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Dendritic cells (DCs) are endowed with a unique potency to prime T cells, as well as to

orchestrate their expansion, functional polarization and effector activity in non-lymphoid

tissues or in their draining lymph nodes. The concept of harnessing DC immunogenicity to

induce protective responses in cancer patients was put forward about 25 years ago and

has led to a multitude of DC-based vaccine trials. However, until very recently, objective

clinical responses were below expectations. Conventional type 1 DCs (cDC1) excel

in the activation of cytotoxic lymphocytes including CD8+ T cells (CTLs), natural killer

(NK) cells, and NKT cells, which are all critical effector cell types in antitumor immunity.

Efforts to investigate whether cDC1 might orchestrate immune defenses against cancer

are ongoing, thanks to the recent blossoming of tools allowing their manipulation in

vivo. Here we are reporting on these studies. We discuss the mouse models used to

genetically deplete or manipulate cDC1, and their main caveats. We present current

knowledge on the role of cDC1 in the spontaneous immune rejection of tumors engrafted

in syngeneic mouse recipients, as a surrogate model to cancer immunosurveillance, and

how this process is promoted by type I interferon (IFN-I) effects on cDC1. We also discuss

cDC1 implication in promoting the protective effects of immunotherapies in mouse

preclinical models, especially for adoptive cell transfer (ACT) and immune checkpoint

blockers (ICB). We elaborate on how to improve this process by in vivo reprogramming

of certain cDC1 functions with off-the-shelf compounds. We also summarize and discuss

basic research and clinical data supporting the hypothesis that the protective antitumor

functions of cDC1 inferred from mouse preclinical models are conserved in humans.

This analysis supports potential applicability to cancer patients of the cDC1-targeting

adjuvant immunotherapies showing promising results in mouse models. Nonetheless,

further investigations on cDC1 and their implications in anti-cancer mechanisms are

needed to determine whether they are the missing key that will ultimately help switching

cold tumors into therapeutically responsive hot tumors, and how precisely they mediate

their protective effects.
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INTRODUCTION

Immune responses against cancer are sculpted by the tumor
microenvironment, including its composition in terms of
cell types and their physiological states. Indeed, tumors
escape host immune defenses not only through decreasing
their intrinsic immunogenicity but also by shaping a specific
immunosuppressive microenvironment (1, 2). Exogenous factors
such as the microbiota and its metabolites also modulate
the tumor microenvironment and hence antitumor immune
responses (3). According to their degree of infiltration by
immune cells and to their capacity to activate antitumor immune
responses, tumors have been classified as immunologically
“Hot” or “Cold.” “Hot” tumors are immunogenic, T cell-
inflamed, and efficiently rejected by the immune system. They
are characterized by the presence of activated CD8+ cytotoxic
T lymphocytes (CTLs), by the expression of T cell-attracting
chemokines, and by a type I interferon (IFN-I) transcriptional
signature (4). “Cold” tumors lack T cell infiltration, which is
correlated with an absence of IFN-I signature and with a poor
chemokine production (4). They are ignored by the immune
system due to their poor immunogenicity and are very poorly
responsive to immunotherapies. We propose to refine this
bimodal classification through the addition of two other tumor
states, which we called “Icy” and “Warm.” We define as “Icy”
the tumors that develop potent, active, mechanisms to prevent
immune recognition and T cell activation, by inducing a highly
immunosuppressive microenvironment very early on during
their development. Hence, “Icy” tumors are even more refractory
to immune control than “Cold” tumors. “Warm” tumors
present an intermediate level of infiltration by “exhausted”
CTLs, which have been functionally paralyzed by the local
immunosuppressive environment that has been progressively
shaped during tumor development. The exhaustion of CTLs is
at least in part due to engagement of their immune checkpoint
receptors by ligands expressed by the tumor cells themselves
or by infiltrating antigen (Ag)-presenting cells. “Warm” tumors
are more prone to be controlled by immune checkpoint
blockade (ICB) treatments. These monoclonal antibody (mAb)-
based immunotherapies have revolutionized cancer patient care,
by significantly increasing not only overall survival rates but
also very long-term remissions for tumor types previously
difficult to treat. Despite this major advance, the majority
of patients with difficult-to-treat cancers do not respond to
ICB. To overcome this issue, it is critical to find additional
means of manipulating the microenvironment of the “Cold”
or “Warm” tumors unresponsive to ICB, in order to convert
them into “Hot” tumors. It should be possible to achieve this
by combining ICB with adjuvant immunotherapies able to
counteract the other immune escape mechanisms established by
these tumors, in order to (i) trigger de novo or enhance T cell
infiltration, (ii) enhance cross-presentation of tumor-associated
Ag, and (iii) promote a better induction or reactivation of CTL
effector functions.

Dendritic cells (DCs) are the most potent Ag-presenting
cells, with a unique efficacy for priming naïve T cells and

inducing their functional polarization. They are more generally
in charge of orchestrating the expansion and functions of T
and natural killer (NK) cells in lymphoid and non-lymphoid
tissues. Many clinical trials have been performed over the last
25 years to attempt harnessing DC functions for boosting
protective antitumor CTL responses in cancer patients (5).
Up to now, the results have been disappointingly far below
expectations. These failures occurred at least in part because of
the almost exclusive use of monocyte-derived DCs (MoDCs)
for ACT in cancer patients. Indeed, later advancement of
our basic understanding of the heterogeneity and functional
plasticity of DCs suggested that other types than MoDCs
should be better suited for this purpose (6–8). A relatively
recent consensus has emerged on a universal and simplified
classification of DC types both in mice and in humans, based on
their ontogeny, gene expression programs, phenotype, functions
and localization (9, 10). Five major types of DCs can be
distinguished: plasmacytoid DC (pDCs), type 1 conventional
DCs (cDC1), type 2 cDCs (cDC2), Langerhans cells and MoDCs.
In mice, cDC1 encompass both the lymphoid tissue-resident
CD8α+ cDCs as well as the CD103+CD11b− cDCs that reside
in the parenchyma of non-lymphoid tissues and, once matured
upon activation, can migrate to the draining lymph nodes.
In humans, cDC1 correspond to the CD141 (BDCA3)high

CD11b−/low cDCs. Both mouse and human cDC1 express
specifically the chemokine receptor XCR1 and selectively the C-
type lectin endocytic receptor CLEC9A (11). cDC1 can directly
enter tissues from the blood, or differentiate locally from a
dedicated progenitor, the pre-cDC1 that has been characterized
both in the mouse and the human (12, 13). Mouse cDC2
correspond to the CD11b+ cDCs, and human cDC2 to the
CD1c (BDCA1)high CD11b+/high cDCs. For a very long time,
MoDCs were the only DC type that could be produced in vitro,
in high numbers and under clinical-grade conditions (5, 6, 8).
They were therefore used for most immunotherapeutic clinical
trials based on adoptive cell transfer (ACT) of in vitro derived
autologous DCs. However, MoDCs strikingly differ from cDC1
and cDC2 that are the major types of DCs residing in secondary
lymphoid organs and orchestrating immune responses in vivo
(14–16). For example,MoDCs do notmigrate efficiently to lymph
nodes and are particularly prone to develop immunosuppressive
functions, whereas cDC1 excel in the activation of CTLs, which
are critical effector cell types for antitumor immunity (17).
Thus, major efforts have been conducted in the last 10 years
to investigate whether cDC1 might be critical for defense
against cancer, and how. Here, we are reporting on studies
addressing this issue in mice, under experimental conditions
of spontaneous immune rejection of tumor grafts in syngeneic
recipients, or in preclinical models of immunotherapies. We
also summarize human studies that mined large datasets
of tumor gene expression profiles to investigate correlations
between clinical outcome and digital deconvolution of the tumor
immune infiltrate. We discuss how the knowledge generated
by these studies can instruct innovative immunotherapeutic
strategies to harness cDC1 functions for the benefits of
cancer patients.
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NO CURRENTLY AVAILABLE MUTANT
MOUSE MODEL IS SPECIFICALLY
TARGETING ONLY cDC1 IN VIVO

To determine whether and how a given type of immune
cells plays a non-redundant role in antitumor immunity in
vivo, it should be specifically and efficiently manipulated in
mice. Different mutant mouse models have been generated to
either deplete DCs, or inactivate candidate genes in DCs, as
recently reviewed (18, 19). Here, we will specifically discuss
the use of mutant mouse models to investigate the functions
of cDC1 or their molecular regulation (Table 1) (14, 20–47).
Mouse models expressing the Cre DNA recombinase under
the control of the promoter of a gene selectively expressed
in DCs have been generated to enable conditional deletion
of candidate floxed genes in the targeted cells (e.g., Itgax-
Cre targeting CD11c+ cells and Xcr1-Cre targeting cDC1).
Constitutive depletion models have been generated using two
types of strategies. The first corresponds to the knock-out of
a transcription factor shown to be crucial selectively for the
development/homeostasis of cDCs (Zbtb46) or cDC1 (Batf3)
(Table 1). The second consists in ectopic expression of the active
subunit of the diphtheria toxin (DTA) selectively in DCs (e.g.,
Xcr1-Cre;Rosa26-LSL-DTAmice for cDC1, Table 1). Conditional
depletion can be achieved upon diphtheria toxin administration
in mutant animals engineered for ectopic expression of the
gene encoding the human diphtheria toxin receptor (hDTR)
selectively in DCs (e.g., Karma-hDTR or Xcr1-hDTR mice
for cDC1).

