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Abstract: 
To detect changes in gene expression data from microarrays, a fixed threshold for fold difference is used widely. However, it is not 
always guaranteed that a threshold value which is appropriate for highly expressed genes is suitable for lowly expressed genes. In 
this study, aiming at detecting truly differentially expressed genes from a wide expression range, we proposed an adaptive 
threshold method (AT). The adaptive thresholds, which have different values for different expression levels, are calculated based 
on two measurements under the same condition. The sensitivity, specificity and false discovery rate (FDR) of AT were investigated 
by simulations. The sensitivity and specificity under various noise conditions were greater than 89.7% and 99.32%, respectively. 
The FDR was smaller than 0.27. These results demonstrated the reliability of the method. 
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Background: 
To detect changes in gene expression data from microarrays, a 
threshold for fold difference has been used widely [1-5]. In this 
approach, a small threshold value may cause many false 
positives and this makes interpretation of results difficult. 
Although dividing a number by a small number could result in 
a large fold difference by chance, some truly differentially 
expressed genes (DEGs) could be missed with a large threshold 
value. In this way, it is not always guaranteed that a value 
which is appropriate for highly expressed genes is suitable for 
lowly expressed genes [6]. Some researchers have addressed 
this problem. Rocke and Durbin have developed a model for 
measurement error in expression data as a function of the 
expression level [7]. They divide the total noise into additive 
and proportional components and employ replicated 
measurements to model the noises. They also apply the model 
to compare expressions between conditions, but the expressions 
are divided into only two levels. Colantuoni et al. (2002) 
proposed a method for local variance correction, in which a 
standard deviation (s.d.) was calculated locally across 

expression levels [8]. Loots et al. (2006) developed a similar 
method, in which fold differences between signal and control 
are binned into groups according to the expression level and 
local variation is calculated for each group [9]. These methods 
employ fold difference between control and signal. 
Consequently, it is not always guaranteed that these can model 
the additive and proportional noises correctly. There are some 
other methods which estimate variation in 
duplicated/replicated data. These are similar to the method 
proposed here and are described later. In this study, aiming at 
detecting true DEGs from a wide expression range, we propose 
adaptive thresholds for fold difference. It employs two 
measurements under the same condition to model the total 
error and divides the data into some bins according to the 
expression level. Based on local variance, upper and lower 
thresholds are calculated in each bin. The minimum 
requirement of the method is two measurements under the 
same condition. The method is designed to detect DEGs from 
small size data, in which there is a trade-off between 
suppressing false positives and achieving perfect DEG 
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detection. This paper focuses on the former, namely a low false 
discovery rate (FDR), because it makes interpretation of results 
easier.  
 
Methods which employ thresholds based on variations in 
duplicates/replicates have been proposed. Tsien et al. 
developed a method for evidence-based noise reduction [10]. In 
this method, a threshold is calculated to define a region of noise 
inherent in the data. They assume that corresponding pairs 
should have fold differences of 1.0. The method requires 
duplicates, in which the operating conditions, etc., are exactly 
controlled to be identical. Determination of the threshold 
involves segmental calculation of the average and s.d. in each 
segment. Then a candidate border point is determined as 
(average) + (a constant value) X (s.d.). Based on the candidates, 
a best-fit line/curve is calculated to define the border of the 
identity region of insignificant fold changes. Draghici et al. 
proposed a similar method, named a noise sampling method 
(NS) [6, 11], based on an analysis of variance approach [12, 13]. 
The method employs replicate spots to estimate a distribution 
of noise. The measured log ratio, log R(i, s), for gene i and spot s 
is modeled as log R(i, s)=μ+G(i)+ε(i, s), where μ is the average 
log ratio over the whole microarray, G (i) is a term for 
differential regulation of i, and ε (i, s) is a noise term. Based on 
the equation, we can calculate an empirical distribution of the 
noise. In order to detect DEGs at a given confidence level, the 
deviation from the mean of the distribution is calculated. 
Bootstrapping is used to map the confidence level from the 
noise distribution to the log ratio of expression. 
 
Methodology: 
Algorithm: 
In the proposed method, thresholds which have different values 
for different expression levels are calculated before comparing 
expressions from different conditions. The adaptive threshold 
method (AT) requires two measurements under the same 
condition to evaluate local variations. First, the data are 
normalized by the median. Second, a ratio of the expression in 
the first measurement to the second is calculated for each gene. 
The ratios are plotted against the logtransformed expression 
levels in the first measurement. Then, the data are divided into 
bins, whose width is d (d=0.2 in this study). In each bin, 50 
genes are randomly selected and the maximum and minimum 
ratios are determined. This process is repeated 50 times. The 
upper and lower thresholds are determined based on a 
confidence interval (CI) of the population mean of the 50 
maximum and minimum ratios in the bin, respectively. The 
lower threshold is calculated as (the lower limit of the CI of the 
minimum ratios)/g, where g is a constant. The upper threshold 
is (the upper limit of the CI of the maximum ratios)Xg. Thus 
false positives are expected to be suppressed as g increases. The 
thresholds are used to compare the control to signal data. If a 
fold difference between the control and signal is smaller/larger 
than the lower/upper threshold, the gene is considered down-
/up-regulated. 
 
