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Neurodegenerative diseases such as Alzheimer’s and Parkinson’s impact millions of

people worldwide. Early diagnosis has proven to greatly increase the chances of

slowing down the diseases’ progression. Correct diagnosis often relies on the analysis

of large amounts of patient data, and thus lends itself well to support from machine

learning algorithms, which are able to learn from past diagnosis and see clearly

through the complex interactions of a patient’s symptoms and data. Unfortunately,

many contemporary machine learning techniques fail to reveal details about how they

reach their conclusions, a property considered fundamental when providing a diagnosis.

Here we introduce our Personalisable Clinical Decision Support System (PECLIDES),

an algorithmic process formulated to address this specific fault in diagnosis detection.

PECLIDES provides a clear insight into the decision-making process leading to a

diagnosis, making it a gray box model. Our algorithm enriches the fundamental work

of Masheyekhi and Gras in data integration, personal medicine, usability, visualization,

and interactivity.

Our decision support system is an operation of translational medicine. It is based on

random forests, is personalisable and allows a clear insight into the decision-making

process. A well-structured rule set is created and every rule of the decision-making

process can be observed by the user (physician). Furthermore, the user has an impact

on the creation of the final rule set and the algorithm allows the comparison of different

diseases as well as regional differences in the same disease. The algorithm is applicable

to various decision problems. In this paper we will evaluate it on diagnosing neurological

diseases and therefore refer to the algorithm as PECLIDES Neuro1.

Keywords: decision support, random forest, precision medicine, neurological diseases, personalisable medicine,

machine learning, Alzheimer’s Disease, Parkinson’s Disease

1. INTRODUCTION

The average life expectancy of Europeans increased by 2.9 years in the last decade. People reached
an average age of 80.6 in 20132 and there is more than a 50% probability that by 2030, national
female life expectancy will break the 90 year barrier (Kontis et al., 2017). But a longer life does not
implicate a healthy one. With higher age comes an increased likelihood of chronic diseases. This

1The source code of PECLIDES Neuro is available on GitHub: https://github.com/tamaramueller/Peclides-Neuro
2https://www.parkinsons.org.uk/about-us/media-and-press-office
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trend affects the well-being of elderly people and bears huge
challenges for society and economics3. Computer algorithms
and technology can support disease detection and it is hoped
that systems like the one presented in this work will become
increasingly prevalent as we continue to improve the state-of-the
art in predictive medicine.

1.1. Neurological Diseases
Alzheimer’s and Parkinson’s Disease are two of themost common
neurodegenerative diseases3,4. In the United States there are
currently about 5.5 million patients diagnosed with Alzheimer’s
Disease (AD) and predictions project this number to grow
to about 13.8 million by mid-century. In 2014, official death
certificates recorded AD to be the sixth leading cause of
death in the US. The average per-person medical payments
for services to Alzheimer’s patients (or patients with other
forms of dementia) older than 65 are three times greater than
payments for beneficiaries without these conditions (Association
et al., 2017). Over the course of the disease, the structure of
afflicted patients’ brains changes. A larger amount of so-called
plaques and tangles are built by certain proteins, which lead
to a loss of connections between nerve cells. This results in
the death of nerve cells and a reduced amount of brain tissue.
Furthermore, message transmission between neurons is less
effective, as certain essential signaling chemicals are missing in
the patients’ brains4 (McKee et al., 1991). Studies have shown
that age is the most significant risk factor for AD (Rocca et al.,
1991). But there are also genetic factors that can play a role.
For example, the Apolipoprotein E (ApoE) gene, in particular
one of its three major isoforms is known to be associated with
the development of AD (Dawbarn and Allen, 2007; Urdinguio
et al., 2009; Criminisi and Shotton, 2013). Different alleles of the
gene can indicate higher or lower risk for developing the disease
(Corder et al., 1993).

It is estimated that about 1-2% of the world population
suffer from Parkinson’s Disease (PD). Almost half of the
patients develop PD between age 50 and 60 (Mattle and
Mumenthaler, 2012). A characteristic of PD is the progressive
loss of dopaminergic neurons in the substantia nigra and striatal
projections (Urdinguio et al., 2009). Consequently, patients
have a lack of dopamine in their brain. While the exact
reason for the progressive loss is unknown, its consequences
are apparent. The loss of dopamine interrupts patients’ ability
to smoothly execute planned movements, typified by the
three main symptoms of PD: tremor, muscle stiffness, and
slowness of movement. Other symptoms include tiredness,
pain, depression, and constipation. In the UK, it is estimated
that about 145,000 people are currently diagnosed with PD.
At present, there is no cure for Parkinson’s disease, but
treatments can control the symptoms to a certain amount. Drugs,
deep brain stimulation, and physical therapies are the most
common treatments3.