One major caveat of using CD11c for targeting DCs is that
the gene encoding this molecule, Itgax, is expressed by other
immune cell types, including some that play critical roles in
anti-tumor immunity, such as NK cells, effector memory CTLs,
intraepithelial lymphocytes (IELs), plasmablasts, and subsets of
monocytes or macrophages (32). Knock-in within the Zbtb46
gene has been used to target all cDCs. However, this gene is
also expressed by endothelial cells and committed erythroid
progenitors (14, 32–34). Since angiogenesis critically affects solid
tumor development, experiments should be performed using
bone marrow chimera mice generated by engrafting mutant bone
marrow cells into a wild type (WT) recipient animal. Batf3−/−

mice have been the most frequently used model to investigate
whether cDC1 play a critical role in physiological processes.
However, even in this model, complementary strategies are
needed before drawing final conclusions, because Batf3 is also
expressed in cDC2 and effector CD4+ T cells, and because it
represses Foxp3 expression in CD4+ T cells leading to increased
numbers of regulatory T cells (Treg) in knock-out mice (35,
36). In addition, the impact of Batf3 inactivation on cDC1
homeostasis is less efficient in the C57BL6/J genetic background
than in the 129svEv one. Under inflammatory settings, the
knock-out of Batf3 can be compensated for cDC1 development,
by the induction in DC precursors of the paralog genes Batf
and Batf2 (37–39). We have engineered mutant mouse models
for cDC1 targeting based on the knock-in of Cre (42) or
hDTR (43) into the Gpr141b (alias A530099j19rik or Karma)

gene, but these models also target mast cells (42). Finally, the
Xcr1 gene was targeted to generate mutant mouse models for
specific, conditional or constitutive, cDC1 depletion, as well
as for their genetic manipulation (42, 44, 46). The Xcr1 gene
is preserved in our models (42). In contrast, it is knocked-
out in the other ones (46); hence, only heterozygous mice
should be used for these models in order to avoid possible
phenotypic effects due to a complete XCR1 deficiency. Besides
cDC1, only a minute proportion of CD4+ T cells are targeted
in Xcr1-Cre mice (42). Although still imperfect, the mutant
mouse models based on the manipulation of the Xcr1 gene
are the best to target cDC1 in vivo. In conclusion, none of
the mutant mouse models used to date for cDC1 targeting are
entirely specific and efficient, but some are better suited than
others for this purpose. In any case, it is always important
to use complementary methods to ensure that the phenotypes
observed are only or mostly due to the manipulation of cDC1.
For example, depleted mice should be replenished with wild-
type cDC1 if possible. Alternately, results should be confirmed in
other mutant models also targeting cDC1 but no other cell types
in common.

THE ROLE OF cDC1 IN CANCER
IMMUNOSURVEILLANCE HAS NOT YET
BEEN INVESTIGATED

Cancer development is a multistep process consisting in
the accumulation of genetic mutations within a cell leading
to increased or deregulated proliferation and survival, with
clonal selection of neoplastic progeny (48). There is a strong
contribution of the host immune responses in this dynamical
process of tumor selection, which has been described as the
three E of cancer immunoediting: Elimination, Equilibrium
and Escape of cancer cells (49). A failure of the immune
system to eliminate all transformed cells early during their
development is followed by an equilibrium state during which
the immune system exerts a relentless pressure on surviving
tumor cells, ultimately leading to tumor escape from the
exhausted immune system. The initial elimination phase is
therefore critical to restrict tumor growth very rapidly to prevent
relapse or metastasis. Efficient recognition and elimination of
transformed cells implies constant monitoring of the body by
both the innate and adaptive immune systems, a process called
cancer immunosurveillance. Upon monitoring spontaneous,
carcinogen- or genetically-induced tumor development in
mice bearing various immune deficiencies, critical roles in
cancer immunosurveillance have been uncovered for αβ and
γδ T cells, NKT cells and NK cells, as well as for the
cytokines IFN-γ, IFN-I, IL-12 and for the cytotoxic effector
molecules Perforin and TRAIL (50). The role of cDC1 in
cancer immunosurveillance remains to be assessed. However,
a wealth of data has accumulated on their role in the
spontaneous immune rejection of tumor grafts in mice, a
popular surrogate model for immunosurveillance (Table 2)
(35, 51, 54–58).
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TABLE 1 | Mouse models to deplete DCs, cDCs or cDC1 in vivo.

Mouse strain Depleted cells Gene also expressed in Remarks Expression profile

references

CD11c-hDTR* cDCs

(pDCs?)

NK cells

Effector/memory CTL

Monocytes, macrophages

Plasmablasts

IELs

Off-target transgene expression leading to death upon

multiple DT injections

(Requiring to perform BM chimeras for prolonged

depletion)

(20)

(21–27)

ImmGen Consortium

CD11c.DOG* DCs NK cells

Effector/memory CTL

Monocytes, Macrophages

Plasmablasts

IELs

hDTR expression only in CD11c+ cells

Prolonged DC depletion possible upon multiple DT

injections

Ovalbumin protein is expressed in DCs, resulting in

extensive OT-I and OT-II proliferation after transfer

(28)

(20–27)

ImmGen Consortium

CD205-hDTR cDC1 and LCs Cortical thymic epithelium

Tumor MoDC and cDC2

Death induced by DT injection

Use of BM chimeras required to avoid death

consecutive to depletion of radioresistant CD205+

cells

(29)

(30, 31)

Zbtb46-hDTR* cDC1 and cDC2 Endothelial cells

Committed erythroid progenitors

Death induced by a single DT injection

Use of BM chimeras required

(32)

(14, 33)

Zbtb46-LSL-

hDTR*

cDC1 and cDC2 Endothelial cells

Committed erythroid progenitors

Allows prolonged cDC depletion upon multiple DT

injections

(Need to cross with a Cre strain)

(34)

(14, 32, 33)

Batf3−/− cDC1 cDC2

Eff (Th1) CD4+ T cells

Other T cells?

cDC1 depletion is effective in 129/SvEv mice but less

in C57BL/6 animals

Intracellular pathogens infections or IL-12 injection

restore cDC1 development

Higher differentiation in Treg of Batf3−/− CD4+ T cells

(35)

(14, 36–40)

Clec9a-hDTR* cDC1 pDCs Half of the pDCs are depleted (41), (42)

Karma-hDTR* cDC1 Skin and PC Mast cells Mast cells are targeted in addition to cDC1 (43), (42)

XCR1-hDTR*

(Kaisho)

cDC1 Deletion of the endogenous Xcr1 gene

Requiring the use of heterozygous mice

(44), (42)

XCR1-hDTR**

(Dalod)

cDC1 Fate mapping of a minute proportion of CD4+ T cells (14, 43, 45), (42)

XCR1-DTA***

(Kaisho)

cDC1 Deletion of the endogenous Xcr1 gene

Requiring the use of heterozygous mice

(14, 43) (46), (45)

XCR1-DTA***

(Dalod)

cDC1 Fate mapping of a minute proportion of CD4+ T cells (14, 43, 45), (42)

Bold: First publication. *Mouse models expressing the Cre DNA recombinase under the same gene promoter have been generated. **Xcr1-Cre;Rosa26-LSL-hDTR mice; ***Xcr1-

Cre;Rosa26-LSL-DTA mice.

BATF3−/− MICE FAIL TO REJECT
SYNGENEIC TUMOR GRAFTS,
SUGGESTING A CRITICAL ROLE FOR
cDC1 IN SPONTANEOUS ANTITUMOR
IMMUNE DEFENSES

Most tumor cells are not able to directly prime naïve
T cells, due to their low expression of MHC class I
and co-stimulation molecules or to their acquisition of
immunosuppressive functions such as high expression of ligands
for immune checkpoint receptors. Thus, induction of CTL
responses against most tumors requires accessory cells able to
take-up, process and present exogenous tumor Ag in association
with MHC-I molecules, a process known as cross-presentation.
cDCs are highly efficient in initiating and globally orchestrating
adaptive immunity, due to their professional capacities to
simultaneously deliver all necessary signals to T cells, namely

Ag presentation as signal 1, co-stimulation as signal 2, and
cytokines as signal 3 (59). Mouse and human cDC1 excel at
activating CTLs, due to their higher capacity to cross-present
cellular Ag as compared to other types of Ag-presenting cells
(11). It seemed therefore logical that cDC1 should play a critical
role in anti-tumor immunity (Table 2). Kenneth Murphy’s group
was the first to confirm this hypothesis, by showing loss of
spontaneous rejection of transplantable tumors in Batf3−/−

mice (35). Contrary to their WT counterparts, Batf3−/− cDCs
failed to induce proliferation of OT-I cells when co-cultured
with cells loaded with the OVA protein, suggesting that cross-
presentation of cellular Ag indeed constitutes one of the critical,
non-redundant functions of cDC1. Several other studies have
since reported similar results, altogether using a variety of
transplantable tumors (Table 2). These studies strongly support
a critical role for cDC1 in spontaneous antitumor immune
defenses. However, a possible role of the loss of Batf3 expression
in cDC2 or in effector T cells has not been ruled out. In addition,
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TABLE 2 | Tumor cell lines spontaneously rejected in immunocompetent hosts.

Tumor rejection IFN-I-dependent IFN-I-independent

Lost in Batf3−/−

mice

1969 (51–53)

1773RS100 (35)

B16.SIY (54)

d38m2 (51)

d42m1 (51)

GAR4.GR1 (51)

H31m1 (35, 51)

Ptgs1/Ptgs2 −/− BRAFV600E

(55, 56)

ND 7835 (51)

MC-57.SIY (54, 57, 58)

P198 (51)

F515 (51)

Bold: NK cell dependent rejection. Underlined: NK cell independent rejection.

Fibrosarcoma: 1969, 1773RS100, 7835, d38m2, d42m1, F515, GAR4.GR1, H31m1,

MC-57.SIY. Melanoma: B16.SIY, Ptgs1/Ptgs2−/− BRAFV600E . Mastocytoma: P198.

