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Introduction
Background

Within a certain species, individual genomes vary in both the gene content and genomic 
portions of DNA sequences. How to accurately and comprehensively identify the 
genome-wide diversity of the species remains challenging. Recently, because of the 
rapid development of accurate long-read sequencing and assembly technologies [1, 2], 
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for many species, abundant high-quality chromosome- and haplotype-resolved assem-
blies of species- or population-specific genomes have been derived, thereby accelerating 
the coming of the population genome era [3]. Together with various existing reference 
genomes, this type of genomic data has spawned a new research field called computa-
tional pangenomics [4]. The most accepted definition of pangenome is any collection 
of genomic sequences to be analyzed jointly or used as a reference [5]. A pangenome 
provides a complete picture of genomes and complex genomic variants within a species 
of interest and provides an opportunity for the development of efficient computational 
methods and various promising applications in medical biology [6], ecology [7], and evo-
lutionary biology [8].

The graph-based model is among the most important representative models for the 
pangenome [5, 9]. Due to its good mathematical properties and theoretical foundation, 
graphs have achieved essential long-term status in biological sequence analysis [10–12]. 
The graph achieves compression and removal of redundancy and retains the continuity 
between sequences such that each sequence is encoded as a walk on the graph [13]. To 
better analyze the various visible or potential information provided by the graph, many 
basic and interesting topics, including graph selection, construction, storage, searching, 
mapping, and comparison, have been studied [14–18], but many challenges remain. One 
is to design appropriate coordinate systems for accurate graph spatial structure analy-
sis. Defining a genome graph coordinate system that determines the correspondence 
between graph topology and sequence information is highly important, such as main-
taining the translation between linear reference assemblies and genome graphs and 
improving annotations between existing assemblies and genome graphs [19].

The current coordinate systems can be roughly divided into two categories. The 
first type is one-tuple representation, which is based on the idea of ​​linearity. The basic 
research ideas include blocking, sorting, and constructing a graph according to genome 
alignments [20, 21]. However, this approach is an NP-hard problem and changes the 
topological structure of the graph while adding linearity, which inevitably leads to a 
loss of information. The second type is the multiple-tuple representation. For example, 
Rand et  al. defined an offset-based coordinate system consisting of a region identifier 
and an offset [19]. One shortcoming of this approach is that it is suitable mainly for small 
sample sizes and simple variants. Most recently, Li H et al. designed a new system that 
combines a segment coordinate system with a binary group (segId; segOffset) on the 
sequence graph [22]; however, the topological information of the graph is not adequately 
described by these two methods.

Our contribution

In this work, we designed a tri-tuple coordinate system for a class of colored de Bruijn 
graphs constructed from a set of genomes within a species by selecting an adequate 
k-mer length. We developed an efficient algorithm to identify each specific graph spa-
tial structure, called a colored superbubble (cSupB), and organized these cSupBs into 
a tree that accurately reflects their inclusion relationships depicted in the colored de 
Bruijn graph we constructed. Compared to superbubbles [23] and ultrabubbles [24], 
each cSupB inherits similar advantages, such as globally organizing the sites without the 
existing reference genome. More importantly, the tri-tuple coordinate system is derived 
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mainly from the inferred cSupB tree. To demonstrate the feasibility and efficiency of the 
approach, we elucidated the algorithm’s practical performance through a comprehen-
sive set of experiments: (1) a real dataset of 12 human mitogenomes and (2) 310 simu-
lated human mitogenome datasets. The results show that, on the one hand, the tri-tuple 
coordinate system can accommodate the existing linear reference coordinates and anno-
tation data; on the other hand, the variants detected from the cSupBs are more compre-
hensive and diverse. Furthermore, we demonstrated that our analysis method is capable 
of managing tremendous amounts of genomes (5 k/20 k samples tested) with less mem-
ory and time consumption.

Notation and related work

Representation

As discussed above, the colored de Bruijn graph, an extension of the classic de Bruijn 
graph, is essential for our algorithm. Given a set of sequences and a k value, we can 
transform the sequence into k-mers (unique strings of length k). Two different k-mers 
are adjacent if the k-1 base suffix of the “from” k-mer and the k-1 base prefix of the “to” 
k-mer are the same. If we regard each k-mer as a node and the adjacent relationship 
between k-mers as an edge, we can obtain a de Bruijn graph. By coloring the nodes 
and edges in the graph by the samples, we can extend classical de Bruijn graphs to the 
colored de Bruijn graph, as shown in Fig. 1. We provide the following definitions in the 
directed graph for the convenience of research.