3https://www.parkinsons.org.uk/about-us/media-and-press-office
4https://www.alzheimers.org.uk/info/20007/types_of_dementia/2/alzheimers_

disease

1.2. Decision-Making
Making the right decision is one of the key factors of
successfully achieving goals in all areas of work and there are
numerous ways of finding the right decision. Nevertheless, the
basic idea is mostly the same. It is usually a combination
of experiences, research results and personal judgement. As
the first two components are constantly and rapidly growing,
one can imagine that decision-making in general has a great
potential to improve over time. But this growth also results in
unmanageable amounts of data, which is why we need support
systems to help processing them (Podgorelec et al., 2002). The
goal of our support system PECLIDES Neuro is to integrate all
three mentioned components: experience, research results and
personal judgement. Of special importance is the last component.
Personal judgement plays a vital role inmedical decision-making,
but is rarely represented in advancedmachine learning processes.
Incorporating personal judgement into a decision support system
allows a higher degree of interpretability and usability and we
believe that data integration is only effective when combined with
interpretability and usability.

The following sections introduce our decision support system
and cover related work, a discussion of the algorithm’s design
as well as the evaluation on different data sets, various possible
applications of the decision support system and future work.
Figure 1 shows a graphical overview of our support system.

2. RELATED WORK

Supporting medical decisions with current technology is highly
discussed in literature. A frequently used technique is the
ensemble learning method of random forests. Random forests
are a combination of decision tree predictors and a regression
and classification method. Each tree individually votes for the
most popular class and their creation depends on the values of
a random vector which is sampled independently but with the
same distribution for all trees in the forest. In general, random
forests are robust against over-fitting, run efficiently on large data
and handle heterogeneous data well (Breiman, 2001; Louppe,
2014). Moreover, as random forests are based on decision trees,
they can be used to explicitly and understandably describe a
decision-making process.

2.1. Rule Extraction From Random Forests
One disadvantage of random forests is that they can grow very
big and subsequently, more unclear. Nonetheless, by extracting
rules from a built forest, one can gain an insight into the
decision-making process. Mashayekhi and Gras (Mashayekhi
and Gras, 2015) introduced two methods called RF+HC and
RF+HC_CMPR which allow to extract a rule set from random
forests. The main idea is to radically reduce the number of rules
and therefore increase the comprehensibility of the underlying
model. The rule extraction can be seen as an optimization
problem and finding the best rule set is an NP-hard problem
(Mashayekhi and Gras, 2015). This is why heuristic approaches
are needed to feasibly extract an appropriate subset of rules from
the whole rule set.
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FIGURE 1 | A visual overview of our clinical decision support system. Data pre-processing includes feature extraction. After that, a random forest is trained and

converted into a rule set. This rule set is then reduced with the goal of keeping the performance and considering personal preferences in form of favorite features and

enables to make a diagnosis on new patient data.

The algorithm proposed by Masheyekhi and Gras consists of
four steps. First, the random forest is generated and all rules
are extracted into a rule set. Second, a score is defined for each
extracted rule. For the RF+HC method they used Equation (1),
wherein cc stands for correct classification and is the number of
covered training samples that are classified correctly. The variable
ic refers to the incorrect classification, the number of incorrectly
classified training samples, and k is a predefined positive constant
value. Mashayekhi and Gras proposed to set k = 4.

score1 =
cc− ic

cc+ ic
+

cc

ic+ k
(1)

This score leads to the elimination of noisy rules and the
maintenance of rules with higher accuracy. In the third step of
the algorithm a final rule set is generated wherein the probability
of selecting a rule is proportional to its score from Equation (1).
The probability of selecting a rule is hereby proportional to its
score. Finally, the extracted rule set is applied on the test data
set to evaluate its performance. The average rule set size after
applying the RF+HC algorithm is 0.6% of the original rule set,
while the accuracy generally only decreases by a couple of percent
(Mashayekhi and Gras, 2015).

Masheyekhi and Gras’ secondmethod, called RF+HC_CMPR,
modifies score1 with an addend that considers the length of a
given rule:

score2 =
cc− ic

cc+ ic
+

cc

ic+ k
+

cc

rl
= score1 +

cc

rl
(2)

Hereby rl refers to the length of the rule. This way a shorter
rule adds a higher number to the original score than a long
rule. The purpose is to favor shorter rules, since they are more
transparent and understandable than longer rules. Mashayekhi
and Gras applied their two algorithms to several different data
sets and compared them to CRF and the standard random forest
methods. CRF is a method introduced by Liu et al. (Liu et al.,
2011, 2012) which combines rule extraction and feature selection.
On average, both RF+HC and RF+HC_CMPR resulted in almost
the same accuracy as the CRF method. Furthermore, on average
over all data sets, the three methods obtained 96% of the random
forest accuracy. Moreover RF+HC and RF+HC_CMPR resulted

in a clearly smaller number of rules. On average, the size of
the extracted rule set is 0.6% of the original random forest. In
comparison, the total number of rules in CRF is 11.66% of the
size of the original rule set (Mashayekhi and Gras, 2015).

