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MutSignatures: an R package 
for extraction and analysis 
of cancer mutational signatures
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Cancer cells accumulate somatic mutations as result of DNA damage, inaccurate repair and other 
mechanisms. Different genetic instability processes result in characteristic non-random patterns of 
DNA mutations, also known as mutational signatures. We developed mutSignatures, an integrated 
R-based computational framework aimed at deciphering DNA mutational signatures. Our software 
provides advanced functions for importing DNA variants, computing mutation types, and extracting 
mutational signatures via non-negative matrix factorization. Specifically, mutSignatures accepts 
multiple types of input data, is compatible with non-human genomes, and supports the analysis of 
non-standard mutation types, such as tetra-nucleotide mutation types. We applied mutSignatures to 
analyze somatic mutations found in smoking-related cancer datasets. We characterized mutational 
signatures that were consistent with those reported before in independent investigations. Our work 
demonstrates that selected mutational signatures correlated with specific clinical and molecular 
features across different cancer types, and revealed complementarity of specific mutational patterns 
that has not previously been identified. In conclusion, we propose mutSignatures as a powerful open-
source tool for detecting the molecular determinants of cancer and gathering insights into cancer 
biology and treatment.

Genetic instability is one of the hallmarks of cancer1. Neoplastic cells accumulate somatic mutations in their 
genomes, resulting in aberrant homeostasis, cancer cell survival, and proliferation2. DNA mutations can be 
generated by different mechanisms, including spontaneous or enzymatic deamination, or because of an unbal-
anced interplay between processes generating nucleotide lesions and impaired activity of DNA repair pathways3. 
Often, specific mutations can be traced back to the genetic instability process that generated them. For example, 
8-oxoguanine (8-oxoG) is the most common and best-characterized base lesion induced by oxidative stress4,5, 
a condition associated with cancer6. During DNA replication, 8-oxoG can pair with adenine, causing G → T 
transversions4,7. On the contrary, UV radiation elicits C → T substitutions at dipyrimidine sites, inducing 
CC → TT8. Likewise, other molecular processes can be associated with their cognate mutational signatures. 
The interest in the identification of mutational signatures and the corresponding genetic instability processes 
is rapidly growing because these signatures are footprints of the molecular aberrations occurring in tumors, 
may be prognostic of clinical outcomes, and could support personalized anti-cancer treatments in the future9.

Seminal work from Nik-Zainal et al.10 and Alexandrov et al.11 identified a list of 30 tri-nucleotide muta-
tional signatures found in human cancer (Catalogue of Somatic mutations in Cancer, COSMIC signatures). The 
analytic pipeline was written in MATLAB (Wellcome Trust Sanger Institute, WTSI framework), and relied on 
non-negative matrix factorization (NMF)12. NMF has been widely employed to learn the basic components of 
objects that can be represented as non-negative numeric matrices13,14, such as mutation counts. Analyses aimed 
at deciphering mutational signatures were also performed using R-based pipelines and the NMF package15–17. 
In addition, R packages dedicated to the identification of tri-nucleotide mutational signatures by NMF and PCA 
(somaticSignatures R package)18, or using original probabilistic models (pmsignature R package)19 were published. 
However current R-based approaches for mutational signature analysis carry a series of limitations. First, most 
analytic pipelines lack built-in functionalities for computing tri-nucleotide mutations, or only support analysis of 
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human mutations. Second, with few exceptions, tri-nucleotide mutations are the only types of DNA variants that 
were analyzed, even if recent reports suggested that the standard tri-nucleotide-based approaches may be inad-
equate to capture and resolve clinically- or biologically-relevant patterns. For example, it was recently shown that 
incorporating additional mutation-flanking nucleotides could be advantageous for better establishing mutational 
blueprints of smoke-associated cancers17. Additionally, current approaches are limited by both reproducibility 
issues emerging when comparing results from different signature extraction pipelines, as well as biases due to 
differences in total mutation burden across sequenced samples20. Finally, a fully integrated R-based framework 
for the analysis of DNA variants and the identification and analysis of mutational signatures is still missing.