Path: A path from v0 to vk refers to a sequence v0, e1, v1, e2, . . . , ek , vk . ei is the edge 
connecting vi−1 with vi , and the length of the path is k. If there is a path in the graph 
with the same start and end node, the path is "closed", indicating that the graph has 
a cycle.
Incoming node/edge: For any two distinct nodes u, v , u is called the incoming node 
of v if there is a path from u to v . The edges on this path are called the incoming 
edges of v , and the number of adjacent incoming edges is called the indegree of u.
Outgoing node/edge: Based on the above definition, conversely, v is called the out‑
going node, and all the edges on the path are called the outgoing edges of u . Simi-
larly, the number of adjacent outgoing edges is called the outdegree of u.
Degree: The sum of the indegree and outdegree of a node is called the node’s degree.
Supernode: If the outdegree or indegree of a node is greater than one, then the node 
is called a supernode.
Branch: In this paper, a maximal path is called a branch if the outdegree and indegree 
of all nodes on the path are equal to 1.
Bridge: In this paper, a branch is called a bridge; if this branch is deleted, the number 
of connected components of the graph will increase.
Bubble: the structure formed by two paths redundant if they start and end at the 
same nodes is called a bubble [25]; for a general definition, see Definition 1 of super-
bubble in the cSupB subsection.



Page 4 of 22Guo et al. BMC Bioinformatics          (2021) 22:282 

Construction
Iqbal et al. first introduced the colored de Bruijn graph aimed at “detecting and geno-
typing simple and complex genetic variants in an individual or population” [26, 27]. 
As the space-efficient representations of de Bruijn graphs have also been heavily 
researched [28–31], many succinct data structures for the colored de Bruijn graph 
were developed and related software mainly includes the bloom filter trie (BFT) 
[32],VARI [33], rainbowfish [34], pufferfish [35], mantis [36], and bifrost [37]. In this 
paper, we use the VARI-merge [38], the new VARI version, to construct the colored 
de Bruijn graph. Given the large-scale samples and large size of the sequence data 
involved in whole genomes, VARI-merge can store and traverse genomes in a space- 
and time-efficient manner. In fact, the choice of the software is not particularly 
important because our study focuses on the analysis of graph structure instead of 
construction.

The colored de Bruijn graph construction includes four steps: k-mer extraction and 
counting, k-mer sorting, construction of the de Bruijn graph, and construction of 
the color matrix. The detailed installation process and usage method can be found at 
https://​github.​com/​cosmo-​team/​cosmo/​tree/​VARI.

a

c

d e

b

Fig. 1  Schematic diagram for the construction, decomposition and reorganization of the colored de Bruijn 
graph. a The three original sequences. b The colored de Bruijn graph with k equal to 3. Each colored circle 
represents a node, and the black arrows represent edges. The characters above the node represent each 
node’s label, visit order and color. The number below node represents the theoretical offset value of each 
node. c The result of visiting against the direction of the edge. The numbers below the node represent the 
final offset value and preoffset value. d The cSupB tree structure. Here, we find five cSupBs in the following 
order: bub1.< TAT, ACC, 111 > ; bub2.< GGG, GTA, 110 > ; bub3.< CAC, GTA, 011 > ; bub4.< TCA, GGG, 110 > ; 
and bub5.< TCA, GTA, 111 > . e The final decomposition and representation of the colored de Bruijn graph

https://github.com/cosmo-team/cosmo/tree/VARI
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Roadmap

In the next section, we describe the method from graph construction to decompo-
sition and reorganization to applications including variant detection and coordinate 
system construction. Section 3 then elucidates the practical performance of the tri-
tuple coordinate system and variant detection method. Section  4 offers some con-
cluding remarks.

Method
Our data structure for colored de Bruijn graphs is the most important research object 
in this paper, so we start by describing its construction. We then give a detailed expla-
nation of how we traverse, decompose and reorganize the graph because graph spatial 
structure analysis is the basis of further research. Using analytical results, on the one 
hand, we propose a variant detection method for small indels; on the other hand, we 
design a tri-tuple coordinate system with details of our implementation.

Graph construction

Let {s1, s2, . . . , sn} be a set of haplotype genomic sequences. Because degeneracy 
is intractable for VARI, we replaced degenerate bases with the most frequent base 
of other sequences and recorded the modification. In addition, to ensure that each 
sequence does not have repeat k-mers, we find the longest repeat segment length ki 
of each sequence si and take K = max{k1, k2, . . . , ki} . When the parameter k value is 
greater than K  , the colored de Bruijn graph is almost guaranteed to be acyclic. Addi-
tionally, we randomly generate two segments consisting of ACGT with a length of 
k and add them to the front and end of each sequence to guarantee that the graph 
has only one start node and end node. The segment’s function is only to anchor the 
sequences, which does not affect the spatial framework, so it cannot appear in any 
original sequences. The segments are not fixed and change with the samples.

Finally, the obtained colored de Bruijn graph has the following characteristics: 
directed, acyclic, nondegeneracy, and unique start and end nodes. Moreover, each 
sequence corresponds to a unique path from the start node to the end node in the 
graph (Additional file  1: property 1; all the proofs of the properties, theorems, and 
corollaries can be found in Additional file 1).