2.2. Shrinking Random Forests
Since random forests can grow very big, it is useful to consider
different ways of shrinking a random forest while maintaining
its prediction accuracy. To minimize the size of a random forest,
one has to decide when and which trees can be eliminated. Zhang
and Wang (Zhang and Wang, 2009) presented three different
measures to determine the importance of a tree. (1) A tree is not
necessary if its removal from the forest has the least impact on the
overall prediction accuracy. Furthermore, a tree can be removed
if it is highly similar to other trees in the forest. This similarity can
be either measured as (2) an average similarity to all other trees
or (3) a pairwise similarity.

To get the tree with the least impact on the forest (1), firstly
the prediction PF of the whole forest is calculated. Then, for
each tree T in the forest F the prediction F−T of the forest
without the tree T is determined. Lastly, the tree that leads to the
smallest difference in prediction accuracy (see Equation 3) can
be removed.

δ−T = PF − PF−T (3)

The similarity between two trees can be defined by the correlation
between their predicted outcomes. The average similarity (2) can
be calculated as following:

ρT =
1

NF − 1

∑

t∈F,t 6=T

cort,T (4)

where NF is the number of trees in the forest and cort,T is the
correlation between two trees t and T. The tree T with the highest
ρT has the highest similarity to the rest of the forest and can
therefore be eliminated.

The highest pairwise similarity (3) is measured by the
correlation of the accuracy of two trees. Firstly, a weight wT is
introduced for every tree T and set to 1. Subsequently, one is
searching for the two trees Ts1 and Ts2, which are most similar.
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FIGURE 2 | A sample decision tree that would lead to eight rules; the yellow (outer left) and blue path (leading to leaf 5) show two exemplary rules that would be

extracted from this decision tree.

Afterwards, the average of similarity ρs1 and ρs2 for those two
trees is calculated. The tree Trs with higher ρ can then be
removed. Finally, the following weights are calculated:

w′
t = wt +

cor(Trs, t))

ρTrs
∗ (NF − 1), t ∈ F−Trs (5)

As a last step, it is important to select the optimal size for the
sub-forest. Zhang and Wang proposed to define a performance
trajectory h(i), i = 1, . . . ,Nf − 1 of a sub-forest of i trees, where
NF is the size of the original random forest. The optimal size can
then be selected bymaximizing h(i) over i = 1, . . . ,NF−1 (Zhang
and Wang, 2009).

Zhang and Wang showed on real data sets that a shrunken
random forest can sometimes even outperform the original one
and often achieves a very similar accuracy to the original random
forest (Zhang and Wang, 2009).

3. PECLIDES NEURO

Our implemented clinical decision support system is based on
the machine learning technique of random forests. A graphical
overview of the algorithm is shown in Figure 1. The first step
of the algorithm is to generate a random forest from a given
data set and subsequently extract rules from it. The usage of the
RandomForestClassifier5 in Python allows the variation of several
parameters relevant to our task. In this project, we focused on the
calibration of the number of trees in the forest, the function to

5http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestClassifier.html

measure the quality of a split, the maximum number of features
to consider when looking for the best split, and the maximum
depth of a tree.

To start the training process of the random forest, the data
set was separated into a training and a test set. One approach
we used is to generate a train-test split which takes a certain
percent of the whole data set (for example 30%) aside for the test
set and trains the model on the remaining samples (70%). Using
10-fold cross-validation, the performance on the data set can be
measured while reducing the risk of over-fitting.

3.1. Extracting Rule Set From Random
Forest
The next step after the creation of the random forest is to extract
rules from the latter. These rules will then build the core of the
decision support system. This can be done by iterating through
each tree in the forest and extracting each branch. Figure 2 shows
an exemplary decision tree. One branch represents one rule, as it
determines the decision process from the tree’s root to one leaf.
Thus, the displayed tree would lead to eight rules, since it has
eight leaves. In each node of the tree, the base logic is, “If featureX
is smaller than Y, then left, else right.” Therefore, for each node
the following three values are important: (1) the featureX that
is considered, (2) the value Y that it is checked against and (3)
whether the feature has to be smaller or greater than that value.
Finally, the outcome of a branch has to be stored. This outcome
can be the decision whether a person has a certain disease or
not. In our case the trees’ leaves determine whether a person is
predicted to have Alzheimer’s or Parkinson’s Disease or whether
the person is predicted to be healthy. All rules of all branches of
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all trees can then be stored in a set that represents the whole rule
set of the random forest.