These considerations prompted us to develop a software that replicated the WTSI framework in the R Sta-
tistical Computing environment, and at the same time addressed some of the limitations of the current ana-
lytical approaches. Here, we present mutSignatures, which is available on CRAN (https​://CRAN.R-proje​ct.org/
packa​ge=mutSi​gnatu​res) and GitHub (https​://githu​b.com/dami8​2/mutSi​gnatu​res). This framework includes an 
R-ported version of the software developed by Alexandrov et al.12, accompanied by a wide set of functions for data 
import, preparation, analysis, and visualization. Notably, our software is compatible with non-human genomes, 
and was successfully employed to extract for the first time two mutational signatures from a carcinogen-induced 
mouse model of bladder cancer21. Moreover, mutSignatures provides users with optional tools for inspecting 
non-standard mutation types, applying sample-wise mutation count normalization, and using a multiplicative 
update NMF algorithm22 alternative to the standard Brunet’s algorithm13. Altogether, mutSignatures is a powerful 
open-source framework for comprehensive analysis of mutational signatures, aimed at gathering insights into 
cancer biology and treatment.

Material and methods
Data sources.  LUAD and BLCA TCGA datasets were described before23,24. The MAF files storing muta-
tion data from sequencing experiments were downloaded from the Broad Institute Repository at the follow-
ing URL: https​://gdac.broad​insti​tute.org/runs/analy​ses__2016_01_28/repor​ts/cance​r/. Tri-nucleotide mutation 
frequencies of 30 COSMIC signatures were downloaded from the Sanger Institute repositories, at the following 
URL: https​://cance​r.sange​r.ac.uk/cance​rgeno​me/asset​s/signa​tures​_proba​bilit​ies.txt. The TCGAretriever (https​
://CRAN.R-proje​ct.org/packa​ge=TCGAr​etrie​ver) R package was used to download patient clinical data from 
cBioPortal (https​://www.cbiop​ortal​.org).

Computing mutation types.  mutSignatures version 1.3.7 or higher (https​://githu​b.com/dami8​2/mutSi​
gnatu​res) was used. Tri-nucleotide or non-standard mutation types were computed starting from MAF files, 
and using mutSignatures functions that relied on the use of GenomicRanges25 and the BSgenome (https​://doi.
org/doi:10.18129​/B9.bioc.BSgen​ome.Hsapi​ens.UCSC.hg19) Bioconductor packages. Specifically, the full genome 
sequences for Homo Sapiens, version hg19 were used for retrieving the nucleotide context surrounding each 
SNV in the MAF files, and for computing mutation types. Reverse-complement transformations were applied 
to format all mutations according to the standard style used by COSMIC, which always lists a pyrimidine as the 
reference base at the mutated position.

Non‑negative matrix factorization.  The core functions for performing NMF were ported into R from 
the MATLAB-based code of the WTSI (recently renamed to sigProfiler) framework12, which was downloaded 
from the following URL: https​://www.mathw​orks.com/matla​bcent​ral/filee​xchan​ge/38724​. NMF was performed 
using matrix algebra functions that are included in R base. The Brunet’s and the Lin’s NMF algorithms were 
described before13,22, and the corresponding MATLAB code12,22 was ported to R. De novo signature extractions 
by NMF were performed by running at least 500 iterations, and using on-demand Amazon (Seattle, WA, USA) 
Elastic Cloud 2 (EC2) Linux instances, typically equipped with 32 CPU cores and 128 Gb RAM (m5.8xlarge EC2 
instance).

Simulations, statistical analyses, and patient prognosis.  All statistical tests and data analyses were 
performed using R. Patient survival analyses were performed using the survival R package (https​://CRAN.R-
proje​ct.org/packa​ge=survi​val). For analysis of clinical prognosis in the LUAD dataset, patients were assigned 
in 2 groups: cases with survival time longer than 36 months were included in the first group (good prognosis, 
n = 111), while deceased patients with survival time shorter than 36 months were included in the second group 
(poor survival, n = 111). Patients with insufficient follow-up time (survival status = ‘alive’ & survival time less 
than 36 months; n = 196) were excluded from the ‘prognosis’ analysis.

Signature matching was performed using the matchSignatures() function from the mutSignatures package. 
This function computed the cosine distance of all pairs of signatures from two mutationSignatures objects (dist = 0 
meant identity; dist ~ 1 meant maximum dissimilarity). Results were visualized by heatmaps.