Decomposition and reorganization

This section includes four parts. The first part is the theoretical preparation where we 
define two important concepts: cSupB and offset value. The second part decomposes 
the graph and obtains all the cSupBs. The third part determines the relations between 
cSupBs, and the last part addresses cycles.

Colored superbubble (cSupB)

Before defining the cSupB, we need to know the definition of superbubble.

Definition 1  An assembly graph G = (V ,E) is a directed graph. Denote V (G) and 
E(G) as the set of nodes and edges, respectively, of graph G . For any two distinct nodes 
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s and t in G , < s, t > is called a superbubble if it satisfies the following four criteria [23, 
39]:

(1)	 reachability: there is a path from s to t;
(2)	 matching: the set of nodes reachable from s without passing through t is equal to 

the set of nodes from which t is reachable without passing through s;
(3)	 acyclicity: the subgraph induced by U is acyclic, where U is the set of nodes satisfy-

ing the matching criterion;
(4)	 minimality: no node in U other than t forms a pair with s that satisfies the condi-

tions above;

Here, s and t are called the source node and sink node, respectively.
Based on Definition 1, there are two superbubbles in Fig.  1b:< TAT ,ACC >

; < TCA,GTA > . Here, we only discuss the superbubbles that contain at least two 
supernodes.

Many superbubble search methods have been developed [23, 39–41]. These methods 
can be applied to different graphs, and all are based on the topological structure. How-
ever, a superbubble contains structural information but lacks sample information; there-
fore, based on the colored de Bruijn graph, we propose the cSupB, a generalization of the 
superbubble, and its relevant algorithm.

Definition 2  An assembly graph G = (V ,E,C) is a colored de Bruijn graph. Denote 
V (G) , E(G) and C(G) as the sets of nodes, edges, and colors, respectively, of graph G . 
For a color set C1 where C1 ⊂ C , G1 = (V1,E1,C1) is the subgraph induced by the nodes 
u ∈ V  whose color color(u) satisfies color(ui) ∩ C1 �= ∅ . For any two distinct nodes s and 
t in G,〈s, t,C1〉 is called a cSupB if it satisfies the four criteria of a superbubble in graph 
G1.

We can also define separation, intersection, and inclusion of cSupBs.
For any two different cSupBs named cSupB1 and cSupB2 , G1 = (V1,E1,C1) and 

G2 = (V2,E2,C2) are the subgraphs induced by the nodes in cSupB1 and cSupB2 respec-
tively. Then we set V0 = V1 ∩ V2,C0 = C1 ∩ C2 and we can determine the relations of 
cSupBs according to five conditions as follows:

(1) Separation: a. V0 = ∅ ; b. V0  = ∅ and C0 = ∅;
(2) Intersection: c. V0  = ∅ and C0  = ∅ and V0  = V1 or V2;
(3) Inclusion: d. V0 = V1 and C0 = C1 ; e. V0 = V2 and C0 = C2.

In particular, if two cSupBs are inclusive relations, for example: V0 = V2 and C0 = C2 , 
we name cSupB1 the parent bubble of cSupB2andcSupB2 is the child bubble of cSupB1.

Based on Definition 2, there are five cSupBs in Fig.  1b: bub1.< TAT ,ACC , 111 > ; 
bub2.< GGG,GTA, 110 > ; bub3.< CAC ,GTA, 011 > ; bub4.< TCA,GGG, 110 > ; and 
bub5.< TCA,GTA, 111 > . Bub5 is the parent of bub2, bub3 and bub4. Here, we can 
prove that a superbubble is only a special group of cSupBs whose source and sink node 
colors are the same. Each cSupB can be thoroughly decomposed to simple cSupBs that 
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have only two paths from the source node to the sink node. Simple cSupB is the mini-
mum bubble structure that can be used to study relationships and variants for any two 
samples, but superbubbles cannot.

Definition 3  In a directed acyclic graph (DAG) G = (V ,E) with unique start 
node u′ , for each node vi ∈ V  , let Si denote all the adjacent incoming nodes of vi . If 
pos(vi) = max{pos(uj)} + 1 , where uj ∈ Si , and pos(u′

) is known, then pos(vi) is called 
the offset value of vi.

Indeed, in a DAG G = (V ,E) , for any two distinct nodes u, v ∈ V  and 
pos(u) = a, pos(v) = b , if there exists at least one path between u and v , |a− b| must be 
the length of the longest path between u and v (Additional file 1: property 3).

Graph traversal and cSupB Matching

Before traversing and decomposing the graph, we need to label four visiting states for 
eachnode as unvisited, half-visited, to-be-visited and fully visited. See Additional file 1 
for the details of the description.

We define a postorder-like traversal strategy: in a DAG, a node can be visited if 
all its parent nodes have been visited. In other words, for each node in the graph, 
we could visit it and its outgoing nodes if and only if all its incoming nodes have been 
visited.

Matching principle: At least two adjacent outgoing edges’ colors of the source node 
intersect with the color of the sink node. Similarly, at least two adjacent incoming edges’ 
colors of the sink node intersect with the color of the source node. Then, the source node 
and sink node are matched, and the cSupB color is the color intersection of the source 
node and the sink node.