129/SvEv background: 1773RS100, d38m2, d42m1, F515, GAR4.GR1, H31m1.

C57BL6/J background: 1969, 7835, B16.SIY, MC-57.SIY, Ptgs1/Ptgs2 −/− BRAFV600E .

DBA/2 background: P198.

Batf3−/− mice can still achieve partial tumor control and mount
tumor-specific CTL response under low-dose tumor challenge
(35, 51, 54), which might be explained either by the incomplete
cDC1 loss or by partial redundancy between cDC1 and other cell
types for the cross-presentation of cellular Ag and the induction
of antitumor adaptive immunity. Further studies are warranted
to address these issues.

INSIGHTS INTO HOW cDC1 COULD
PROMOTE PROTECTIVE SPONTANEOUS
ANTITUMOR IMMUNITY

Cross-Presentation by cDC1 Is Necessary
but Not Sufficient for Immune Control of a
Regressor Fibrosarcoma
The importance of cross-presentation in cancer immunology
has been extensively reviewed (60). Very recently, the WDFY4
molecule, a member of the BEACH (Beige and Chediak-Higashi)
domain–containing family of proteins, was reported to be
specifically required for cross-presentation of cell-associated Ag
by cDC1, and for cDC1-dependant immune control of the
highly immunogenic 1969 regressor fibrosarcoma (52). The
demonstration of a cell-intrinsic requirement of WDFY4 in
cDC1 for immunity against cancer was achieved by comparing
tumor growth between Wdfy4−/−:WT vs. Wdfy4−/−:Batf3−/−

mixed bone marrow chimera mice. Importantly, Wdfy4−/−

cDC1 were not compromised in their abilities to produce
IL-12 and to present Ag in association with MHC class II
molecules for CD4+ T cell activation. Wdfy4-deficient cDC1
appeared to be selectively impaired in their ability to cross-
present Ag but not in other functions also required for
efficient CTL priming and expansion. To our knowledge, this
study is the first to demonstrate that a specific defect in
cDC1 cross-presentation in vivo leads to a failure of mice

to control spontaneously tumor growth. Further studies are
warranted to confirm these data and extend it to other
preclinical tumor models. A major role of Batf3 in cDC1 is
to sustain their expression of Irf8. Consistent with this, the
development of cDC1 and their ability to cross-present cell-
associated Ag are rescued in Batf3−/− animals transgenic for
Irf8. Nevertheless, these mice still fail to control the growth of
a regressor fibrosarcoma, likewise to Batf3−/− animals. Thus,
in addition to cross-presentation, other functions of cDC1
are also necessary for the promotion of protective antitumor
immunity but remain to be identified (53). Moreover, both in
mice and humans, cDC2 and pDCs can also perform cross-
presentation of cell-associated Ag, under specific conditions of
stimulation, less efficiently than cDC1 (11). Hence, we propose
that cDC1 play a critical role in antitumor immunity not
only due to their strong cross-presentation activity but rather
because they uniquely combine several key features that are not
simultaneously expressed together in other cell types, as detailed
below (Figure 1).

Proposed Key Features Underlying cDC1
Non-redundant Role in Anti-tumor
Immunity
First, the expression of XCR1 and CCR5 by cDC1 may enable
their local recruitment by cytotoxic lymphocytes producing
the ligands for these chemokine receptors, XCL1 and CCL4/5
(45, 55, 61–63). Second, reciprocally, cDC1 ability to produce
high levels of CXCL9/10 may promote local recruitment of
effector and memory CTLs expressing CXCR3 (43, 57, 64).
Third, cDC1 can deliver positive co-stimulation signals. Fourth,
cDC1 are a major source of IL-12, IFN-β, and IL-15, thereby
promoting the survival and proper activation of NK, NKT
cells and CTLs (43, 65–69). In a model of lung metastasis,
cDC1 were the major source of IL-12, which was critical to
control metastasis in a NK cell- and IFNγ-dependent manner
(66). Fifth, cDC1 can promote Th1 induction (70–72) and
favor CD4+ T cell help delivery to CTL through simultaneous
presentation of Ag in association to MHC-I and MHC-II (73,
74). Depending on the cues that they receive during their
activation at the time of Ag processing and presentation, DCs
will polarize into different functions during their maturation
(75, 76). At steady state, during their homeostatic activation,
DCs acquire the ability to induce immune tolerance by causing
the death, anergy or polarization into regulatory functions of
self-reactive T cells, a process referred to as DC tolerogenic
maturation. On the contrary, in proper activating contexts, DCs
undergo an immunogenic maturation by acquiring the combined
expression of activating co-stimulation molecules and cytokines
leading to the induction of strongAg-specific effector lymphocyte
responses. The immunogenic maturation of cDC1 is promoted
by IFN-I (51, 54, 68, 75), including through cross-talk with
pDCs as a major source of these cytokines (77). Cell-intrinsic
responses of cDC1 to IFN-I appear to be critical for spontaneous
tumor rejection by enhancing their cross-presentation capacity
(51, 54), and perhaps also their trans-presentation of IL-15 which
promotes the proliferation and effector differentiation of CTLs
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FIGURE 1 | cDC1 key functions in antitumor immunity. Tumor DAMPs and Ag are released upon immunogenic cell death. cDC1 selectively express Clec9A, which

binds F-Actin exposed at the surface of necrotic cells, enabling intracellular trafficking of engulfed Ag into endosomes specialized in cross-presentation. cDC1

immunogenic maturation and cross-presentation is promoted by their cell-intrinsic responses to IFN-I. XCR1 and CCR5 expression by cDC1 may contribute to their

recruitment by CTL/NK/NKT producing XCL1 and CCL4/5 and by tumor cells producing CCL4. Reciprocally, cDC1 produce CXCL9/10 for local recruitment of

CTL/NK/NKT. cDC1 deliver positive co-stimulation and produce IL-12, IFN-β, and IL-15Rα/IL-15 promoting the survival and proper activation of NK and CTL. cDC1

promote Th1 induction and CD4+ T cell help delivery to CTLs through simultaneous presentation of Ag in association to MHC-I and MHC-II. CTLs, NK, NKT cells can

mediate tumor killing/cell death. Immunosuppressive cells infiltrating the tumor (TAMs, MoDCs, MDSCs, and Tregs) can dampen cDC1, Th1, CTLs, NK, and NKT

antitumor immune responses. DAMPs, danger associated molecular patterns; F-Actin, filamentous actin; ICD, immunogenic cell death; MDSCs, Myeloid-derived

suppressor cells; MoDCs, Monocyte-derived dendritic cells; TAMs, Tumor associated macrophages; Tregs, Regulatory T cells.

(68). However, cross-presentation was not totally abolished in
Ifnar1−/− DCs (51, 54). Upon exposure to high doses of Ag in
vitro, cross-presentation was even as efficient in Ifnar1−/− DCs
as inWTDCs. Although, in spontaneously rejected tumor grafts,
the cellular source of IFN-I was identified as expressing CD11c,
IFN-β production was not altered in Batf3−/− mice. Further
investigations are required to assess the roles of different types
of DCs in CTL activation and in the production of, or responses
to, IFN-I, during spontaneous tumor control. In summary, cDC1
constitute a versatile and efficient platform for CTL activation
by uniquely bridging several components of innate and adaptive
immune responses in a manner promoting mutually beneficial
cross-talk (Figure 1). However, further studies are warranted to
determine whether the different mechanisms detailed above are

each critical for the protective antitumor functions of cDC1, as
well as their respective importance.

When and Where Are cDC1 Functions
Exerted During Cancer
Immunosurveillance?
Intra-tumoral cDC1 have been suggested to be crucial for
in situ maintenance of the effector functions of pre-activated
CTLs (65). cDC1 promote memory CTL recall upon secondary
infections (43). In an experimental model of established
immune memory, only tumors that could be infiltrated by
both cDC1 and CTLs were spontaneously controlled (57).
While conditional cDC1 depletion was not performed in these
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settings to functionally confirm the importance of cDC1 for
the reactivation of antitumor CTLs, this point was addressed
in another study examining the reactivation of adoptively
transferred antitumor central memory CTLs into WT vs.
Batf3−/− recipient mice (78). In conclusion, cDC1 might not
only be required for the initiation of adaptive immunity against
intracellular pathogens or tumors but all along the life cycle
of CTLs, including for their maintenance in the tumor as well
as for the generation and recall of memory to prevent relapse
or metastases.

Several studies have suggested that T cell priming in the
tumor draining lymph node is required to mount anti-tumor
immunity (79, 80) A study showed that tumor-associated
cDC1 bearing intact tumor Ag traffic to the draining lymph
node to prime naïve CTLs in a CCR7-dependent manner
(80). However, Ccr7 knock-out had little impact on tumor
growth (80). Moreover, CTL priming, activation, proliferation
and effector function acquisition in tumor was observed when
T cell egress from lymph nodes was blocked (81) or in
mice lacking lymph nodes (82). Although these experimental
settings could alter cDC1 and lymphoid cell trafficking (83,
84), they nevertheless show that the activation of antitumor
adaptive immunity can occur directly at the tumor site (82),
possibly in tertiary lymphoid structures developing locally (85).
In any case, for efficient tumor rejection without relapse or
metastases, systemic immunity is likely important in addition
to in situ responses, as recently appreciated in the context of
immunotherapy (86).

Proposed Model of cDC1 Role in Antitumor
Immunity
Based on the knowledge discussed in the previous sections,
we propose a putative model of the mechanisms through
which cDC1 promote the rejection of syngeneic tumor grafts
in preclinical mouse models (Table 2) and may physiologically
contribute to cancer immunosurveillance (Figure 2). cDC1
take up cell-associated Ag in the tumor after immunogenic
cell death, undergo immunogenic maturation, and traffic to
the tumor-draining lymph node. There, cDC1 prime naïve
CTLs and polarize them toward protective effector functions.
CTLs expand and migrate to tumor, where they can be
attracted by chemokines secreted locally by cDC1. The
tumor-associated cDC1 also sustain infiltrating CTL protective
functions (expansion, maintenance and memory recall), and
might also prime naïve CTLs in situ.