For the Monte Carlo simulation, a total of 10,000 simulations were performed. At each iteration, relative signa-
ture activities of 418 genomes were generated, so that each signature had relative activity distribution whose mean 
and standard deviation tracked with those observed in the original signature activities. Spearman correlation was 
then computed for all pairs of signatures, and the minimum correlation value was returned. Finally, the original 
correlation values were examined with respect to the distribution of correlation values returned by all simulations. 
Spearman’s and Kendall’s correlation tests were performed using the cor.test() function from the stats R package.

https://CRAN.R-project.org/package=mutSignatures
https://CRAN.R-project.org/package=mutSignatures
https://github.com/dami82/mutSignatures
https://gdac.broadinstitute.org/runs/analyses__2016_01_28/reports/cancer/
https://cancer.sanger.ac.uk/cancergenome/assets/signatures_probabilities.txt
https://CRAN.R-project.org/package=TCGAretriever
https://CRAN.R-project.org/package=TCGAretriever
https://www.cbioportal.org
https://github.com/dami82/mutSignatures
https://github.com/dami82/mutSignatures
https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19
https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19
https://www.mathworks.com/matlabcentral/fileexchange/38724
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
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Implementation
Overview of mutSignatures pipeline.  The mutSignatures framework is organized in three modules 
(Fig. 1). The first module deals with data import and preparation from Variant Call Format (VCF) files or other 
sources. The second module includes core functions required for de novo extraction of mutational signatures 
by NMF. Alternatively, mutation counts can be deconvoluted against known mutational signatures to determine 
signature activities. The third module includes functions for mutational signature matching, downstream analy-
sis, and visualization.

Data import and preparation.  The mutSignatures framework can import DNA mutation data from mul-
tiple sources. VCF files, which are typically used to record DNA variants, can be imported individually or in 
batch. MAF files, used by The Cancer Genome Atlas (TCGA) to store cancer mutation data in tabular format, 
can be easily read in R and analyzed via mutSignatures. DNA variant data from cBioPortal26 can be program-
matically accessed using R packages such as TCGAretriever (https​://CRAN.R-proje​ct.org/packa​ge=TCGAr​etrie​
ver), and then analyzed by mutSignatures. The mutSignatures framework can also import and process mutations 
revealed through the Sequenza pipeline27. After single nucleotide variants are imported, their genomic location 
is used to extract the n-nucleotide (by default, n = 3) context (centered on the mutated position) from a BSge-
nome reference assembly (for example, hg19 https​://doi.org/doi:10.18129​/B9.bioc.BSgen​ome.Hsapi​ens.UCSC.
hg19). Our framework allows import and analysis of mutation data aligned to human as well as non-human 
genomes, including the mouse mm10 assembly21. By default, mutations types are formatted according to the 
style used by COSMIC and the Sanger Institute (for example, A|C > T|A). Reverse-complement transformation 
is automatically applied to display mutation types with a pyrimidine (C or T) as reference base at the mutated 
position. While the Sanger-derived format is adopted and recommended for consistency with previous analyses, 
users can opt for customized mutation dictionaries. Indeed, downstream analytic modules can accept either 
standard or non-standard mutation types as input. In the final data preparation step, mutation types are counted 
across all samples, returning a mutationCounts object that can be piped into the second module of the frame-
work, or used for data visualization.

De novo extraction of mutational signatures via NMF.  Extraction of mutational signatures is con-
ducted by NMF, as originally described for the WTSI framework12, and according to the equation V ≈ W ×H . 
Briefly, let V be an m-by-n non-negative mutation count matrix (including m mutation types and n biological 
samples). V is factorized into two non-negative matrices, W (m-by-k matrix) and H (k-by-n matrix). While W 
stores k mutational signatures, H includes signature activities (originally referred to as signature exposures), 
which estimate the contribution of mutational signatures to the total number of mutations found in each 
sample14.

Similar to the WTSI framework, in mutSignatures the NMF step is executed multiple times with the input 
count matrix bootstrapped according to the multinomial distribution of mutations by sample12. The repeated 
bootstrapping followed by NMF is crucial to ensure identification of consistent and reliable mutational 
signatures12. Therefore, this procedure was implemented in the mutSignatures framework as one of its essential 
components, unlike other analytic pipelines where bootstrapping is not performed. The reliability of de novo 
extracted signatures can be readily assessed by inspecting the silhouette plot that is automatically returned at 
the end of the signature extraction process (supplementary figure S1A).