Each branch in a decision tree can be represented by a
disjunctive normal form (DNF) where all queries of all nodes
are connected with “and.” So the rule from the yellow (outer left)
path in Figure 2 can be represented by the following DNF:

(feature18 <= −6.421 ∧ feature10 <= 0.008

∧feature6 <= 0.002) (6)

3.2. Minimizing the Rule Set
As the number of trees and their depths determine the number
and the length of the rules, the exact size of the rule set varies from
application to application. But in general, the goal is to keep the
rule set small. Figure 2 shows an exemplary decision tree. One
can see that feature 18 is checked twice in the blue branch that
leads to leaf five. The matching DNF is shown in Equation (7).
In the tree’s root it is checked whether feature 18 is greater than
−6.421 and two layers below it is checked whether feature 18 is
greater than−6.246.

(feature18 > −6.421 ∧ feature14 <= 0.004

∧feature18 > −6.246) (7)

This example leads to the first step to shorten rules by eliminating
redundant queries within a rule, like in our example branch from
above. Deleting the first query (whether feature 18 is greater
than −6.421) does not change the properties of the rule. The
condition that feature 18 has to be greater than −6.246 already
implies that condition feature18 >-6.421 is fulfilled. Therefore
this branch (see Equation 7) can be reduced to the following
logical statement:

(feature14 <= 0.004 ∧ feature18 >

−6.246) ⇒ Parkinson′s Disease (8)

3.3. Personalisable Rule Score
As suggested by Mashayekhi and Gras (2015), we also assigned
a score to each rule depending on the rule’s performance on
the training set as well as other components we will define
later. The score chosen in this work is an extension of score2
introduced in their paper (see Equation 2). It considers correct
and incorrect classifications as well as the length of a rule and
adds a personalisable attribute. This score is then calculated for
every rule separately. The consideration of a personal preference
for features enables the rule score to be personalisable and
therefore to adjust and influence the support system taking the
user’s preferences, experience, and expertise into account. The
physician can nominate a desired number of features that shall be
preferred during the minimization process and are consequently
more likely to be kept in the rule set. This personalization can lead
to a more suitable support system for physicians and therefore
increase the trust in the system and maybe also the willingness to
utilize it. By defining the importance of features, it is also possible
to take regional differences or patient specific knowledge and data
into account.

If a rule does not contain a nominated favorite feature, the
score will be the same as rule score2 (see Equation 2). But if the
rule contains favorite features, another value is added to increase
the score. This way rules that contain a favorite feature get a
higher score than others, even if the performance is the same.
Since rules with a low score are eliminated first, this leads to the
fact that rules which contain favorite features are less likely to be
deleted from the rule set.

Equation (9) shows the new rule score. If several features are
defined as preferred ones, than there will be a ranking among
them. The features are a parameter list where the first list element
is the most preferred feature and the last list element the least
preferred one. The score will be the highest, if a rule contains
all preferred features (considering the same performance). We
decided to use a linear function to calculate the additional score
points. The new personalisable rule score is shown in Equation
(9). For each occurrence of favorite features in the rule, another
addend will be added that will increase the score.

scorepers =
cc− ic

cc+ ic
+

cc

ic+ k
+

cc

rl
+

x

(i+ 2)
(9)

Here i refers to the feature’s index in the list and x is a constant
positive value that can be customized. So the first feature (index
0) increases the score by x

0+2 = x
2 , whereas the second feature

(index 1) increases the rule by x
3 and so on. This way the favorite

features are ranked and depending on how many and which of
those features are considered in one rule, the rule gets a higher or
lower score. The parameters ic, cc, and k are the same as suggested
by Mashayekhi and Gras (2015). cc and ic stand for correct and
incorrect classification, respectively and k is a positive constant
value. The usage of k = 4 was suggested by Mashayekhi and
Gras. The constant x can be adjusted depending on how much
impact one wants the preferences to have on the whole score.
In the following we will use x = 40 if not otherwise stated.
It is important to determine the impact of the personalization
on the algorithm within a reasonable range. We do not want
to overrule the classification of the random forest completely,
but only enhance the underlying decision-making process with
the personalisable factors. For this purpose, the weight of the
personalization can be regularized with the factor x in Equation
(9). We decided to set the increase of the rule score to up to
one third of the maximum original score, for the first preferred
feature. So in the case discussed here, the maximum rule score
without preferences for features was 60 and therefore we used
x = 40, which leads to an increase of 40

2 = 20 for the first
feature. The goal is to ensure an impact of the personalization
while making sure that the original algorithm is not overruled.