Simulations: 
The sensitivity, specificity and FDR of AT were investigated. 
The performances of NS were also calculated using the same 
data. The simulation data were constructed as follows. The 
average of the 13 measurements from normal aged 

hippocampus in GSE5281 [14] 
(http://www.ncbi.nlm.nih.gov/geo) was used as the true value 
for the control data, which is denoted as c. Each measurement 
included 48403 probes. For the sake of simplicity, we assumed 
that a measurement included expressions of 48403 genes. Both 
additive and proportional noises were employed in the 
simulation. A value ep from N (0, vp) was added to 1 and that 
was used as the proportional noise. The additive noise, ea, was 
generated from N (0, va). The expression value with the noises 
was thus denoted as c (1+ ep) + ea. Among the 48403 probes, 
500 were randomly selected as up-regulated genes and another 
500 as down-regulated. The effects of up-/down-regulation 
were represented with random values from N (4, 0.8)/N (-4, 
0.8), respectively. After the true values, c, of the regulated genes 
were natural logarithmical transformed, the random values 
were added to the transformed values. Then, the noises were 
applied in the same manner to the control data. The first 
simulation investigated the effect of noises on the performance. 
In AT g=2 was used while the confidence level in NS was 
99.5%. The variances of noises, (va, vp), examined were (0.01, 
0), (0.01, 0.05), (0.01, 0.1), (1, 0), (1, 0.05), (1, 0.1), (10, 0), (10, 
0.05), (10, 0.1), (20, 0), (20, 0.05), (20, 0.1), (50, 0), (50, 0.05) and 
(50, 0.1). The adaptive thresholds were calculated based on two 
control measurements. In NS, the noise distribution was 
obtained using the same data. Ten different realizations of the 
regulated data were generated. These steps were repeated 10 
times with different sets of control data and thus 100 trials were 
performed in total. The sensitivity, specificity and FDR were 
evaluated under each noise condition. The definition of FDR is 
FDR=E [F/ (F+T)], where F and T are the numbers of the false 
and true positives and E [] denotes an expected value [15]. The 
second simulation compared receiver operating characteristic 
(ROC) curves among AT, NS and the fixed threshold. We 
investigated g between 1 and 7 in AT, confidence levels 
between 99.0 and 99.98% in NS and fixed thresholds between 2 
and 20. The variances va and vp were fixed at 20 and 0.05, 
respectively, because this combination best reproduced the 
average and s.d. in the bins of GSE5281. 
  
Results and Discussion: 
A typical distribution of the ratios between two control 
measurements (va=20, vp=0.05) is shown in Figure 1a. The 
figure also shows the upper and lower adaptive thresholds 
(solid lines) and the confidence levels in NS (dashed lines). A 
dot represents the ratio of a gene and the vertical, dashed lines 
indicate the bins. Less than 0.5% of the 48403 genes were greater 
than the upper adaptive threshold while almost no genes were 
smaller than the lower boundaries of AT and NS. The upper 
confidence level of NS was smaller than the upper adaptive 
threshold. Accordingly, more genes were greater than the 
upper confidence level. The relationship between the 
expression level and the number of false detections was 
investigated (Figure 2). There were many false positives in a 
low expression range (<0). The upper adaptive threshold 
steeply changed around this range (Figure 1) and this 
contributed for suppressing false positives. The upper 
confidence level in NS also changed in this range. However, it 
was smaller than the upper adaptive threshold and therefore, 
more false detections occurred. This explains a larger FDR with 
NS. Figure 1b compares the shapes of the adaptive thresholds 
obtained under (0.01, 0), (0.01, 0.1), (20, 0) and (20, 0.1). When 
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the noises were (0.01, 0), the thresholds were almost constant 
for all expression levels. Without the noises, g=2 corresponds to 
a fixed threshold of 2 whereas the upper and lower confidence 
levels in NS were 1. The thresholds under (20, 0) indicate that 
the additive noise had minor influence on highly expressed 
genes. The influence of the proportional noise appeared to be 
large for all levels because the upper and lower thresholds were 
similar under (0.01, 0.1) and (20, 0.1). In this way, the shape of 
the adaptive thresholds varies according to va and vp, 
demonstrating that the method can model both additive and 
proportional noises. 
 