FAILURE OF IMMUNOSURVEILLANCE:
ARE cDC1 DIRECT TARGETS OF TUMOR
ESCAPE MECHANISMS?

We propose a classification of tumors (Hot/Warm/Cold/Icy)
according to their immunogenicity, their cDC1 infiltration,
maturation and phenotype, and the characteristics of the
antitumor CTL response.

“Hot” tumors are characterized as strongly infiltrated by
effector CTLs. They are spontaneously controlled by the immune

system (Figure 2). They include the syngeneic cancer cell lines
used to study spontaneous rejection of tumor grafts (Table 2).

“Warm” tumors express tumor neoAg and are infiltrated by
cDC1 and CTLs (Figure 3 Right). Experimental studies in mice
suggest that the correlation between high CTL numbers and
increased cDC infiltration in tumors is due to a positive feedback
loop between these two cell types mutually promoting their local
recruitment and survival. It is not clear how this process is
initiated, i.e., which cell type is recruited first to the tumor site.
This might depend on the combination of tumor type and host
characteristics. “Warm” tumors are ultimately not controlled by
the immune system, due to their late selection for harboring
immune escape mechanisms, such as intrinsic impairment of
Ag processing and presentation (87, 88) or induction of CTL
exhaustion (89). In these tumors, cDC1 could have undergone
immunogenic maturation but may present Ag to CTL in a
manner contributing to their chronic activation and exhaustion,
e.g., through engagement of checkpoint receptors such as PD-1
or CTLA4.

“Cold” tumors are weakly immunogenic and poorly infiltrated
but induce some level of adaptive immunity (Figure 3 Top).
In such tumors, cDC1 could also be direct targets of immune
escape mechanisms, such as local production of factors inhibiting
DC differentiation or promoting tolerogenic over immunogenic
maturation. Those factors include TGF-β, IL-10, IL-6, CSF-1,
and VEGF (90). Although cDC1 are proposed to contribute to
central and peripheral tolerance (75, 91, 92), whether they can be
hijacked by tumors to promote local immunosuppression has not
been rigorously investigated.

“Icy” tumors are not immunogenic per se, are not infiltrated
by T cells and fail to induce immune responses (Figure 3
Left). Those tumors have evaded or hijacked innate immunity
in a manner preventing immune cell infiltration at very early
stages of the cancer immunoediting process (87). cDC1 can
be direct targets of these early immune escape mechanisms.
In melanoma, the WNT/β-Catenin signaling pathway prevents
the recruitment of cDC1 and CTLs into the tumor, at least in
part by inhibiting the local production of CCL4 and CXCL9
(57, 93). CCL4 contributes to the recruitment of cDC1 through
their CCR5 chemokine receptor (93). CXCL9 helps promoting
the recruitment of both pre-cDC1 (94) and memory/effector
T cells (57), through CXCR3. Another mechanism of evasion
of innate immunity by melanoma is tumor-intrinsic elevated
COX activity leading to PGE2 production and downstream
inhibition of NK cell, cDC1 and CTL infiltration (55, 56),
by disrupting the XCL1/XCR1 and CCL5/CCR5 chemotactic
axes. Impairment of CTL infiltration into the tumor is
proposed to occur downstream of the failure of cDC1
recruitment (55, 56).

In brief, cDC1 are direct targets of tumor escape mechanisms
since the tumor microenvironment can modulate all of the
processes necessary to promote their protective antitumor
functions. It can determine the tolerogenic vs. immunogenic
nature of tumor cell death (95–97), control the expression of
the growth factors and chemokines promoting local recruitment,
differentiation, expansion and survival of cDC1 or their
progenitors (55, 93, 98), dampen cDC1 production of activating
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FIGURE 2 | cDC1 cancer immunosurveillance cycle. cDC1 traffic to hot tumor. They uptake cell-associated Ag in the tumor after immunogenic cell death, undergo

immunogenic maturation, and traffic to the tumor-draining lymph node. cDC1 prime naïve CTLs and polarize them toward protective effector functions. CTLs expand

and migrate to tumor where they can be attracted by chemokines secreted locally by cDC1. The tumor-associated cDC1 also sustain infiltrating CTL protective

functions (expansion, maintenance, and memory recall). They might also prime naïve CTLs in situ. TdLN, Tumor draining lymph node.

cytokines (56, 67), and inhibit their maturation or even polarize
it toward tolerance (99, 100).

STUDIES OF THE NATURAL ROLE OF
cDC1 IN IMMUNOTHERAPIES

In the last two decades, cancer treatments have successfully
shifted from only targeting the cancer itself to also manipulating
the immune system, with the aim to boost or induce de novo

protective antitumor cellular immune responses, mainly CTLs
but also NK and NKT cells. These novel treatments called
immunotherapies encompass different strategies. Here we will
specifically discuss studies performed in experimental settings
mirroring the two types of immunotherapies that have shown
the best clinical benefits in cancer patients. First, we will focus
on treatments providing exogenous effector cells through ACT of
autologous antitumor CTLs, after their expansion and activation
in vitro (eventually combined with genetic engineering for
CAR T cells), i.e., CTL ACT. Second, we will discuss mAb
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FIGURE 3 | Icy, Cold, and Warm tumors escape from cDC1 immunosurveillance. Icy tumors (Left) failed to induce adaptive immune responses. For example, tumors

with WNT/β-Catenin signaling or COX elevated activity disrupt the chemokine axes required for local cDC1 recruitment. Impairment of CTL infiltration would occur

downstream of the failure of cDC1 to infiltrate the tumor. Cold tumors (top) are poorly immunogenic and infiltrated but induce some level of adaptive immunity. Tumors

product factors inhibiting cDC1 differentiation or promoting their tolerogenic over immunogenic maturation. This can potentially lead to CTL inhibition and induction of

peripheral tolerance. Warm tumors (Right) express tumor neoAg and are infiltrated by cDC1 and CTLs but are ultimately not controlled. Cancer immunoediting leads

to immune escape. cDC1 have undergone immunogenic maturation but contribute to CTL chronic activation and exhaustion. ACT or mAb immunotherapies could

contribute to immune control in Cold and Warm tumors, and cDC1 could play a major role in these settings (bottom). ACT, Adoptive cell transfer; β-Cat, β-Catenin;

COX1/2, Cyclo-oxygenase 1/2; iTreg, induced regulatory T cell; mAb, monoclonal antibodies; PGE2, Prostaglandin E2.

immunomodulation (mAIM) to block checkpoint receptors on
CTLs or NK cells (101–106), i.e., ICB, which has proven more
efficient than conventional chemotherapies or radiotherapies in
several cancer types, with better overall responses, and, most
strikingly, significantly increased long-term survival (107). ACT
or ICB monotherapy promotes durable disease control only
in 30% of the patients. While they dramatically improve the
response rate in patients with metastatic melanoma, ICB bi-
therapies cause significant adverse effects and toxicities, with
high incidences of autoimmune manifestations (108, 109).

Understanding the mechanisms controlling responsiveness to
ACT or ICB is thus a prerequisite before complementing these
immunotherapies by adjuvant treatments able to further improve
the rate and duration of remission for cancer patients. One
hypothesis to explain patient non-response to immunotherapies
is an impairment of the accessory cells needed to promote CTL
reactivation and to sustain their effector functions, rather than
cell-intrinsic defects in the CTLs themselves. In this scenario,
cDC1 are likely candidates, based on their critical role in
promoting the spontaneous rejection of tumors in preclinical
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mouse models, and on their unique functional features endowing
them with a high efficiency for nurturing cytotoxic cells all along
their life cycle.

Role of cDC1 in Promoting CTL ACT
Efficacy
The ACT procedure the most commonly used so far consists
in isolating endogenous CTLs from a cancer patient, expanding
them in vitro through tumor Ag-specific re-stimulation under
conditions allowing reversal of exhaustion, and then re-infusing
them into the host. By using autologous cells for the treatment,
this strategy alleviates any side effects that could arise in
allogenic settings. However, one major issue is that only few
cancer types respond to this treatment. This might be due
to immune escape mechanisms in the tumor limiting locally
CTL access to the activating signals necessary to prevent
their exhaustion and promote their proliferation, sustained
activation and survival. Preclinical mouse models have been
used to address this issue, aiming at determining whether
professional Ag cross-presentation in the context of positive
co-stimulation and delivery of specific cytokines is necessary
for ACT efficacy. Since cDC1 excel at this combination of
functions (Figure 1), they could promote ACT efficacy. Indeed,
injection of diphtheria toxin in ACT recipient Zbtb46-DTR
mice significantly decreased their response to immunotherapy.
cDC1 but not cDC2 from tumor-engrafted control mice were
shown to cross-present tumor Ag and produce IL-12 ex vivo.
Thus, it was concluded that cDC1 are necessary for ACT
efficacy in these experimental settings (65). However, opposite
results were recently reported under similar experimental
conditions, showing a lack of cDC requirement for ACT
success (110). Differences between the experimental set-up of
these two studies might explain their different conclusions,
since only the second study used bone marrow chimera mice
rather than directly Zbtb46-DTR animals, which is necessary
to rule out any impact of loss of Zbtb46 expression in
other cells than cDCs (33). Therefore, additional studies
are necessary to determine whether cDCs are required for
maximal ACT efficacy, and how. If those studies unravel
specific pathways that can be potentiated, this could allow
designing of a “DC adjuvant” therapy for ACT, which might
broaden its success rate to more patients and for additional
cancer types.