To allow the physician to also put less value on certain
features, the personalisable rule score (see Equation 9) can be
extended by another addend that decreases the rule score if the
rule contains certain features. This way the user can for example
express that there is less trust in certain features of the data set.
This might be useful in case a measurement went wrong or if for
a certain feature several data points are missing. Therefore we
propose using the last addend of Equation (9) again, but this time
subtracting it from the rule score if the rule contains features that
shall be used with caution.
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FIGURE 3 | Three slices of a 3D MR image; with sagittal, coronal, and axial

plane.

After calculating the score for each rule, the rule set can
be minimized to the best performing rules with the most
occurrences of preferred features. For that, one can either define
a certain percentage of the rule set that shall be deleted or kept, or
a threshold to what minimum performance the rule set should be
reduced. The latter holds the challenge that the performance of a
rule set is not proportional to its size. It is more straightforward to
reduce the rule set to a certain percentage, like 10% of the original
rule set’s size and then analyse the performance of the smaller and
more accessible rule set. In addition to the prediction yielded by
inspecting the small rule set, it is possible to see which features
are monitored and which thresholds are important. This can lead
to information about the disease, its characteristics, and possible
factors for diagnoses.

3.4. Evaluation on Different Data Sets
We used a variety of data sets such as Alzheimer’s Disease
Neuroimaging Initiative (ADNI, 2017), PROPAG-AGEING6, a
data set of spiral drawings (Par, 2014) and biomedical voice
measurements (Little et al., 2007; Par, 2007). The data are partly
a complex collection of different data types and from different
institutions in Europe like PROPAG-AGEING.

The ADNI data set contains different types of data, including
PET images, MR images and clinical data. Initially, numerical
data with information about age, ethical background, gender, and
numerous numeric test results were used. The data set consists
of 3,445 samples from Alzheimer’s patients and healthy subjects.
The random forest achieved an accuracy of 97%, a sensitivity
of 96% and a specificity of 97.4%. The rule set extracted from
the random forest contains 1,447 rules and the performance is
strongly dependant on the way the rule set is evaluated.

After deleting the 500 weakest rules of the rule set without
any feature preference, the accuracy was still high with 97%, the
sensitivity is 96.5% and the specificity 97.2%. Going down to half
the rule size with 724 rules resulted in an accuracy of 94.7%,
a sensitivity of 86.76% and a specificity of 98.11%. In general,
shrinking the rule set based on our score does not have a big
impact on the performance.

ADNI also provides three-dimensional T1-weighted magnetic
resonance imaging (MRI) for developing and testing analysis
techniques for extracting structural endpoints. To ease the
utilization of the MR Images, standardized analysis sets of

6https://www.propag-ageing.eu/

FIGURE 4 | Smoothed MR image with Gaussian filter.

data comprising scans that met minimum quality control
requirements were created within ADNI. In this work, samples
from 1-year completers were used, including images from
subjects who had 6- and 12-month scans (Wyman et al., 2013).
The images typically consist of 256 × 256 × 170 voxels with
a voxel size of 1 × 1 × 1.2mm (Gaser et al., 2013). 27 scans
from Alzheimer’s patients and 25 scans from healthy subjects
were used.

In order to train a random forest, features have to be extracted
from the MR images. We used Python and the libraries nipy7

and nilearn8 to process the images. Figure 3 shows the three
middle slices of an exemplary MR image (sagittal, coronal and
axial plane).

The features extracted from the MR images for this work
include first order and second order descriptors (Despotović
et al., 2015). As the pre-processing step, a Gaussian filter was
applied to the images (see Figure 4). The filter was applied
along the three first dimensions of the image9. From these,
pre-processed arrays features were extracted. The first order
descriptors include the sum, the mean and the maximum of all
voxel values, as well as mean, sum and maximum values of the
middle slices of all three dimensions. Exemplary slices are shown
in Figure 3. A color level histogram was used to extract the most
frequent voxel value in the MR image. The value 0 was excluded
form the histogram, as the background is represented by 0 and
should not be considered.

To extract second order features, the probability of the
different brain tissues were determined. The three types of
tissue are cerebrospinal fluid (CSF), gray and white matter.
Figure 5 shows the probabilities for the different tissue types
in an exemplary slice of an MR image. The segmentation
was performed using the python library dipy10, its class
TissueClassifierHMRF and the Markov Random Fields modeling
approach. The latter is frequently used in literature. An example
would be Held et al. who described a fully automated 3D
segmentation technique for MR images (Held et al., 1997). The
maximum a-posteriori Markov Random Field approach uses
iterative conditional models and expectation maximization to

7http://nipy.org/nipy/
8https://nilearn.github.io/
9http://nilearn.github.io/modules/generated/nilearn.image.smooth_img.html
10http://nipy.org/dipy/
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FIGURE 5 | Probabilities of the different brain tissues CSF, gray matter, and

white matter.

estimate the parameters11. After the segmentation, more features
can be extracted depending on the tissue type. The sum of all
voxel values separated by tissue type, as well as the maximum
of the sum of the inner arrays were calculated. All features were
based on the smoothed images.