In the WTSI framework, NMF is conducted according to the multiplicative update algorithm proposed by 
Brunet et al.13. Our software implements the same algorithm, as well as an alternative NMF method that was 
first described by Lin22. Lin’s modified multiplicative update algorithm enforced convergence, had similar com-
putational complexity per iteration as the original NMF algorithm, and was previously applied to the analysis 

Figure 1.   Schematic of mutSignatures Modules. Diagram summarizing the three modules of the mutSignatures 
framework. Module 1 is aimed at importing and preparing mutation data from VCF files or other sources. A 
DBGenome object is required for computing mutation types. Analytic parameters are set before running NMF. 
Module 2 is aimed at extracting mutational signatures by NMF, or computing signature activities via the fcnnls 
function. Module 3 includes functions for comparing mutational signatures and data visualization. A summary 
of Input/Output (I/O) objects is shown.

https://CRAN.R-project.org/package=TCGAretriever
https://CRAN.R-project.org/package=TCGAretriever
https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19
https://doi.org/doi:10.18129/B9.bioc.BSgenome.Hsapiens.UCSC.hg19
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of genomic and biomedical data28,29. This feature was included in our software since the comparison of results 
from different NMF algorithms may facilitate the identification of consistent and reliable mutational signatures.

Our R package is already optimized for parallelization: mutSignatures can be easily deployed on high-perfor-
mance computational clusters, and relies on the use of the parallel, foreach (https​://CRAN.R-proje​ct.org/packa​
ge=forea​ch), and doParallel https​://CRAN.R-proje​ct.org/packa​ge=doPar​allel​) R packages. The output is a list 
including a mutationSignatures object storing the newly extracted mutational signatures (Results$signatures), 
and a mutSignExposures object that includes signature activities (Results$exposures; the term “exposures” was used 
for consistency with the WTSI framework).

Optional mutation count normalization.  In the original WTSI framework, no count normalization is 
applied before NMF, and hence this approach is inherently biased toward extraction of signatures that are promi-
nent in samples with high mutation burden. This strategy aligns with the hypothesis that a high total number 
of mutations in a sample may be due to many active mutational processes, and hence that sample gets a bigger 
weight in the mutational signature extraction. While this hypothesis is sound, there are evidences that selected 
mutational processes may contribute more than others to the accumulation of somatic mutations in tumors. An 
example is that of tumors with hyper-mutator phenotype30. If signatures are extracted from raw mutation counts, 
the presence of high mutation burden samples in the dataset may prevent precise identification of mutational 
signatures that are relevant in a number of low-mutation burden tumor genomes. Additionally, the total num-
ber of mutations found in tumors also depends on sequencing depth and sample quality, which are important 
sources of variability in the analysis of clinical specimens31. To circumvent this problem, it may be desirable to 
level the weight of all samples in the dataset. This can be achieved by sample-wise mutation count normalization. 
In mutSignatures, normalization is applied by setting the “approach" parameter to "freq”.

We examined the signatures extracted with or without counts normalization from the TCGA Bladder Cancer 
dataset (n = 395; median SNV per genome, m = 224, supplementary figure S1B), which includes a single tumor 
with hyper-mutator phenotype (case id: TCGA-DK-A6AW-01; total number of SNV, n = 4455). Our analyses 
using normalized counts were insensitive to the hyper-mutator outlier, and returned 4 signatures matching those 
previously identified in bladder tumors, namely COSMIC signatures 1, 2, 5, and 13 (Fig. 2A, and 11). Conversely, 
the results obtained using raw mutation counts as input showed a different signature, matching the mutation 
profile of the hyper-mutator sample (Fig. 2A,B, and supplementary figure S2), and this prevented the correct 
identification of other signatures, specifically signatures COSMIC 1 and 5 (Fig. 2A). Tumors with hyper-mutator 
phenotype were found in different TCGA datasets, showing consistent mutational profiles (COSMIC signature 
10, Fig. 2C). Analysis of these datasets revealed similar disruptions in signature identification when raw muta-
tion counts were used instead of normalized counts from the Breast Carcinoma (BRCA), the Cervical Squamous 
Cell Carcinoma and Endocervical Adenocarcinoma (CESC), and the Stomach Adenocarcinoma (STAD) datasets 
(supplementary figure S3). Nevertheless, mutation count normalization successfully identified COSMIC 10-like 
signatures in a number of TCGA cohorts where the hyper-mutator phenotype occurred more frequently (Rectum, 
READ; Colon, COAD; and Endometrial, UCEC cancer datasets, supplementary figure S3).