If we encounter a node s whose outdegree is greater than one, we place it in a to-be-
visited source node queue Q ; if we encounter a node t whose outdegree is greater than 
one, we start to find its matched source node s from Q reversely based on the match-
ing principle. Specifically, if color(s) ⊆ color(t) , we remove s from Q and continue; if 
color(s) ⊆ color(t) , we stop.

We can prove that for each node t whose indegree is greater than one, at least one 
node s whose outdegree is greater than one can be used to construct a cSupB with t 
(Theorem 2, Corollary 5). Moreover, s is visited before t , and s is the parent node of t 
(Corollaries 3 and 4).

cSupB subordination

After postorder-like traversal, we can obtain all the cSupBs and their information, 
including the source/sink node, cSupB color, and ordering. Ordering denotes the order 
of obtaining the cSupB, and we use the function order denoting it in the following study. 
Here, we reorganized the cSupBs by determining the relationship of cSupBs.

To organize the cSupBs, we adopt a hierarchical tree structure by exploiting the rela-
tions of cSupBs. Furthermore, after confirming the root cSupB (containing all samples), 
we assigned each cSupB a hierarchical level. Here, the root cSupB’s level is 1.
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Method to determine the inclusion of cSupB

For cSupB1 , cSupB2 and cSupB3 , G1 = (V1,E1,C1) , G2 = (V2,E2,C2) and 
G3 = (V3,E3,C3) are the subgraphs induced by the nodes in cSupB1, cSupB2 and cSupB3 
respectively. If the following three conditions are satisfied simultaneously:

a.	 a.order(G1) < order(G2);
b.	 b.C1 ⊆ C2 and C1  = C0(C0 is a color set containing all samples);
c.	 there is no cSupB3 , s.t. order(G1) < order(G3) < order(G2) and C1 ⊂ C3;

we call cSupB1 a child cSupB of cSupB2 and call cSupB2 the nearest parent cSupB of 
cSupB1 (Additional file 1: Theorem 3).

An essential conclusion is that a child cSupB cannot be obtained before its parent 
cSupB (Additional file  1: Corollary 6), and the cSupB structure must be a tree (Addi-
tional file  1: Corollary 7). Figure  1 D,E is an example of the final decomposition and 
representation of the colored de Bruijn graph.

To store various information about the colored de Bruijn graph, we define several 
file formats, such as cSupB topology (CST), cSupB detailed information (CSDI), node 
nearby information (NNI) and offset value information (OVI). See Additional file 1 for 
the details of the file formats.

Cycle

A cycle is the representation of repeat sequences on the graph and is sometimes com-
mon but inevitable. Cycles can be divided into two types: type I, formed by a single sam-
ple; and type II, formed by different samples. Our k value selection method can only 
avoid type I. Here, we propose a method to address cycles including whether cycles 
exist, where the cycles are and how to cut the sequences.

Cycle identification  There exists a depth-first-search strategy that can identify all the 
cycles simultaneously; however, the iterative recursion and high computational cost limit 
its application. In this paper, we propose a cycle identification method based on the offset 
value.

According to Theorem  2, if we traverse graph G from the start node using the pos-
torder-like traversal strategy, we can visit all the nodes. In particular, if the traversal is 
finished but nodes still exist that are unvisited, we call the traversal finished in advance 
and there must be cycles in graph G (Theorem 2). Information about half-visited nodes 
is collected to prepare for cycle interval determination.

We divide half-visited nodes into two types: type I: on the cycle; type II: not on the 
cycle. We can prove that if the traversal is finished in advance, we must obtain at least 
one type I half-visited node (property 5) (Fig. 2).

Cycle interval location  At least one half-visited node must exist on the cycle when the 
traversal ends in advance (property 5). Therefore, we need to identify this node, mark it 
as fully visited, and restart the graph traversal. Due to the existence of the cycle, this node 
is revisited, and we record the offset value information again to help us determine the 
interval of the cycle.
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Steps of interval determination

1. Let V0 represent the collection of all half-visited state nodes.
2. Choose node u from V0 whose offset value is minimal as the cycle start node.
3. Mark u as fully visited and restart the graph traversal from u . If traversal is again 
finished in advance, we encounter a new cycle and return to step 1. If we meet a 
node v , v is the adjacent parent node of u . Then, we set cycle_start_pos = pos(u) 
cycle_end_pos = pos(v) , cycle_start_node = u , cycle_end_node = v.
4. Then, [ cycle_start_pos, cycle_end_pos ] is the cycle interval.
We choose the node with the minimum offset value for simplicity. If the selected 
node is on the cycle, the traversal can proceed; otherwise, the traversal will terminate 
in advance, and the previous steps are repeated.

Sequence segmentation and  graph reconstruction  After the interval 
[ cycle_start_pos, cycle_end_pos ] of the cycle is determined, we select a cutting point in 
this interval to divide the sequence into two parts and construct the graph.