These features were then used to implement a random forest.
Using train test split lead to an accuracy of 99.38%, a sensitivity of
99%, and a specificity of 100% on the test set. Extracting a rule set
from a parameter pruned random forest leads to a rule set of 213
rules with an accuracy, sensitivity and specificity of 100% each.
The first reduction step that eliminates queries within singular
rules (see section 3.2) does not change the outcome. Interestingly,
even one rule alone could predict the correct outcome for each
data sample. This feature was the maximum of the sum of the
sum of the smoothed images. Consequently, this feature defines
a clear threshold between AD patients and the healthy control
group in this data set, which may be due to the small data set
and has to be tested on larger data sets again. But it might be
an interesting indicator and be worth looking into further. This
shows that PECLIDES can identify possibly important features in
a diagnosis process.

Figure 6 shows the performance of three exemplary rule sets
trained on the Speech Data Set, which consists of biomedical
voice measurements. The list of features can be found in Table 1.
The evaluation shown in Figure 6 was performed on the test
set, using 10-fold cross-validation. The red line represents the
accuracy of the rule set without choosing any preferred features
in the reduction process. We will refer to this scenario as the
baseline. The x-axis indicates the size of the minimized rule set in
respect to the original rule set. The yellow line shows the accuracy
of the different rule sets while preferring features 9, 11 and 17
during the reduction process. For the blue line, feature 18 was
favored, which is a non-linear measure of fundamental frequency
variation. Feature 18 is the most commonly represented feature
in the original random forest. Features 9, 11, and 17 on the other
hand are represented little in the original random forest. We
chose those features, assuming that the frequency of features in
a random forest hold some information about their importance
in the decision-making process. The plot shows clearly that the
reduction of the rule set still allows tomaintain high performance
in all three cases. The accuracy of the original rule set (100%

11https://dipy.org/documentation/1.1.1./reference/dipy.segment/#

tissueclassifierhmrf

on the x-axis) lies at about 0.79 for all three rule sets. The
slight difference at the complete rule set is assumed to be due
to cross-validation and therefore the different choices for train
and test sets. We can see that the rule sets’ performances vary
with the selection of favorite features. When preferring features
9, 11 and 17 in the reduction process the performance of the
rule set is quite similar to the one where no preferred features
were set. This leads to the conclusion that those features do not
have a particularly high impact on the diagnosis of Parkinson’s
Disease (PD). When preferably keeping rules with feature 18 in
the rule set the accuracy is almost constantly higher than of the
baseline (red). This indicates that feature 18 is a better indicator
for diagnosing PD than other features. Here we also applied
leave-one-subject-out cross-validation to further assess possible
over-fitting and achieved an average accuracy over all subjects of
80%, which matches the accuracy of the 10-fold cross-validation
mentioned above and shown in Figure 6.

3.5. Comparison of Models
We compared the performance of random forests to other
machine learning techniques, like logistic regression and different
support vector machines, as well as comparing the two common
impurity measures: Gini and Entropy. Figure 7 shows the mean
accuracies of different models trained on the Speech Data Set.
The error bars indicate the accuracies of 100 independently
trained models each. The first two bars indicate the accuracies
of random forests trained with Gini impurity and Entropy
(information gain), respectively. The third bar shows the
performance of a logistic regression with L1 penalty and the
Saga solver, which uses Stochastic Average Gradient descent12.
The three most right bars show results of three support
vector machines, trained with different kernels: linear (svc),
Gaussian (rbf svc) and polynomial (poly svc). The random forests
outperform the othermodels on this data set and the difference in
performance of the different impurity measures, which measure
the quality of split within the trees, is minor. This matches
literature, since it has been found that the Gini criteria and the
entropy criteria only disagree in about 2% of the cases (Raileanu
and Stoffel, 2004).

3.6. Handling Missing Values
Our rule based algorithm depends on the previous
implementation of a random forest. The random forest
itself does not handle missing values, but Python’s sklearn
(Pedregosa et al., 2011) package provides a class called
Imputer13 that can handle missing values and replace them
with either the mean, the median, or the most frequent
value in the respective column. This way the support system
can handle missing values and incomplete data samples
do not have to be deleted. This was for example applied
in the PROPAG-AGEING data set, as some values were
missing in a few data samples. One could also take this into
account during the reduction step of the rule set by not

12https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression
13https://scikit-learn.org/stable/modules/generated/sklearn.impute.

SimpleImputer.html
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FIGURE 6 | Results from applying PECLIDES Neuro to the Speech Data Set. The line plots show accuracies depending on different rule set sizes. The x-axis

indicates the percentage of rules from the original rule set, which remained in the reduced rule set. The different colors refer to different choices of favored features (ff).