Deconvolution of mutation counts against known mutational signatures.  Computing activi-
ties when mutational signatures are known means solving the V ≈ W ×H equation when both V and W are 
known and H is unknown. Our framework solves this nonnegative least square linear problem via a custom 
implementation of the fast combinatorial strategy proposed by Van Benthem32. Imputed signature activities 
(exposures) are returned as a mutSignExposures object. Removal of under-represented signatures is not auto-
matically applied. The deconstructSigs R package33 is dedicated to this kind of analysis, and returned overlapping 
results when compared to our method (supplementary figure S4A), with our approach being about 50 times 
faster than deconstructSigs (supplementary figure S4B). Recently, the strategy of using our mutSignatures pack-
age for de novo signature extraction alongside with deconstructSigs for mutation counts deconvolution has been 
successfully implemented34.

Results
Extraction of mutational signatures from smoking‑related cancers.  A link between DNA muta-
tional signatures and tobacco consumption was reported before16,17,35, showing that tumors from smokers had 
higher mutation burden compared to non-smokers, and that prevalent mutational signatures in smoking-related 
cancers were COSMIC signatures 4, 516,35, as well as the APOBEC-associated signatures (COSMIC signatures 2 
and 13)35–37. Here we used the mutSignatures framework to extract tri- and tetra-nucleotide mutational signa-
tures from the lung adenocarcinoma (LUAD) TCGA dataset, and analyzed correlations with other molecular or 
clinical parameters. Samples with at least 50 total SNV (supplementary figure S5A) per genome and including 
information about survival and tobacco smoking history were analyzed (Fig. 3A). We found that genomes of 
current or reformed smokers had significant (t-test p-val ≤ 2.0e–13) accumulation of mutations compared to 
life-long non-smokers (Fig. 3B). Stage I tumors showed statistically (log-rank p-val ≤ 6.5e−05) better survival 
compared to higher tumor stages (Fig. 3C). On the contrary, smoking status was not indicative of clinical out-
comes (supplementary figure S5B). Tri- and tetra-nucleotide signatures were extracted from the 418 genomes 
meeting the inclusion criteria.

Comparison between tri‑ and tetra‑nucleotide mutational signatures.  Tri-nucleotide mutational 
signatures extracted from the LUAD TCGA dataset matched COSMIC signatures 1, 2, 4, and 5 (Fig. 4A, and 
supplementary figure S6, previously identified in lung cancer genomes11. Next, we examined tetra-nucleotide 
signatures, which were obtained from DNA mutation types including information about the nucleotide at the 

https://CRAN.R-project.org/package=foreach
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Figure 2.   Mutational signatures identified in Bladder Cancer Genomes. (A) Heatmaps showing similarity 
between COSMIC signatures and mutational signatures that were de novo extracted from the TCGA bladder 
cancer dataset. Mutational signatures were identified using normalized (top heatmap) or raw (bottom heatmap) 
mutation counts. Cosine distances across signatures were computed, and displayed by color intensity. The yellow 
arrow indicates a signature that was specifically extracted when raw mutation counts were used as input. (B) 
Activity of mutational signatures extracted from raw mutation counts. A limited number (n = 30) of TCGA 
bladder cancer samples with the highest mutation burden is displayed. Each bar represents a tumor and the 
vertical axis denotes the number of mutations imputed to each signature (highlighted by colors). The leftmost 
bar of the plot (yellow bar) corresponds to the hyper-mutator sample (TCGA-DK-A6AW-01). (C) Barplots 
summarizing the mutational profiles of the sample (TCGA-DK-A6AW-01) and mutational signatures (blca_
count_1, and COSMIC #10) corresponding to the hyper-mutator phenotype in cancer. Mutation types were 
grouped by SNV. Plots were generated using R software version 3.6.3 (R Core Team, 2020. R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https​://www.R-
proje​ct.org/).

https://www.R-project.org/
https://www.R-project.org/
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Figure 3.   Mutational landscape of Lung Adenocarcinoma. (A) Diagram summarizing the sample inclusion 
criteria applied for the analysis of the LUAD TCGA dataset. Patients with both survival and tobacco 
consumption information, and including at least 50 SNV in their genome were analyzed (n = 418). Samples were 
used for tri- and tetra-nucleotide signature extraction. Pie charts summarize the distribution of smoking status 
and prognosis in the included patients. (B) Violin plot showing the distribution of total number of mutations 
detected in LUAD cancer genomes according to the patients’ smoking status. Blue dots indicate the median 
values; blue segments indicate the range spanning from the first to the third quartile. Groups were compared 
by t-test. (C) Plot comparing survival of LUAD cancer patients according to tumor stage (I to IV). Groups were 
compared by log-rank test. Three asterisks (***) indicate p-value less than 1e−4 for the labelled group compared 
to all others. Plots were generated using R software version 3.6.3 (R Core Team, 2020. R: A language and 
environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https​://www.R-
proje​ct.org/).