 
Figure 1: Simulation results with g=2 in the adaptive threshold 
method and the confidence level of 99.5% in the noise sampling 
method. a) An example of distribution of the ratio between the 
two control measurements and the upper and lower adaptive 
thresholds (solid lines). The upper and lower confidence levels 
in the noise sampling method were also displayed (dashed 
lines). The variances of the additive and proportional noises 
were 0.05 and 20, respectively. A dot represents a ratio of the 
two expression values of a gene. The bins used to calculate the 

adaptive thresholds are illustrated by the dashed lines. Only 
few genes were greater/lower than the upper/lower adaptive 
thresholds. b) The upper and lower thresholds obtained with 
different noise conditions: (0.01, 0), (0.01, 0.1), (20, 0) and (20, 
0.1). c) The ROC curves for the three methods. The horizontal 
and vertical axes represent the false and true positive rates, 
respectively. The false positive rate equals to 1-(specificity), 
while the true positive rate is equivalent with the sensitivity. 
 

 
Figure 2: The number of false detections for different expression 
levels: a) the adaptive threshold method and b) the noise 
sampling method. The horizontal axis represents the log-
transformed, normalized expression level while the vertical axis 
indicates the number of false detections. Each mark represents 
the number of false positives (FP) and negatives (FN) in the bins 
shown in Figure 1. FN down/up represents the number of FN 
for down-/up-regulated genes.  
 
Table 1 (see Supplementary material) summarizes 
relationships between the noise variances and the 
performances. The numbers represent the average±s.d. over the 
100 trials. The sensitivity became lower for larger noises and the 
sensitivities of AT and NS were comparable to each other 
(Table 1a). The influence of the noises was weaker for the 
specificity and it was greater than 99.3% for AT while it was 
about 99% for NS (Table 1b). The specificity greater than 99.3% 
leads to a smaller FDR in AT (Table 1c). Figure 1c, which 
compares the ROC curves, indicates that AT achieved the best 
performance among the three. AT was developed by expanding 
a fixed threshold so that local variations are considered in 
calculation of thresholds. This is the reason for employing a 
parameter g, which makes it easier to adjust the width between 
the upper and lower thresholds. A wider width is a key feature 
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to suppress false positives. Tsien et al., (2002) proposed a similar 
threshold method, in which a certain noise distribution is 
assumed [10]. In contrast, AT and NS assume no distribution 
and accordingly, these are more flexible. 
 
Conclusion: 
In this study, aiming at detecting true DEGs from a wide 
expression range, we proposed an adaptive threshold method. 
Simulations were conducted to investigate the performance of 
the method. The sensitivity and specificity under various noise 
conditions were greater than 89.7% and 99.3%, respectively. The 
method achieved a low FDR, indicating that it can suppress 
false positives and make the interpretation of results easier. The 
minimum requirement of the method is two measurements, 
under the same condition, and it is applicable to small size data. 
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Supplementary material: 
 
Table 1: The sensitivity, specificity and FDR by the adaptive threshold method (g=2) and the noise sampling method (confidence 
level 99.5%). 
a) Sensitivity (%) 
va adaptive threshold noise sampling 

vp vp 
0 0.05 0.1 0 0.05 0.1 

0.01 99.97±0.06 99.60±0.21 96.73±0.68 100.0±0.0 99.93±0.09 98.54±0.45 
1 99.99±0.30 99.98±0.22 97.0±0.63 100.0±0.0 99.90±0.08 98.57±0.41 
10 99.93±0.01 97.89±0.57 95.75±0.86 99.18±0.32 98.87±0.39 95.58±0.78 
20 98.67±0.33 97.52±0.45 93.29±0.93 98.11±0.51 96.76±0.62 91.73±1.44 
50 96.52±0.52 94.21±0.79 89.70±0.84 94.72±0.83 92.02±0.93 86.16±1.34 

  
b) Specificity (%) 
va adaptive threshold noise sampling 

vp vp 
0 0.05 0.1 0 0.05 0.1 

0.01 100.0±0.0 99.94±0.02 99.60±0.03 98.24±1.33 99.11±0.06 99.09±0.04 
1 100.0±0.0 99.94±0.01 99.58±0.03 99.05±0.06 99.13±0.06 99.10±0.05 
10 100.0±0.0 99.82±0.02 99.45±0.03 99.02±0.06 99.02±0.08 99.08±0.05 
20 99.84±0.04 99.75±0.03 99.39±0.05 99.08±0.07 99.08±0.07 99.11±0.07 
50 99.60±0.05 99.56±0.09 99.32±0.02 99.05±0.08 99.11±0.07 99.10±0.07 

 
c) FDR 

 
 

va adaptive threshold noise sampling 
vp vp 
0 0.05 0.1 0 0.05 0.1 

0.01 0.0±0.0 0.03±0.01 0.16±0.01 0.39±0.21 0.30±0.01 0.31±0.01 
1 0.0±0.0 0.03±0.01 0.17±0.01 0.31±0.01 0.29±0.01 0.30±0.01 
10 0.03±0.01 0.09±0.01 0.21±0.01 0.32±0.01 0.32±0.02 0.31±0.01 
20 0.07±0.02 0.11±0.01 0.24±0.02 0.31±0.02 0.29±0.02 0.32±0.01 
50 0.17±0.02 0.18±0.03 0.27±0.01 0.32±0.02 0.32±0.02 0.33±0.02 