100% of the rule set for this data set refers to 358 rules. The error ranges are based on 10-fold cross-validation.

choosing those less reliable features as preferred ones or even
penalizing rules which contain less reliable features. This
shows another advantage of the fact that the support system
is personalisable.

3.7. Graphical User Interface
To make the interaction with the decision support system
approachable and straightforward, a user interface was
implemented. Figure 8 shows the provided interface. The
first rule set that was extracted from the whole random forest
was already created beforehand. The name of the data set and
the number of rules of this original rule set are stated on top
of the window. As shown beneath, the first reduction step can
be performed by clicking on the button First Reduction. This
does not change the number of rules but eliminates redundant
queries within one rule (see section 3.2 for more information).
The new size of the rule set is then stated under the button. In
the next step, optionally favorite features can be named (1, 2,
and 3 in the example figure) and the percentage to which the
rule set shall be reduced (here: 30%). The new size as well as
accuracy, sensitivity and specificity will then be calculated and
displayed after the button Reduce Rule Set is clicked. To make a
new prediction, a value has to be filled in for each feature and
with the button Predict a prediction is calculated and displayed
(here: healthy). The button more info opens a message box with
more information about what to fill in the entry boxes. The
button Print Rules shows all rules within the current reduced
rule set in form of if statements (see Figure 9). The two buttons
on the bottom of the graphical user interface show bar charts
with the number of rules containing each feature in the original
rule set and the current reduced one (see Figure 10). These two

properties allow an insight into the decision-making process as
well as the impact of different features.

3.8. Advanced Usage of the PECLIDES
Library
In general, data integration techniques often require additional
hypotheses on missing or low quality data, causality pathways
and dependability factors, to resolve contrasting phenotypic
patterns, leading to different diagnoses or therapies (for instance
different drug dosages). Thus, confidence in the diagnosis
requires the identification of a trust-region, which could suggest
the acquisition of further evidences or the re-analysis of the
cost-benefit function in light of therapeutic urgency (time).

White box modeling approaches are hypothesis- or model-
driven, while black box models are based entirely on data. The
combination of the two, forms the so called gray box model
approach. Gray box modeling combines a partial theoretical
structure with data to complete the model. A meaningful way to
provide the black box model with capabilities of considering and
testing different hypothesis, is to use an interactive visualization
approach. The part of the brain that processes visual information
is extremely well-developed during evolution while reading large
volume of numbers is a less evolved skill, which is only a few
thousand years old (Dehaene, 2005). Therefore, we decided to
use a graphical user interface to improve our ability to tune
the gray box model and integrate both hypotheses (for example
on missing values or experience biases) and data to increase
confidence in the diagnosis and a large region of trust.

A more advanced interactive visualization tool could facilitate
the task of integrating artificial intelligence and machine learning
based data analysis, using techniques such as random forests
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TABLE 1 | Feature explanation of Speech Data Set (Little et al., 2007; Par, 2007).

Feature

index

Feature name Interpretation

0 MDVP:Fo(Hz) Average vocal fundamental frequency

1 MDVP:Fhi(Hz) Maximum vocal fundamental frequency

2 MDVP:Flo(Hz) Minimum vocal fundamental frequency

3 MDVP:Jitter(%) Measure of variation in fundamental frequency

4 MDVP:Jitter(Abs) Measure of variation in fundamental frequency

5 MDVP:RAP Measure of variation in fundamental frequency

6 MDVP:PPQ Measure of variation in fundamental frequency

7 Jitter:DDP Measure of variation in fundamental frequency

8 MDVP:Shimmer Measure of variation in amplitude

9 MDVP:Shimmer(dB) Measure of variation in amplitude

10 Shimmer:APQ3 Measure of variation in amplitude

11 Shimmer:APQ5 Measure of variation in amplitude

12 MDVP:APQ Measure of variation in amplitude

13 Shimmer:DDA Measure of variation in amplitude

14 NHR Measure of ratio of noise to tonal components

in the voice

15 HNR Measure of ratio of noise to tonal components

in the voice

16 RPDE Non-linear dynamical complexity measure

17 DFA Signal fractal scaling exponent

18 spread1 Non-linear measure of fundamental frequency

variation

19 spread2 Non-linear measure of fundamental frequency

variation

20 D2 Non-linear dynamical complexity measure

21 PPE Non-linear measure of fundamental frequency

variation

or neural networks with reasoning and hypothesis on causality
trajectories, missing values, confounding factors, sources of
errors, different weights on the data integration to generate a
robust and friendly Clinical Decision Support System (CDSS).
The graphical user interface will empower the gray box model by
adding interacting hypothesis-testing visualization to the already
developed machine learning tool, resulting in an improved
interpretability, explainability and participation.