Role of cDC1 in Promoting Responses to
mAIM
In the course of a normal immune response, Ag-presenting
cells regulate their expression of ligands for T cell activating
vs. inhibitory co-receptors. This contributes to fine tune the
intensity and kinetics of the adaptive immune response, in
order to balance efficient immune control of pathogens with
the risk of developing an immunopathology due to an excessive
T cell activation. Tumors can hijack this process by expressing
ligands for T cell inhibitory receptors leading to premature
termination/exhaustion of CTL responses (48, 107). This tumoral
immune evasion strategy can be overcome by mAIM through

infusion of mAbs capable of either inhibiting the engagement
of T cell inhibitory co-receptors (i.e., ICB mAbs) or mimicking
the engagement of T cell activating co-receptors (co-stimulation
activating mAbs) [listed in (106)]. These mAbs can be used as
monotherapy or bi-therapy. The ICB mAbs the most commonly
used in clinics are directed against programmed cell death
protein 1 (PD-1) and cytotoxic T-lymphocyte associated protein
4 (CTLA-4). Although their use has dramatically improved
patient survival for different types of cancer, their precise mode
of action is still a matter of debate. The mechanisms underlying
lack of response in the majority of patients remain elusive.
Preclinical mousemodels have been used to address this issue and
showed that treatment efficacy is abrogated in cDC1-deficient
Batf3−/− animals (Table 3) (56, 57, 65, 69, 117, 118). This is the
case for anti-CTLA4 (117) or anti-PD-L1 (79) monotherapies,
for a bi-therapy combining anti-PD-1 and CTLA4 mAbs (69),
and for a bi-therapy combining the anti-PD-1 mAb with the
co-stimulation activating anti-CD137 mAb (118). However,
these studies did not determine whether the lack of mAIM-
dependent tumor control in Batf3−/− mice was due to a lack
of antitumor CTL priming at the time of tumor engraftment,
before immunotherapy, or to a failure of mAIM at inducing the
reactivation of previously primed but exhausted antitumor CTLs,
at the time when the immunotherapy was administered. Efficient
activation of anti-tumor CTLs, for proliferation and acquisition
of effector functions, requires cross-presentation of tumor-
associated Ag, activating co-stimulation and delivery of specific
cytokines from accessory cells. As described previously, cDC1
excel at simultaneously delivering all these signals (Figure 1). In
particular, one of the critical functions of cDC1 during mAIM
immunotherapies may be to deliver IL-12 (69). In addition, cDC1
may also be a major source of CXCL9/10 (43) for recruiting
activated ormemory CTLs into the tumors (57, 93) (Figures 1, 2).

Current Limitations, Controversies or
Unknowns
Many of the conclusions drawn above are based on the
use of Batf3−/− mice, or on the assumption that cDC1 are
the main source of the cytokines or chemokines promoting
response to mAIM therapies, without formal demonstration
of this point by functional inactivation of candidate functions
selectively in cDC1. Moreover, the respective importance
of Ag cross-presentation vs. delivery of specific activating
co-stimulation or cytokine signals by cDC1 has not been
delineated yet under immunotherapies condition. Thus, further
studies are required to confirm and extend these analyses,
by using other mutant mouse models allowing specific
cDC1 depletion or selective manipulation of each of their
candidate functions.

HARNESSING cDC1 FUNCTIONS TO
IMPROVE IMMUNOTHERAPIES AGAINST
CANCER

In parallel of developing immunotherapies to directly boost
lymphocyte effector responses against tumor cells, the
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community has put much effort in trying to elaborate vaccines to
ignite or reactivate endogenous antitumor immune responses in
patients. Among all Ag presenting cells identified so far, cDC1 are
the only ones to express selectively unique cell surface markers,
such as CLEC9A or XCR1, which enables their specific targeting
with mAb in vivo. Intratumor injection of bone marrow-derived
DCs highly enriched in cDC1 increased local CTL infiltration
and improved response to ICB (57). Therefore, in combination
with other immunotherapies, cDC1 represent a very good
candidate immune cell type to mobilize with off-the-shelf
compounds for boosting patient antitumor immunity.

Specific Targeting of cDC1 for Vaccination
Purposes
Many preclinical studies in various mouse models have
demonstrated the efficacy of in vivo targeting of Ag specifically
to cDC1 in combination with the administration of a proper
adjuvant for priming or reactivating adaptive immunity, leading
to a rapid yet long term immune protection against infections
by intracellular pathogens or against tumors (119) (Table S1).
Adjuvants used to induce a beneficial inflammation promoting
an immunogenic environment to prevent or counterbalance
tumor immunosuppressive functions include the Toll-Like-
Receptor ligands LPS, Imiquimod, CpG or Poly(I:C). Other
adjuvants include drugs which directly stimulate accessory
lymphocytes, such as αGalCer for NKT cell activation (120,
121), or agonistic anti-CD40 antibodies which mimic the helper
signal delivered by CD4+ T cells to DCs for promoting their
production of the lymphocyte activating cytokines IL-12 and IL-
15/IL-15Rα (68, 122, 123). Vaccine formulation including naked
DNA (124, 125), porous polymer matrices (126), or oil in water
nano-emulsion (127) are intrinsically immunogenic. Vaccination
based on macroporous polymer matrices encapsulating tumor
lysates, GM-CSF and CpG, were quite effective in attenuating
tumor growth (126), although not targeting specifically cDC1.
DEC-205 has been by far the cell surface marker the most
used to target cDC1 in vivo (Table S1). However, it is not
specific of cDC1 since it is expressed on Langerhans cells in
the epidermis, on all migratory DC in lymph nodes (128) and
it is highly upregulated on various DC subsets in tumors (30).
The same issue applies to CD40. This raises the question of
the respective roles of cDC1 vs. other types of DC in the
protection conferred by vaccines based on in vivo Ag delivery
through DEC-205 or CD40. Indeed, tumor Ag delivery to pDCs
or cDC2 by using anti-BST2 (129) or anti-DCIR2 mAb (130)
respectively, or administration of tumor Ag-pulsed pDC (131),
are highly efficient in conferring protection against cancer.
This shows that not only cDC1 but also cDC2 or pDCs can
induce protective antitumor immunity, providing that Ag is
delivered to these cells through adequate endocytic receptors
in the presence of proper maturation signals. Interestingly,
immunization with tumor-associated exogenous cDC1 or cDC2
prior to tumor engraftment revealed complementary functions
of these two DC types (30). In a model of challenge with
Lewis Lung carcinoma, only cDC2 vaccination led to reduced
tumor growth rate and weight, correlating with reduced tumor

infiltration by myeloid-derived suppressor cells, functional
polarization of tumor-associated macrophages toward a M1-
like antitumor phenotype, and promotion of Th17 rather than
Treg CD4+ T cell responses (30). cDC1 were confirmed to
be more efficient than cDC2 for the induction of antitumor
CTL responses, which protected against a challenge with B16
melanoma (30).

In summary, even though other DC types can be successfully
harnessed for cancer vaccines in mouse preclinical models,
many studies showed that in vivo targeting of cDC1 is highly
efficient for the activation of antitumor CTL responses able
to induce complete tumor rejection in prophylactic settings
and to delay significantly tumor progression or metastasis in
therapeutic settings (Table S1). The efficacy of DC-targeted
vaccines depends on three critical parameters: (i) the mode
of delivery of the Ag, (ii) the nature of the Ag, and (iii) the
nature of the adjuvant. Targeting Ag to cell surface receptors
trafficking into late endosomes or lysosomes promotes more
efficient cross-presentation by human cDC1 as compared to
cDC2, whereas both cell types can mediate this function upon Ag
delivery to early endosomes (132). The route of administration
of the vaccine should be carefully determined depending on the
necessity to inducemucosal and/or systemic immunity according
to the type of cancer involved (86, 133). Once activated, tumor-
associated DCs have the capacity to migrate to tumor-draining
lymph nodes to prime T cells (80) and may rather favor a local
antitumor immunity. There is also evidence that CTL priming
can occur directly in the tumor (82). Hence, intra- or peri-
tumoral administration of cDC1-targeted Ag for solid tumors
may be the best way to enhance priming of CTLs both inside
the tumor, and through migration of tumor-associated DCs to
the draining lymph node. The tumor Ag should be well selected
as the immune system can be almost irreversibly tolerized
against certain self Ag (134). Some adjuvants are more efficient
in promoting a beneficial inflammatory microenvironment in
the tumor, linked to their ability to induce IFN-I. It might be
desirable to include adjuvants that directly engage cDC1 since
exposure to inflammatory mediators in the absence of direct
signaling by pattern recognition receptors might not be sufficient
to promote immunogenic DC maturation (135).

Mobilizing cDC1 Functions in Combination
Immunotherapies
In most of the preclinical models discussed above, cDC1-
targeting therapeutic vaccines delay tumor progression or
metastasis, or even promote a better tumor control over
a long time, but fail by themselves in inducing complete
tumor rejection. However, combining strategiesmobilizing cDC1
with current immunotherapies, in particular with ICB, should
promote the induction of long lasting protective antitumor
immunity in more patients, and should more generally improve
the objective response rate, the response duration and the
overall survival of patients. In preclinical mouse models of
immunotherapies, the antitumor effects of various off-the-shelf
treatments were shown to require cDC1 functions (Table S1),
and a variety of strategies were specifically designed to harness
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cDC1 against cancer (Table 4). Hereafter, we discuss how these
studies advanced our understanding of when, where and how to
mobilize cDC1 functions in combination immunotherapies.

Upon immunotherapy, cDC1 are increased in the tumor
very early after the beginning of the treatment, and have
left the tumor in favor of cDC2 during the phase of
immunotherapy-induced rejection of the tumor (86). Therefore,
the location and timing of cDC1 booster administration in
combination with immunotherapies are likely to be determinant
for treatment success.