https://www.R-project.org/
https://www.R-project.org/
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Figure 4.   Analysis of tri- and tetra-nucleotide mutational signatures extracted from the LUAD TCGA dataset. 
(A) Heatmap examining similarity between COSMIC signatures, and tri-nucleotide mutational signatures 
that were de novo extracted from the LUAD TCGA dataset. (B) Heatmap comparing tri- and tetra-nucleotide 
mutational signatures that were de novo extracted from the LUAD TCGA dataset. Tetra-nucleotide signatures 
were simplified to the corresponding tri-nucleotide signatures by mutation type binning. Color intensity tracks 
with the value of cosine distance. (C) Barplots and heatmaps summarizing the mutational profiles of tri- and 
tetra-nucleotide mutational signatures (top: luad_B and luad_tetra_B; bottom: luad_C, and luad_tetra_C). 
Heatmaps are visual representations of the tetra-nucleotide mutational signatures, where tri-nucleotide 
mutation types are shown on the x-axis, and the extra 5′-end nucleotides are shown on the y-axis. Box color 
intensity tracks with mutation type frequency. Tetra-signature simplification can be summarized as the result 
of column-wise aggregation of tetra-nucleotide mutation frequencies as shown in the heatmaps. Simplification 
returned vectors of tri-nucleotide mutation type frequency that are displayed as barplots. Plots were generated 
using R software version 3.6.3 (R Core Team, 2020. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. https​://www.R-proje​ct.org/).

https://www.R-project.org/
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5′-end of the standard tri-nucleotide mutations. To allow comparison with standard mutational signatures, we 
aggregated frequencies of tetra-nucleotide DNA variants corresponding the same tri-nucleotide mutation type. 
This operation returned a list of simplified tetra-nucleotide signatures that overlapped with the tri-nucleotide 
mutational signatures derived before (Fig. 4B,C, and supplementary figure S6). The close similarity between 
signatures extracted via either method demonstrated the reliability of results obtained using our analytic frame-
work and the context-specificity of mutational signatures. A closer inspection of tetra-nucleotide signatures 
confirmed the sensitivity of mutations to their flanking DNA sequences, including not only the immediate 
neighboring bases, but also the second base at the 5′-end of selected SNV. For example, signature luad_tetra_B 
featured a striking preference for cytosine upstream of C|C > A|N, as well as of T|C > A|G mutations (Fig. 4C, 
supplementary figure S6), similar to previous reports17. Therefore, our observations supported that the study 
of extended mutation types (such as tetra-nucleotide mutations) could carry more complete information and 
provide insights in the biology underlying DNA mutagenesis in cancer.

Mutational signature activities in LUAD TCGA genomes.  We analyzed the tri-nucleotide mutational 
signature activities across lung cancer samples. Signature activities indicate how many mutations are the con-
sequence of each mutational signature in each sample (Fig. 5A). Analysis of signature activities revealed two 
groups in the data: (i) tumors enriched in luad_B signature, usually having high mutation burden (group_1); and 
(ii) tumors depleted in luad_B signature, usually featuring low total number of DNA mutations (group_2). Anal-
ysis of relative activities (signature activities normalized by total number of mutations in the genome) showed 
that the luad_C signature was enriched in group_2 samples (Fig. 5A).

We computed Spearman correlation between relative signature activities (Fig. 5B), and confirmed our 
previous observations. The pairs of signatures with the lowest Spearman’s coefficient were signatures A 
and B (Rho = − 0.582), and signatures B and C (Rho = − 0.599), while signatures A and C were uncorrelated 
(Rho = − 0.047). Negative correlations among mutational signatures were anticipated because of the constraint 
that relative activities had to sum up to unity, but the observed Rho values were significantly lower compared 
to those expected according to Monte Carlo simulations (p < 0.005, supplementary figure S7A). In addition, we 
quantile-discretized and examined relative activities of signatures B and C, and found that tumors were more 
likely to have high contribution of one or the other signature rather than intermediate activity of both of them 
(Fig. 5C).