Here, we divide the cutting points into three categories: type I: the bridge. This type 
is our ideal cutting point; type II: Not the bridge but involving all samples; type III: only 
involving a portion of the samples.

Based on the above ideas, we propose a cutting point selection model as follows.

1.	 Position transformation. We establish a connection between the offset value and 
bases. Here, we define the offset value of the node according to its last base in the 
k-mer.

2.	 Information obtainment. We take each position as the key and the color, bases, 
thickness, and other information as the values to establish hash tables in the interval 
[ cycle_start_pos, cycle_end_pos].

3.	 Evaluation strategy. We set an index R = L/t , in which L denotes the number of con-
tinuous loci with the same position information and t denotes the thickness. In par-

a b c

Fig. 2  Half-visited nodes in two types of cycles. Each circle represents a node, and the red dots and edges 
form a cycle. In the circle, the number before the bracket indicates the node ID, and the number in the 
bracket represents the node color. The color of the number indicates the visiting state of the node: blue 
indicates fully visited, green indicates half-visited, and black indicates unvisited. a Graph composed of 
two samples, where the cycle belongs to type I. When the traversal stops, two half-visited nodes, 3 and 7, 
are generated. Among them, 3 is of the first type and 7 is of the second type. b Graph composed of four 
samples, where the cycle is a type II cycle. When the traversal stops, three half-visited nodes (3, 8, and 13) are 
generated. Among them, 3 and 8 are of the first type, and 13 is of the second type. c The revisiting result of a. 
When the traversal is finished in advance, two half-visited nodes (3 and 7) are obtained, and the intersection 
of the colors of the two nodes is not empty. At this time, pos(1) = 1, pos(3) = pos(2) = 2, pos(7) = 3 , and 
node 3 is selected as cycle_start_node , cycle_start_pos = 2 . Then, by continuing to visit, we can obtain 
pos(4) = 3, pos(5) = 4, pos(6) = pos(7) = 5 and know that cycle_end_node is 6, cycle_end_pos = 5 . 
Finally, the interval of the cycle is [2, 5]
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ticular, if there are multiple choices with the same R-value, we prefer bridges; if the L 
value is 0, only the position with the smallest thickness can be selected as the cutting 
position. In other cases, we make the decision according to the size of the R-value.

4.	 Cutting position determination. We select the optimal area as the reference cutting 
position. If there are multiple cycles, comprehensively considering the information of 
all cycles and their intersection should be the priority. The output format is cycle cut 
position (CCP) format (see Additional file 1 for details).

Sequence cutting and graph reconstruction  Although we know the cutting position of 
the graph, we must obtain the specific cutting position of each sample. We searched 
the cutting area sequence in each relevant sample. If there is only one search result, 
the middle position is the cutting position; if there is more than one search result, the 
nearest one is selected as the reference cutting position. Then, we cut each sequence, 
add the head and tail sequence again, divide them into several files, put them in multi-
ple directories, and build graphs.

Variant detection

Variant information of an individual or population can be deduced from the struc-
ture of the colored de Bruijn graph. Here, we propose a node-based variant detection 
algorithm.

In practice, the traversal starts from the end node of the graph and against the 
direction of the edge. The final offset value can be obtained using simple subtraction 
from the preoffset value shown in Fig. 1c.

We choose reverse traversal because the appearance of each source node means 
that a variant occurs. If it is a base substitution, the offset value is not affected; how-
ever, if it is an indel, using traversal along the edge direction, the offset break node is 
the sink node (node GGG in Fig. 1b) instead of the source node (node TCA ) we want. 
In this paper, we only discuss small indels (< 50 bp).

In the colored de Bruijn graph, we assume that the variant occurrence corresponds 
to the source node one-to-one, so we discuss variants near the source node. When 
traversing the graph, all the nodes’ variant information is stored in the offset value; 
thus, the variant, source node, and offset value are closely linked.

Here, we propose a node-based method:

(1)	 Save the maximum gap length and color near each source node to obtain gap infor-
mation;

(2)	 Analyze the two types of source nodes (with reference and without reference) in 
turn, determine the variant type of each source node (nested variant detection 
algorithm (NVD)), and modify the gap at each source node to determine the node 
variant;

(3)	 Determine the relations between the nodes’ position on the reference genome and 
graph (reference position determination (RPD)); then, transform the node variant 
to a locus variant (Fig. 3).
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Nested variant detection (NVD) algorithm

Step 1: Detect variant types of source nodes involving the reference

We traversed the cSupB id from small to large and only discuss the cSupB containing 
the reference genome. A simple situation is shown in Fig. 4a. If gap1 > 0, var(a) = INS ; 
if gap2 > 0, var(a) = DEL ; and if gap1 = gap2 = 0, var(a) = SNP . Here, function var 
denotes the variant type of the node. For the more general case, for example, in Fig. 4b, 
if the variant types at nodes a and b are the single nucleotide polymorphism (SNP) and 
insertion (INS), respectively, the actual gap conditions are gap2 > 0 and gap3 > 0 based on 
the traversal against the direction of the edge. Therefore, since the correct results cannot 
be obtained by considering the gap of a node such as a independently, we need to deter-
mine the node variant type more comprehensively. For detailed algorithm flows, see the 
NVD-1 flow chart in Additional file 1.