One way to attempt improving the response of cancer patients
to immunotherapy is to boost the ability of their cDC1 to cross-
present tumor Ag (60). Combined administration in mice of
mAbs directed against tumor Ag with a stabilized form of IL-
2 enhances antitumor immunity in a cDC1-dependent manner
(Table 4) (114, 139). This is because antibody-dependent cell-
mediated cytotoxicity provokes an immunogenic tumor cell
death favoring the up-take and cross-presentation by cDC1 of
tumor cell fragments. Indeed, tumor cell lysates or tumor plasma
membrane vesiclesmay represent the best sources of Ag for cross-
presentation, because they include a constellation of neoAg.
Tumor Ag cross-presentation by cDC1 can also be triggered
upon administration of tumor Ag coupled to mAb directed
against cDC1 surface markers (Table S1).

Cross-presentation of tumor Ag by cDC1 must occur
simultaneously to their immunogenic maturation such that they
can deliver all of the signals required for the efficient priming
of naïve CTLs or the reactivation of exhausted CTLs, including
proper co-stimulation, activating cytokines, chemokines and
CD4+ T cell help, in the tumor bed or upon migration to
the draining lymph node. This implies administrating the good
adjuvant at the right time and in the proper place. TLR3, CpG,
or STING agonist adjuvants promoting a strong production of
IFN-I are especially efficient at promoting antitumor immunity,
even more upon peritumoral rather than systemic delivery (79,
140–142). To further promote the beneficial anti-tumor activity
of IFN-I and limit their deleterious side effects, a synthetic
mutated IFNα2 has been engineered and coupled to anti-Clec9a
mAb, allowing delivery of IFN-I activity specifically on cDC1.
The administration of this cDC1-targeted adjuvant synergizes
with mAIM, chemotherapy, or with low dose of TNF, resulting
in a regression or a long-lasting protection against melanoma
and breast carcinoma in the absence of toxic effects (115).
Targeting IFN-I on tumor cells also improves the antitumor
effects of mAIM (112, 114, 143), in part through direct effects
on cDC1 and/or cDC2 (143) but also more generally by
modulating the responses of many other immune cells in the
tumor microenvironment. Importantly, to promote protective
antitumor immunity, IFN-I must be delivered simultaneously
to, or shortly after, the tumor Ag. Indeed, IFN-I-induced cDC1
maturation strongly decreases their phagocytic capacity and thus
prevents their ability to cross-present if occurring before tumor
Ag uptake (114).

IL-12 production by cDC1 is proposed to significantly
contribute to their protective antitumor activity, at least in part
by promoting Th1 response and activating IFN-γ production
by NK cells and CTLs. Administration of recombinant IL-12

in combination or not with mAIM therapy displayed anti-
metastatic (66) or immunotherapy-induced antitumor effect
(118) in WT animals (Table 4). However, interestingly, these
potentiating effect of the mAIM therapy was lost in Batf3−/−

mice (118), showing that IL-12 administration is not sufficient
to replace the antitumor functions of cDC1.

Another function of cDC1 that could be exploited for
boosting current immunotherapies is their ability to respond
to the chemoattractant XCL1, due to their specific expression
of the chemokine receptor XCR1. At steady state, high levels
of the Xcl1 transcript are detected in NK cells, NKT cells
and memory CTLs. Upon activation, Xcl1 expression is further
upregulated in these cells and induced in effector CTLs, which
promotes the recruitment of cDC1 into inflamed tissues in
close contact to XCL1-producing cells, leading to a cross-talk
amplifying the responses of both cell types (77). Therefore,
intra-tumoral delivery of XCL1 seemed a promising strategy
to enhance local recruitment of cDC1 in order to harness
their protective functions in combination immunotherapies.
Certain types of melanoma or colon carcinoma tumors
engineered to express high amount of XCL1 harbored a
higher cDC1 infiltration and were rejected faster or grew
more slowly in WT but not in Batf3−/− mice, as compared
to control tumors. However, this process was inhibited in
tumors producing PGE2, due in part to the ability of this
molecule to decrease XCR1 expression in cDC1 (55). This
study illustrates well the necessity not only to mobilize cDC1
in combination immunotherapies, but at the same time to
dampen the immunosuppressive pathways targeting cDC1
functions in the tumor microenvironment. Hence, in addition
to directly targeting CTL and cDC1 functions, combined
immunotherapies should probably include means to counteract
the tumor immunosuppressive pathways acting indirectly on
these cells, such as inhibiting β-catenin, PGE2 or adenosine
receptor signaling (55, 57, 93, 144), or depleting/reprogramming
the tumor-associated mononuclear phagocytes endowed with
immunosuppressive functions including macrophages, MDSCs
and pDCs (67, 145, 146).

Because cDC1 are the rarest subset of Ag presenting cells in
tumors (30) and their numbers have been shown to decrease in
the course of certain immunotherapies (86), strategies aiming at
harnessing their functions for cancer treatment should include
methods to promote their expansion in vivo. Tumor-infiltrating
NK and T cells upregulate FLT3-L, which seems to contribute
to the local expansion of tumor cDC1 (62), and most likely
cDC2. Administration of recombinant FLT3-L to tumor-bearing
mice as a supportive treatment to mAIM immunotherapy
reinforces CTL infiltration and activation in the tumor (137),
and the combined administration of FLT3-L and poly(I:C) which
respectively support cDC1 expansion and activation significantly
improved antitumor mAIM immunotherapy in mice (79, 118)
(Table 4). Alternatively, large quantities of cDC1 could be
injected peritumorally simultaneously to ICB administration,
in order to further promote the priming of naïve CTLs
toward neoAg or the reactivation of endogenous antitumor
CTL responses. This should be achievable since recent studies
showed that large numbers of fully functional cDC1 can be
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generated in vitro from hematopoietic progenitors cultured with
FLT3-L on feeder cells expressing the Notch ligand Delta-like 1
(147, 148).

In summary, several studies have attempted to improve the
response to cancer chemotherapies, radiotherapies or mAIM
immunotherapies by combining these treatments with putative
or known cDC1 boosters (Table S1 and Table 4). In all cases,
tumor progression was greatly dampened in parallel with
enhanced CTL activation and sometimes with a documented
increased maturation of cDC1. In many studies, this beneficial
effect was shown to be abrogated in Batf3−/− mice. These studies
in mouse preclinical models of combined immunotherapies
strongly enforce the hypothesis that harnessing cDC1 functions
in cancer patients should improve their response rate and long-
term survival to already existing immunotherapies including
ICB, and show how this could be achieved.

WHAT FUNCTIONAL SPECIFICITIES MAKE
HUMAN cDC1 GOOD CANDIDATE
AG-PRESENTING CELLS FOR THE
PROMOTION OF PROTECTIVE
ANTI-TUMOR IMMUNITY?

Comparative Genomics Established
Overall Homology Between Mouse and
Human cDC1
A striking overall homology between human and mouse cDC1
was established through cross-species comparative genomics of
several immune cell types (14, 149–153). This provided a very
strong incentive to investigate the role of human cDC1 in
antitumor immunity, considering the body of evidence discussed
above supporting a critical role ofmouse cDC1 in promotingNK-
and CTL-mediated tumor control in preclinical cancer models.

Conservation of Key Characteristics
Proposed to Underlie Mouse cDC1
Protective Role Against Cancer
A number of shared and distinctive features of mouse and
human cDC1 are summarized in Table 5 (11, 14, 15, 61, 63,
79, 147–150, 154–162, 165–174), with their possible relevance
for immune defense against cancer. Globally, the combination
of features proposed to endow mouse cDC1 with their unique
efficacy to promote protective anti-tumor immunity is well
conserved in human cDC1. Differences in cross-presentation
efficacy appear to bemore subtle between human thanmouse DC
subsets (155, 175). Of note, however, a consensus has emerged
from various studies that human cDC1 are more efficient than
other DC types for the cross-presentation of cell-associated Ag
(15, 45, 63, 155–157), likewise to the situation in the mouse.
Human cDC1 were reported by several teams not to produce
IL-12 (150, 167). However, other studies have shown that under
optimal conditions of stimulation human cDC1 can produce this
cytokine to levels equivalent or higher than those made by cDC2
or MoDCs (147, 156, 168, 169, 173, 174).

Current Limitations, Controversies or
Unknowns
One study has recently reported that human cDC1 do not
migrate efficiently from the parenchyma of non-lymphoid
tissues to their draining lymph nodes (176). This bears
important implications for vaccination or immunotherapies if it
is confirmed.

The mechanisms that make human cDC1 especially efficient
for cross-presentation of cell-associated Ag are still not
understood. One of themain limitations to address this issue, and
more generally to study the functions of human cDC1 and their
molecular regulation, is their rarity and fragility.

WHAT EVIDENCES EXIST THAT HUMAN
cDC1 CORRELATE WITH A BETTER
OUTCOME IN CANCER PATIENTS AND
WHAT CAN BE INFERRED FROM THESE
STUDIES REGARDING THEIR
PROTECTIVE MODE OF ACTION?

