavyatom rmsds). The backbone heavyatom rmsd
between the superimposed peptide portion of