Notably, these two signatures matched signatures COSMIC 4 and 1, respectively (Fig. 4A). COSMIC 4 was 
proposed to originate after the activity of cigarette smoke carcinogens, while COSMIC 1 was associated to spon-
taneous deamination of 5-methylcytosine. Our observations suggested that these two signatures and the cor-
responding mutational processes had a tendency to occur in mutual exclusive fashion in lung adenocarcinoma.

Mutational signatures and clinical parameters.  We further analyzed mutational signatures and their 
associations with molecular and clinical parameters. First, we compared mutational signatures and mutation 
burden. In agreement with what observed before, we found that signature luad_B was significantly enriched in 
high mutation burden genomes (Kendall’s rank correlation test, tau = 0.4563, p-val < 2.2e−16, Fig. 6A), and that 
the relative contribution of signature luad_C was higher in low mutation burden samples (Kendall’s rank cor-
relation test, tau = − 0.6240, p-val < 2.2e−16, Fig. 6B).

Next, we tested whether mutational signatures were prognostic of patient clinical parameters. We could not 
find any correlation between mutational signatures and overall patient survival (supplementary figure S7B). How-
ever, we tested whether signatures luad_B and luad_C were significantly correlated with other clinical features, 
especially patient smoking status. Our analyses revealed that activities of signature luad_B were increased (t-test, 
p-val < 3.4e−10) in tumors from smokers (both current and reformed, Fig. 6C). Conversely, relative activities of 
signature luad_C were increased in life-long non-smokers (t-test, p-val < 6.7e−6, Fig. 6D). To validate our conclu-
sions, we examined the association between luad_B and luad_C mutational signatures and clinical features in a 
different smoking-related cancer dataset. We analyzed the Head and Neck Squamous Cell Carcinoma (HNSC) 
because the mutational signatures identified in this dataset using the WTSI MATLAB framework were similar to 
those detected by COSMIC in lung adenocarcinoma. We deconvoluted mutation catalogs from the HNSC TCGA 
dataset (n = 511) against the four signatures extracted from LUAD TCGA (luad_A, luad_B, luad_C, and luad_D). 
Next, we assessed the association between smoking status and relative activities. In agreement with our observa-
tions, we found that signature luad_B was significantly higher in genomes of smoking HNSC patients (Fig. 6E; 
t-test, non-smokers vs. smokers, p-val < 3.4e−06), while relative activities of signature luad_C were higher in 
head and neck tumors from non-smoking patients (Fig. 6F; t-test, non-smokers vs. smokers, p-val < 2.6e–05).

Our results showed that mutSignatures supported the characterization of genetic instability mechanisms active 
in lung adenocarcinoma, and revealed mutational signatures that were strongly associated with specific molecular 
and clinical parameters, such as mutation burden, and patient smoking history. Likewise, similar analyses may 
enable prediction of other signature-associated clinical parameters, for example response to selected anticancer 
therapies, and ultimately support gathering insights into tumor biology and treatment.

Discussion
Identifying the molecular mechanisms driving tumor initiation and progression is crucial in cancer research 
and therapeutics. The study of DNA mutational signatures is an emerging area of cancer genomics that can help 
understanding what mechanisms are responsible for the accumulation of somatic mutations found in tumors. 
Here, we introduced mutSignatures, a software supporting extraction and analysis of DNA mutational signatures. 
Our framework is written in R38, a free statistical programming environment, and aligns to the standards set by 
the WTSI MATLAB framework by Alexandrov et al.12. Moreover, our software includes tools for mutation data 
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Figure 5.   Signature Activities in smokers and non-smokers affected by lung adenocarcinoma. (A) Activity of 
mutational signatures that were de novo extracted from LUAD TCGA. A limited number (n = 40, including 20 
random genomes from smokers and 20 random genomes from life-long non-smokers) of lung cancer samples 
are displayed. Each bar represents a tumor and the vertical axis denotes the total (top barplot) or the relative 
(central barplot) number of mutations imputed to each signature (highlighted by colors). The patient smoking 
status key is shown below the barplots. (B) Heatmap showing Spearman correlation coefficients (Rho) across 
signature activities in the Lung Adenocarcinoma dataset. Activities of standard tri-nucleotide mutational 
signatures were analyzed. Yellow boxes correspond to positive correlations; blue boxes indicate pairs of 
signatures that are inversely correlated. (C) Heatmap highlighting the distribution of activities of luad_B (y-axis) 
and luad_C (x-axis) signatures in LUAD TCGA genomes. Activities of both signatures were tertile-discretized 
(low, medium, and high), and then orthogonally analyzed. Tumors belonging to each of the 9 possible groups 
were counted. Color intensity tracks with number of patients. Yellow arrows indicate the two groups with the 
highest patient count, which corresponded to tumors with high activity of one signature and low activity of the 
other. Plots were generated using R software version 3.6.3 (R Core Team, 2020. R: A language and environment 
for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https​://www.R-proje​ct.org/).