A Higher Expression of cDC1 Gene
Signatures in Tumors Correlates With a
Better Clinical Outcome
State-of-the-Art in Assessing cDC1 Infiltration From

Whole Tumor Tissue Gene Expression Profiles
Several public datasets are available with gene expression profiles
of whole tumor tissue from large cohorts of patients with well
documented clinical characteristics. Increasing numbers of teams
are querying this gold mine to test whether higher expression
in tumors of gene signatures specific for various cell types or
biological pathways are associated with a better or worse clinical
outcome. Such analyses could allow high throughput testing of
the possible relationship between overall survival and tumor
infiltration by specific cell types in a given activation state. Such
analyses would then allow focusing further studies on the most
promising observations, to test whether they are confirmed by
using immunohistofluorescence or flow cytometry to directly
measure the frequency of specific combinations of immune cell
types and activation states in the tumors. However, there is
currently no consensus on which gene signatures are the most
specific and robust for each immune cell type of interest. In
particular, until very recently, to assess the prognostic value
of DC infiltration into the tumors, the gene signatures used
were those from in vitro derived MoDCs. The extent of DC
infiltration into tumors as computationally inferred in these
studies had no significant prognostic value for overall patient
survival, or was even associated to an increased hazard risk (177–
181). However, based on the known major differences between
MoDCs and cDCs (14–16) and on the beneficial role of mouse
cDC1 in antitumor immunity, further studies were needed to
assess whether higher infiltration of human tumor by other DC
types, in particular cDC1, could be associated with a better
clinical outcome.

In the last four years, from the few studies performed
to address this issue, a consensus has been emerging that
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TABLE 5 | Shared and distinctive features of mouse and human cDC1.

Feature Present in mouse cDC1 Present in human cDC1 Relevance to anti-tumor immunity References

Dependency on IRF8 and

NOTCH signaling for

differentiation

YES YES Not applicable (147, 148,

154)

High efficiency for cellular Ag

cross-presentation

YES YES Cross-presentation of tumor-associated

Ag

(15, 45, 63,

155–157)

Expression of CLEC9A YES, shared with pDCs YES Intracellular routing of engulfed tumor Ag

in endosomes specialized in

cross-presentation

(158–160)

Higher efficacy for cytosolic

export of engulfed proteins

YES, specific to cDC1 YES, shared with other DC

types

Cross-presentation of tumor Ag (155, 161)

Alkaline endosomes YES, specific to cDC1 YES, shared with cDC2 Limits the degradation of endocytosed

tumor Ag to favor their cross-presentation

(155, 162)

Selective high expression of

RAB11A, RAB7B, RAB43 and

SEPT3

YES YES Small RAB GTPases with documented or

putative role in promoting Ag

cross-presentation

(14, 163–

165)

GCSAM (GCET2), CLNK, SNX22

and WDFY4 expression

YES, Clnk expression

shared with NK and mast

cells

YES, CLNK expression

specific to cDC1

WDFY4 involved in cross-presentation;

other gene functions in cDC1 unknown

(11, 14, 52,

165)

CADM1 (IGSF4A) expression YES YES CTL activation? (166)

Specific expression of XCR1 YES YES Local recruitment of cDC1 by, or

stabilization of their interactions with, NK

cells and CTLs

(14, 45, 61,

63)

High TLR3 expression and

specific production of IFN-βand

IFN-λs upon TLR3 triggering

YES IL-12 induced as well YES, high IL-12 production

observed in some but not all

studies

• Putative source of IFN-β/λs in tumors,

promoting DC maturation and CTL

activation?

• Therapeutic target to promote

immunogenic inflammation in combined

immunotherapies

(15, 79, 147,

150, 156,

167–170)

TLR9 and TLR11 expression and

production of IL-12 upon their

triggering

YES, shared with other DC

subsets for TLR9

NO, TLR9 not expressed in

human cDC1, no TLR11

ortholog in humans

Not applicable in humans (171, 172)

TLR8 expression and production

of IL-12 upon its triggering

NO, loss of TLR8 ligand

binding in mice

YES, under adequate

conditions of stimulation

• Local recruitment and activation of CTL

and NK cells

• Therapeutic target to promote

immunogenic inflammation in combined

immunotherapies

(147, 173,

174)

higher expression of cDC1 transcriptomic fingerprints in various
tumors correlates with a better clinical outcome (Figure 4, green
cells, in the bold rectangle).

In the case for breast cancer (BRCA), a good prognosis
of a higher tumor infiltration by cDC1 has been documented
independently by 4 studies (55, 65, 66, 182), altogether
interrogating three patient cohorts [TCGA, METABRIC, and
the meta-cohort generated by Györffy et al. (183)]. A higher
expression of the cDC1 transcriptomic signature in tumor was
at least as powerful a predictor of prolonged patient survival to
cancer as that of the CTL signature (55, 182). Transcriptomic
fingerprints or genes associated to certain other immune cell
types including cDC2, pDCs or monocytes/macrophages did not
have a positive prognostic value (Figure 4, gray or red cells).
This supports the hypothesis of a specific protective role of high
infiltration of breast tumors by cDC1, rather than the alternate
hypothesis that differential levels of cDC1 gene expression in
tumors reflect differences in their overall leukocyte infiltration

and lead recapitulates the known different clinical outcome of
“Hot” or “Warm” vs. “Cold” or “Icy” tumors. However, more
studies are warranted to address this issue. For triple negative
breast cancer (TNBC), the positive prognostic value of higher
cDC1 infiltration in tumors was even better than for all types of
BRCA or for luminal BRCA. This was observed in three studies,
encompassing altogether the analyses of two patient cohorts
(55, 65, 66).

Similar analyses were performed for other types of cancer.
For head and neck squamous cell carcinoma (HNSC) and
lung adenocarcinoma (LUAD), a higher expression of the
cDC1 transcriptomic signature in tumor was also associated
to a better clinical outcome by at least two independent
studies (55, 62, 80). This was also the case for skin cutaneous
melanoma (SKCM) (Figure 4) (47, 72), on two distinct patient
cohorts, TCGA and the cohort described by Boguvonic et al.
(184). In addition, for metastatic melanoma, the specific
positive prognostic value of high cDC1 infiltration in the
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tumor bed was confirmed by flow cytometry analyses,
whereas no significant prognostic value was observed for
many other cell types including cDC2, pDCs, Mono/Mac
and most surprisingly CTLs (62) (Figure 4). Finally, for
LUAD, single cell RNA sequencing and paired CyTOF
analyses of tumors and their neighboring normal lung
tissue showed that cDC1 were significantly reduced in
tumors, contrasting to increased numbers of macrophages
in an immunosuppressive state and of cDC2/MoDCs
(185). This study further supports the previously proposed
hypothesis that the balance between cDC1 vs. cells of the
monocyte/macrophage/neutrophil lineages in the tumor
leukocyte infiltrate strongly determines the degree of local
immunosuppression (65, 93).

Limitations, Controversies, or Unknowns
All of the above studies suggest that, in a variety of human
cancers, intra-tumoral cDC1 abundance correlates with a better
clinical outcome. However, further studies are required to
confirm these results, to extend these types of analyses to
other types of cancer, and to deepen our understanding of the
underlying mechanisms.

A first issue that clearly stands out in Figure 4 is the lack of
a consensus definition of the transcriptomic fingerprints used
for each immune cell type across studies, not only for cDC1
but even for CTLs or NK cells. Indeed, there is relatively little
overlap between the gene signatures used for the same cell types
across studies (blue names in Figure 4). Several genes used in
some of the cDC1 transcriptomic fingerprints are known to
have a promiscuous expression across many cell types (55).
CCR7 and ITGAE (CD103) are expressed on all mature DC
types and on T cell subsets. BATF3 and ZBTB46 are shared
with cDC2, and FLT3 with cDC2, pDCs and hematopoietic
progenitors. IRF8 is highly expressed in pDCs and certain types
of monocytes or macrophages. THBD (CD141/BDCA3) can
be expressed on cDC2, pDCs, MoDCs and non-immune cell
types. One study undertook the “tour de force” of profiling
by microbulk RNAseq all the distinct mononuclear phagocyte
types that they could identify in, and isolate from, BRCA or
TNBC, in order to generate the cell-type specific transcriptomic
signatures the most relevant to the cancer types studied (182).
However, in this study, the TNBC gene signature of the cell
population enriched in cDC1 (cDC1e) (182) encompasses only
8% of genes known to be selectively expressed in cDC1 but
42% of genes known to be expressed in NK cells. This raises
the question of the interpretation of the positive prognostic
value of that signature. It might not only reflect the infiltration
of cDC1 but also that of NK cells, in consistency with other
analyses in an independent study (55). Indeed, depending on
individual samples, the cDC1e population encompassed 50–
95% of other cells than cDC1. Using CD16 and CD56 for
excludingNK cells from cDC1e cells might have been insufficient,
since the strongly activated human NK cells expressing the
highest levels of XCL1 and XCL2 express neither of these cell
surface markers (55). More generally, it is likely that the much
higher infiltration of TNBC by lymphocytes, as compared to
luminal BRCA, led to major differences in the cell types other

than cDC1 that were included in the cDC1e cell population
between these two types of cancers. This could confound
interpretation of the results of the enrichment analysis of
these signatures.

There is a need to define better transcriptomic signatures
for human immune cell types, allowing to more rigorously
computationally deconvolute the extent of their infiltration in
tumors and its eventual correlation with the clinical outcome.
One strategy to achieve this aim is to select genes which show
high selective expression in the targeted immune cell type across
tissues and activation conditions, as well as between human
and mouse (14, 45, 153). An alternative strategy could be to
perform single cell RNA sequencing from tumor samples, in
order to define the transcriptomic signatures specific to various
combinations of relevant immune cell types and activation
states in the most unbiased way. This strategy would also
alleviate the potential confounding effect of cross-contamination
between populations as can occur with microbulk gene
expression profiling studies (11, 182). Moreover, it will generate
transcriptomic signatures specific to the combination of the cell
types and of the cancer studied. Indeed, it has been reported
that using gene signatures derived from another tissue does not
always work adequately to computationally deconvolute the
immune cell type composition of tumors, due to differential
imprinting of cells in distinct local microenvironments
(181, 182).