Step2: Detect variant types of other source nodes

This step traverses the cSupB id from small to large again and performs variant analy-
sis on cSupB whose variant type has not been determined, that is, cSupB that does not 
contain the reference genome. The basic idea is to search the nearest parent source node 
containing the reference according to the cSupB tree structure when encountering a 
source node whose variant type has not yet been determined and record all the source 
nodes involved in turn. Then, by ordering from the parents to children, we can deter-
mine the variant types of all source nodes (see Additional file 1: father-children variant 
detection (FCVD)). For detailed algorithm flows, see the NVD-2 flow chart in Additional 
file 1.

Reference position determination (RPD)  All the source nodes can be divided into two 
types: source nodes contained in the reference genome or those that are not. For the 

Fig. 3  Variant identification and variable transformation

Fig. 4  Different gap distributions near the source node
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former, we used a variable refpos to record its position in the reference genome. There-
fore, the focus here is to infer the reference genome position of the second type of 
source nodes and finally obtain the approximate correspondence between the graph 
position nodepos and the refpos.

The basic idea here is similar to the NVD algorithm, and we still traverse the cSupB 
id from small to large. When encountering a source node in which the refpos has not 
been determined, we need to obtain its nearest parent source node that contains 
the reference according to the cSupB tree structure and record all the source nodes 
involved in turn. Then, following the ordering from parents to children, source nodes’ 
refpos can be determined, and the relationship between refpos and nodepos can also 
be obtained. Finally, we can simply obtain the variant at the reference genome site 
combined with the node variant information. For algorithm details, see the RPD flow 
chart in Additional file 1.

Construction of the coordinate system

In the linear coordinate system, a simple positive integer a and binary (a, b) can be 
represented by the base and sequence information. The biological relationship 
between sequences can also be discussed. However, this representation is not suitable 
for genome graphs. Here, based on the cSupB tree model, we constructed a haplotype 
pangenome coordinate system.

We define a triple (position, bubid, basecolor) to represent each base location (BL) 
in a graph. Since every sample contained in any cSupB has only one path, this rep-
resentation provides a one-to-one correspondence to nodes in the graph. The posi-
tion represents the offset value of the bases, and bubid represents the smallest cSupB 
where the base is located. basecolor represents the samples that include this base at 
this position, which has two representations. One is to use a string consisting of ‘0’ 
and ‘1’, and its length is equal to the number of samples. This representation is same 
as the node or edge color. The other is to randomly select a sample id containing the 
base. The former is more comprehensive, and the latter is simpler: the selection can 
be made according to the application. In this triplet, position, bubid and basecolor 
provide numerical, topology and sample information, respectively.

Similar to the linear coordinate system, we discuss the sequence information. The 
sequence mapped to the graph is a path, which is represented by a six-tuple (path 
location (PL)), as follows:

The startpos and endpos represent the offset values of the start and end nodes of the 
path, and startbub and endbub represent the smallest cSupB where the start and end 
nodes are located, respectively. pathbub represents the smallest cSupB that contains 
all the paths. startbub and endbub are both child bubbles of pathbub. If the path spans 
n root cSupBs, pathbub is recorded as −n . The pathcolor represents the color of the 
path, which is represented as a 0–1 string. When the length of a path is equal to 1, the 
path is a base, startpos = endpos, startbub = endbub = pathbub, and pathcolor = base-
color. Then, the six-tuple of the path becomes a three-tuple of bases.

(startpos, startbub, endpos, endbub, pathbub, pathcolor)
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In the linear coordinate system, if two intervals are given, there are three kinds of 
relations: separation, intersection, and inclusion. Similarly, on the genome graph, we 
can provide the correlation between two paths.

Given two random paths, path1: (a1, bub1, b1, bub2, bub3, color1) and path2: (a2, 
bub4, b2, bub5, bub6, color2).

1.	 If there is no intersection between [a1, b1] and [a2, b2], path1 and path2 are sepa-
rated;

2.	 If the relationship between [a1, b1] and [a2, b2] is inclusion and color1 and color2 
also have an inclusion relationship, then path1 and path2 have an inclusion relation-
ship;

3.	 In other cases, path1 and path2 intersect.

Specifically, if [a1, b1], [a2, b2] have an intersection and color1 and color2 do not inter-
sect, then path1 and path2 intersect. At this time, sequence similarity analysis can be 
performed. According to the cSupB tree, we can find the nearest parent bubble bub7 of 
bub3 and bub6 and its color color3. If bub7 does not exist, the path spans the root cSupB, 
and color3 includes all samples; if bub7 exists, similarity analysis can be performed in 
bub7, and the union of color1 and color2 is a subset of color3.