https://www.R-project.org/
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Figure 6.   Correlation among mutational signatures, mutation burden, and smoking status in lung 
adenocarcinomas. (A,B) Boxplots showing relative activity of signatures luad_B (A) and luad_C (B) according 
to discretized mutation burden. Mutation burden was quartile-discretized. Correlation between relative 
activities and binned mutation burden was computed by Kendall’s rank correlation test. Kendall’s coefficients 
(tau) were tau = 0.4563 (p-val < 2.2e−16) for luad_B signature (A), and tau = − 0.6240 (p-val < 2.2e−16) for 
luad_C signature (B). (C,D) Boxplots showing relative activity of signatures luad_B (C) and luad_C (D) in 
LUAD genomes according to patient smoking status. Groups were compared by t-test. (E,F) Boxplots showing 
relative activity of signatures luad_B (E) and luad_C (F) in HNSC genomes according to patient smoking 
status. Groups were compared by t-test. Three asterisks (***) indicate p-val less than 1e–4. Plots were generated 
using R software version 3.6.3 (R Core Team, 2020. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing, Vienna, Austria. https​://www.R-proje​ct.org/).

https://www.R-project.org/
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import and preparation, mutational signature extraction and analysis via non-negative matrix factorization, and 
data visualization. Compared to the original WTSI framework, our software includes new functionalities for 
easily importing, preparing, analyzing data and visualizing results. Moreover, mutSignatures addresses some of 
the limitations of other R packages performing similar analyses. Specifically, our framework accepts multiple 
types of input data, is compatible with non-human genomes, can extract and analyze non-standard mutation 
types, and enables built-in sample-wise mutation count normalization. Additionally, mutSignatures can be easily 
streamlined with existing R libraries and R-based genomic analytic pipelines.

Here, we used mutSignatures to extract and analyze mutational signatures from TCGA lung adenocarcinoma 
genomes and other datasets. We successfully identified mutational signatures matching those previously reported 
by COSMIC in the same types of cancer. For the first time, we extracted tri- and tetra-nucleotide mutational 
signatures using the same algorithm. Our characterization revealed a great similarity between signatures obtained 
using standard or non-standard mutation types, confirming the reliability of the analytical approach implemented 
in our R framework, as well as the nucleotide-context specificity of mutational signatures. Our results showed 
that DNA mutations are highly sensitive to their nucleotide context, which is not solely limited to the immediate 
flanking bases but extends further. This provides rationale for the study of non-standard extended (more than 3 
nucleotides) mutation types, a kind of analysis that is supported by mutSignatures.

Finally, we analyzed correlations between mutational signatures found in lung adenocarcinoma samples, 
and other clinical and molecular features. We identified two signatures, namely luad_B and luad_C, which were 
inversely correlated. Signature luad_B was increased in tumors from smokers and correlated with high mutation 
burden. Conversely, signature luad_C was enriched in tumors from life-long non-smokers, and correlated with 
low mutation burden. These two signatures may be the consequence of mutually-exclusive mutational processes 
resulting in the incorporation of DNA mutations in lung cancer cells from smoking and non-smoking patients, 
respectively. Similarly, mutational signature analyses could reveal correlations with other molecular or clinical 
parameters, such as expected clinical course, or patient response to specific anti-cancer drugs.

In conclusion, we presented mutSignatures, an R package for analysis of mutational signatures. Our software 
can be used for the identification of mutational determinants of cancer, supports the analysis of signature-associ-
ated molecular and clinical features, and has the potential of revealing insights into tumor biology and treatment.

Data availability
The latest version of mutSignatures (version 2.0.1) is available on CRAN or at the following URL: https​://githu​
b.com/dami8​2/mutSi​gnatu​res. Vignettes illustrating how to install and use mutSignatures are available upon 
request.
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