A second issue is the necessity to include signatures of various
types of immune cells, to ensure that the better prognostic
value observed in the patients whose tumors harbor higher
levels of the genes specific to the candidate immune cell type
is not merely a reflect of a higher overall leukocyte infiltration.
Indeed, the goal is not just to compare globally “Hot” or
“Warm” vs. “Cold” tumors. Rather, it is to pinpoint which
immune cell types specifically promote tumor control, or on
the contrary contribute to local immunosuppression, in order
to identify how to best manipulate the tumor infiltrate, for the
benefits of cancer patients, through combined immunotherapies.
Thus, the cell types considered to be functionally and/or
developmentally the most closely related to the candidate one
should be included, for example cDC2 or MoDCs for cDC1,
NK cells and γδ T cells for αβ T cells. In addition, one
should also include cell types expected to have no, or opposite,
impact on tumor growth, for example neutrophils, macrophages
and regulatory T cells which are considered as promoting
immunosuppression.

A third issue is to deepen our understanding of when,
where and how cDC1 promote tumor control. In several
studies, the inferred higher cDC1 infiltration in tumors was
correlated with higher inferred infiltrations of CTLs or NK
cells, and with higher expression of FLT3L, XCL1, XCL2,
CCL4, CCL5, LAMP3, CCR7, CXCL9, CXCL10, and CXCL11
(Figure 4) (55, 57, 62, 64, 80, 93). These observations
need further independent confirmation through the analysis
of other cohorts of patients, and by using complementary
methodologies including immunohistochemistry, CyTOF or
single cell RNA sequencing to measure the correlation between
cDC1 infiltration into the tumors and the status of antitumor
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TABLE 6 | Completed clinical trials targeting cDC1.

Study

start

Brief title Condition NCT

identifier

Intervention Phase Results References

2006 Peritumoral injection of

CpG B with or without

GM-CSF for treating

patients with stage II

Melanoma

Stage II

melanoma,

planned to

undergo sentinel

lymph node

procedure

Not

applicable

Preoperative local

injection of either:

• GM-CSF + CpG B

• CpG B

• saline around

primary tumor

excision site

II Combined CpG/GM-CSF

administration selectively increased

cDC1 frequencies and

cross-presenting capacity in SLN.

cDC1 matured locally upon

instruction by GM-CSF and pDCs

type I IFN. CpG induced Th1

skewing and increased NK cell and

antitumor CTL frequencies in SLN.

Higher IL-10 production and Treg

activity in SLN.

Decreased metastasis in SLN from

patients who received CpG.

(186, 187)

2009 A study of CDX-1401

(DEC205/NY-ESO-1) in

patients with

malignancies known to

express NY-ESO-1

Advanced

malignancies

refractory to

available therapies

NCT00948961 CDX-1401

+ Resiquimod

± Poly(IC:LC)

I/II Induction of humoral and cellular

immunity to NY-ESO-1.

Disease stabilization in 13 of 45

patients.

Tumor regression in 2 patients.

Objective tumor regression in 6 of 8

patients who received ICB after

CDX-1401.

(185)

2014 CDX-1401

(DEC205/NY-ESO-1)

and Poly(IC:LC)

vaccine therapy with or

without CDX-301 in

treating patients with

stage IIB–IV melanoma

Resected

melanoma

NCT02129075 CDX-1401

+ Poly(IC:LC)

± rhuFLT3-L

(CDX-301)

pre-treatment

II Higher tumor-specific immune

responses observed in subjects

who received FLT3-L

(188, 189)

SLN, Sentinel lymph nodes.

NK and CTL responses. In any case, these studies support
our proposed model of a critical positive cross talk between
cDC1, cytotoxic lymphocytes and CD4+ T cells for promoting
effective antitumor immunity (Figure 2). Finally, it would
be of utmost interest to extend to cohorts of patients
benefiting from various types of immunotherapies these analyses
aiming at deconvoluting the gene expression profiles of
whole tumor tissue into immune cell type composition. This
should help determining whether the clinical response can
be predicted from cDC1 infiltration in the lesions, and to
adapt the treatments accordingly for example by combining
to ICB the use of drugs promoting cDC1 recruitment and
activation into the tumors of patients when this process is
defective (Figure 3).

Efficacy of Immunotherapeutic Protocols
That May Preferentially Target/Harness
Human cDC1
A few clinical trials have already been conducted using
treatment protocols that have been proposed to preferentially
target/harness human cDC1 (Table 6) (186, 187, 190). They
gave encouraging results, which further supports the rationale
of specifically targeting human cDC1 for the design of novel
combined immunotherapies against cancer (189).

WHAT TOOLS ARE AVAILABLE TO STUDY
AND MANIPULATE HUMAN cDC1 FOR THE
BENEFITS OF CANCER PATIENTS?

Building on the conservation of cDC1 molecular makeup
and functions between mouse and human, similar tools have
been generated in both species to specifically target these
cells for immunotherapy against cancer. This should accelerate
translation from mouse preclinical studies to human clinical
trials. Hence, most of the tools and approaches that have been
detailed in the section on mouse experimental models (Figure 3
and Tables 3, 4) could be implemented in humans, as briefly
summarized below.

Generation and Study of Novel in vitro

Models of Human DC Types
To overcome the roadblock of the rarity of human cDC1 and
of their fragility upon ex vivo isolation, we and others recently
developed optimized in vitro culture systems to generate high
numbers of cDC1, cDC2 and pDCs from CD34+ hematopoietic
progenitors (15, 147, 148). These novel in vitromodels will allow
rigorous comparison of the functions of the different human
DC types, dissection of their molecular regulation, and better
understanding of their cross talk. Further adaptations of these
protocols are warranted to derive in vitro autologous cDC1
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from the circulating CD34+ cells of patients, load them with
Ag and mature them, under conditions compatible for clinical
use in vaccination or immunotherapy. It should be noted that
encouraging results have been obtained with clinical trials of
autologous ACT of ex vivo loaded and matured pDCs and cDC2
in melanoma patients, which seem superior to MoDCs to prime
or boost endogenous CTL responses against the tumor. This
emphasizes that, as in mice, cDC1 are not the only DC type that
could be successfully harnessed for combined immunotherapy in
cancer patients (6, 7, 191, 192).

Means to Specifically Deliver Ag and
Maturation Signals to Human cDC1
Considering their conserved specific expression pattern on
mouse and human cDC1, and the very encouraging results
obtained in mouse preclinical models, the CLEC9A and XCR1
receptors are the best candidates for Ag, or Ag+adjuvant
cargo, delivery to human cDC1, using recombinant ligands
(193, 194) or monoclonal antibodies. A combination of
TLR3- and TLR8-specific agonists is desirable to promote an
immunogenic maturation associated with the production of
both IL-12 and IFN-β/λ (Table 6) (195). Targeting delivery of
IFN-I activity to cDC1 is another very promising adjuvant
based on the proof-of-principle published in mice (Tables 3,
5). Additional means could be envisioned to favor the cross-
talk between cDC1 and NK or NK T cells (196), e.g., use of
NK cell immune checkpoint blockers (101–105) or targeted
delivery to cDC1 of activating antigenic ligands for NK
T cells (120).

Means to Promote cDC1 Differentiation,
Survival and Local Recruitment in the
Tumor Bed
Systemic injection of FLT3-L could promote cDC1 differentiation
and survival (79). Local delivery of XCL1 could promote
their recruitment in the tumor bed. In patients responding
to checkpoint blockade inhibitors, these functions might be
achieved upon local NK and CTL activation for FLT3-L, XCL1,
and CCL4/5 production (55).

Blockade of cDC1 Checkpoint Inhibitors
A systematic analysis of immune factor checkpoint expression
on human DC types is ongoing in order to investigate
which ones could be reasonable candidates as components
of combined immunotherapies targeting both CTLs and
DCs (197).

CONCLUDING REMARKS

Lately, cDC1 have been in the spotlight of many studies
investigating in mice the immune mechanisms driving tumor
rejection, spontaneously or upon immunotherapy. All these
studies converge toward a hub role of cDC1 in providing the
initial priming, or in sustaining the activation, of antitumor T and
NK cell responses. These advancements in our understanding
of the role of cDC1 in antitumor immunity have been
made possible by the recent blossoming of genetic tools

allowing cDC1 manipulation. However, so far, most conclusions
have been drawn from results obtained under experimental
conditions that were not solely targeting cDC1, whether it
was the use of genetically engineered mouse models or of
mAb directing against cell surface markers. In fact, to be
protective against immunosuppressive tumors such as those
treated in the clinic, the immune response is necessarily
complex and multi-parametric. More and more observations
pinpoint that, in addition to cDC1, other DCs, type 1 CD4+ T
cells, and sometimes neutrophils are also central in promoting
protective antitumor immunity, whereas Treg or type 17
CD4+ T cells, monocytes and macrophages may rather play
immunosuppressive roles. Further studies using models allowing
conditional depletion of cDC1 will be critical in rigorously
investigating whether cDC1 functions are instrumental at
the time when immunotherapies are delivered. These studies
will definitely settle the currently prevailing hypothesis that
cDC1 functions, when specifically boosted, could provide great
support to boost patient responses to currently used anticancer
immunotherapies.

In human tumors, enrichment of genetic signatures described
as cDC1-specific is associated with a good prognosis and a
better clinical outcome in a several cancers, including luminal
and TN breast cancer. These correlative analyses should be
extended to additional types of cancer and to different patient
treatment regimen. It is possible that the extent of cDC1
infiltration in the tumor fluctuates over time following the
development or the suppression of an efficient antitumor
immune response, as observed in mice during immunotherapy
(86), and that cDC1 infiltration may not be protective against
all types of cancer. Still, the perspective of exploiting cDC1
to improve current immunotherapies is extremely encouraging,
and completion of cDC1-targeting vaccine clinical trials in
human will surely help in gaining insight into their importance
in cancer.
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