Taking Fig.  1c as an example, we know that there are five cSupBs 
bub1.< TAT ,ACC , 111 > ; bub2.< GGG,GTA, 110 > ; bub3.< CAC ,GTA, 011 > ; 
bub4.< TCA,GGG, 110 > ; and bub5.< TCA,GTA, 111 > . We randomly select a node 
such as TCA, and its base position is (3, 4, 111) in which 3, 4, and 111 denote TCA’s 
offset value, smallest cSupB id and base color, respectively. Similarly, we can also obtain 
other nodes’ base positions such as ATG: (13, 1, 100), CCC: (17, -1, 111) and GGG: (7, 
2, 110). Then, we randomly select three paths: a . CAG​GGT​GTA- > (5, 4, 11, 2, 5, 100); b . 
GGG​AGT​A—> (7, 2, 11, 2, 2, 010); and c . ATA​ACC​C- > (13, 1, 17, 1, 1, 011). Taking path 
a as an example, we give a brief introduction to its components. The first node of path a 
is CAG, whose base position is (5, 4, 100), and the last node GTA’s base position is (11, 
2, 111). All the nodes on path a are contained in cSupB5, and their intersection of node 
colors is 100. Here, path a and path b intersect because they have common nodes such 
as GGG, and path a(b ) and path c are separated because there is no intersection between 
[5, 11] ([7, 11]) and [13, 17].

Based on the genome graph coordinate system and variant detection algorithm, we 
can achieve more functions. For example, given a genome annotation file (e.g., gene 
transfer format (gtf ), general feature format (gff)), we can obtain the relations between 
the annotation information and the topological structure and predict all the variants; if 
given a variant file (e.g., variant call format (vcf )), we can not only find the topological 
information based on the variants but also predict the variant information and compare 
it to the variant file to explore further discoveries.

Results
We evaluated the method performance on four different datasets described below. For 
this evaluation, we discussed the performance of graph decomposition, the mapping 
between graph and variant (annotation) files, variant detection, and cycle processing 
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with dataset 1. To further evaluate the variant detection method, we compared precision 
and recall rate with other tools with dataset 2. In addition, we also assessed the compu-
tational ability for large-scale genomes with simulated dataset 3 and dataset 4.

Datasets

The human mitochondrial genome has the following advantages: (1) the high variant 
rate ensures that a large number of variants can be used; (2) the rich genome data con-
tains almost all common and abnormal situations, and we can select the required data 
according to the concrete purpose; (3) the quality of the mitochondrial genome is high, 
which is consistent with our assumption that the genome represents the true genetic 
information of the individual. In addition, other research results, such as annotations, 
may help verify the accuracy of the model.

Four datasets were chosen to test and evaluate the performance of cSupB. Dataset 1: 
12 human mitochondrial genomes, including a reference genome [42]. Sample names 
are AP008459, AP010675, EF153784, EF153791, EF153794, EF153814, EF397559, 
EU007868, FJ493500, GQ895144, GU377085, and NC_012920. Dataset 2: A series of 
random simulations with 10 samples for each time. Dataset 3: 5000 randomly simulated 
human mitochondrial genomes. Dataset 4: 20,000 randomly simulated human mito-
chondrial genomes. The simulation method is provided in Additional file 1.

Implementation of the tri‑tuple coordinate system

Given 12 human mitochondrial genomes (see Additional file 2), we calculated that the 
longest repeat length of the samples was 16, except that of AP010675, which was 20, and 
its repeat region was TAT​AGC​ACC​CCC​TCT​ACC​CCC​TCT​ACC​CCC​TCTA, in which 
two repeats intersected. When the k value is greater than 20, the constructed colored 
de Bruijn graph is a DAG; otherwise, the constructed graph is a directed cyclic graph. 
Here, we set k = 22 for VARI-merge to construct an acyclic graph. In addition, there was 
a degenerate base N at the 3107th position in the reference genome, and we replaced N 
with C to avoid affecting the annotation information.

Using the postorder-like traversal strategy, we traversed the colored de Bruijn graph 
only once to find all cSupBs and their affiliation. In total, 118 cSupBs were identified, 
including 74 root cSupBs (65 simple cSupBs) and the largest cSupB tree, whose level was 
5. These results are shown in Table 1, and more information can be obtained from the 
CST file.

After obtaining the necessary information about cSupBs, we can collect more 
detailed information about each cSupB stored in the CSDI file. This additional infor-
mation includes the node/edge/branch/supernode count, sample length, and branch 
information.