4. CONCLUSIONS

The algorithm introduced in this work can be used as a clinical
decision support system. It assists in the analysis of clinical
data, integration of different data type, and finally, provision of
a diagnosis. The focus of this work is thereby on neurological
diseases like Alzheimer’s and Parkinson’s Disease. The goal is
to make machine learning algorithms more transparent and
accessible while ensuring a high performance. Therefore, we
provide a gray model approach, which is especially useful
in clinical contexts since a comprehensible decision-making
process increases the trust in the diagnosis and can reveal new
information about diseases. The PECLIDES toolbox includes
the option of personalizing and adjusting the treatment of

FIGURE 7 | Mean accuracies on test set of different models applied to the

Speech Data Set (see section 3.4 for more information on data set). Error bars

come from 100 independently trained models each. rf gini, Random forest with

Gini impurity; rf entropy, random forest with entropy impurity; log reg, logistic

regression; svc, support vector machine with linear kernel; rbf svc, support

vector machine with Gaussian kernel; poly svc, support vector machine with

polynomial kernel.

parameters within the algorithm. This leads to more insight
into features used by the algorithm, their importance and
informative value.

The algorithm can be divided into threemajor steps (1) Firstly,
a random forest is created that builds the foundation of the
algorithm. (2) Secondly, a set of rules is extracted from the
random forest. (3) And finally, this rule set is reduced using
different algorithms. The third step includes the personalisable
aspects, where preferences for important features can be set.
Figure 1 shows a graphical overview of the algorithm.

The PECLIDES toolbox has versatile features and
applications, as detailed in Figure 11. The algorithm can
take different inputs, analyses and combines them, and provides
different outputs depending on the application. One fundamental
input for making a diagnosis is the new patient data. It will be
run through the (pre-trained) machine learning tool, in our case
a random forest, and PECLIDES can provide a diagnosis. But
since PECLIDES provides a transparent decision-making process
the user has the possibility to inspect, change and evaluate the
algorithm. Thus, the input can be enriched by providing expert
knowledge and regional information, e.g. physicians could
add their own rules, prefer certain decision features or neglect
others, based on their experience and knowledge. This way, local
aspects, ethnic groups, regional lifestyle, environment factors,
or common social interactions can be considered. The output is
not limited to a diagnosis. Another interesting analysis could be
disease comparisons, to evaluate the similarity between different
diseases. Therefore, knowledge about the importance of specific
factors in two or more diseases are very valuable. By examining
the impact of various genes for example, one could reason about
the similarity between different diseases or draw conclusions
about disease ontologies.

5. FUTURE WORK

There are several possibilities of combining random forests
and neural networks, such as Wang et al. (2018), Zorman
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FIGURE 8 | Graphical interface for the clinical decision support system, here applied to the Speech Data Set.

FIGURE 9 | Displaying all rules that remained in the reduced rule set.

FIGURE 10 | Displaying the number of rules containing the respective feature in the original rule set and the current reduced rule set.

et al. (2000), and Humbird et al. (2018). Those two machine
learning techniques have many complementary advantages and

disadvantages. For example, the knowledge representation of
decision trees is mostly comprehensible whereas the decision
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FIGURE 11 | Overview of possible applications of the PECLIDES library. On the left several different inputs to the algorithm are shown. Patient data, (pre-trained)

machine learning (ML) tools, specific relevant regional information and expert knowledge can be used as input. And the algorithm can provide different outputs, which

can be related to disease ontologies or disease comparisons or a diagnosis.

process of neural networks is hard to understand. On the
other hand, decision trees have trouble with noisy data, which
is not a big problem for neural networks. So the idea came
up to combine these two approaches to benefit from both
their advantages (Podgorelec et al., 2002). Zorman et al.
introduced an idea of how to combine decision trees and
neural networks. First, they generated a decision tree which
is then used to initialize the neural network. Subsequently,
the neural network is again converted into a decision tree,
which has a better performance than the original one. The
resulting decision tree may not have the same performance
as the neural network, but it is easier to interpret and
comprehend (Zorman et al., 1999, 2000; Podgorelec et al.,
2002. This approach could also be used for the clinical
decision support system introduced in this work and is
a promising approach to make decision support systems
more accessible.

Random forests can also be used to initialize deep feed-
forward neural networks where the network’s structure is
determined by the structure of the trees. These so-called “deep
jointly informed neural networks” (DJINN) show a warm-start
to the neural network training process and result in lower
cost and a lower number of user-specified hyper-parameters
needed to create the neural network (Humbird et al., 2018). This
shows another possibility to combine random forests with neural
networks and bring together both methods’ advantages. Our on
random forests based decision support system could also be used
as a foundation for further developments of DJINNs and bears
numerous similar possibilities for extensions and systems that
could be built on top.
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