Table 1  Comparison of the graph decomposition results of two k values

k Graph All cSupBs Root CSupB Max level Simple cSupB

22 Graph 118 (74 + 20 + 14 + 9 + 1) 74 5 91 (65 + 26)

18 Graph1 55 (37 + 8 + 6 + 4) 37 4 44 (33 + 11)

Graph2 64 (37 + 15 + 7 + 4 + 1) 37 5 47 (32 + 15)
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We can also map the existing annotation file to the graph: 578 of 3892 variants in the 
mtDNA vcf file are located in cSupB regions, and the others are located on bridges. 
Additionally, 37 genes in the gtf file are located on the bridges or span at least one cSupB, 
as shown in Table 2. All the variants and gene coordinates can be seen in vcf2graph.txt 
(see Additional file 3) and gtf2graph.txt (see Additional file 4).

While obtaining the cSupB relations, we detected the variants using the node-based 
variant detection algorithm. The statistical results of the variants are shown in Tables 3 
and 4. Here, vartype indicates different variant types (1: substitution, 2: deletion, 3: 
insertion, 4: indel (unsure 2 or 3)).

Compared to the mtDNA annotation file downloaded from 1000 Genomes (ftp://​ftp.​
1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​relea​se/​20130​502/​ALL.​chrMT.​phase3_​callm​om-​v0_4.​
20130​502.​genot​ypes.​vcf.​gz), 89 of 110 single nucleotide variants (SNVs) can be location 
mapped. Moreover, 20 of 21 unmapped images can be verified for accuracy, as shown in 
Table 5.

The overall flow includes graph construction, decomposition, reorganization, and vari-
ant determination, and the total calculation time is less than 1 min. To further assess the 

Table 2  The statistics of cSupBs involved in gene regions

cSupB included 0 1 2 3 4 5 6 8

Count 21 5 1 3 1 3 2 1 37

Table 3  Node variant statistics

Vartype 1 2 3 4

Count 82 3 6 1 92

Table 4  SNV statistics

Vartype 1 2 3 4

Count 82 9 17 2 110

Table 5  SNVs that cannot be found in the annotation files but that actually exist

Position Ref Alt Vartype Involved sample

97 ~ 102 GCT​GGA​ - Deletion EF153794

449 T C SNP EF397559

632 C T SNP GQ895144

3213 A G SNP EF153794

4658 A G SNP EF153784

6101 C T SNP EF153794

8290–8299 G CCC​CCT​CTAG​ Insertion AP010675

13,086 C T SNP EF153784

15,142 C T SNP FJ493500

15,814 A G SNP EF153784

ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrMT.phase3_callmom-v0_4.20130502.genotypes.vcf.gz
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computational ability for large-scale genome data, we simulated 5000 and 20,000 mito-
chondrial genomes. The calculation time shown in Table 6 is divided into two compo-
nents: graph construction and analysis. Our algorithm is minimally constrained by the 
sample size; allowing for constructing the graph model we need, we can quickly obtain 
the decomposition result.

Assessment of the variant detection accuracy

Two factors are related to the node-based variant detection algorithm: the number of 
variants, such as SNP, DEL, and INS, and the k value. Therefore, we used simulated data 
based on the different parameters mentioned above to evaluate the model. To assess the 
variant detection results, we used multiple sequence alignment tools, including multi-
ple sequence comparison by log-expectation (MUSCLE) [43], multiple sequence align-
ment based on fast Fourier transform – GINSI alignment (MAFFT-GINSI) [44], Clustal 
Omega [45], and Mugsy [46], to identify SNVs, calculate the precision and recall rate, 
and compare the results. All these tools use a single CPU thread.

Our simulation can be divided into four parts based on the experimental parameters, 
and the detailed parameters are listed in Table 7. For each set, we simulated 10 human 
mitochondrial genomes, including a reference genome. Here, precision and recall are 
calculated by means of location-mapped variants (Fig. 5), and the results used by type-
mapped variants are shown in Additional file 1.

The node-based variant detection algorithm has high accuracy. For each simulation 
and each parameter, there is little difference between the various methods. In some sets, 
our method has the best precision and recall rate. In addition, our method has the best 
stability.

Indel has a greater impact than SNP. Additionally, Fig. 5a, b show that as the number 
of SNPs increases, the precision and recall increase gradually. However, simulations of 
deletion and insertion show the opposite trend, and the indel variable has a significant 
impact on the results (Fig. 5c, d, e, f ). Theoretically, if there are only SNP variants, the 
precision of our method is 100%.

Table 6  Calculation time for two large-scale datasets

Samples 5000 20,000

cSupB 7.5 h + 3 min 30.5 h + 8 min

Table 7  Parameters of the simulation

Part Experimental 
parameter

Para1:SNP Para2: 
deletion

Para3: 
Insertion

Para4: k value Set 
(groups*repeats)

1 SNP 100–2000 
(0.6–12.0%)

10(~ 0.06%) 10(~ 0.06%) 28 20*5

2 Deletion 100(~ 0.60%) 5–100 (0.03–
0.60%)

0 24 20*5

3 Insertion 100 (~ 0.60%) 0 5–100 (0.03–
0.60%)

24 20*5

4 k value 500(~ 3.0%) 50(~ 0.3%) 50(~ 0.3%) 20–60 22*10
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The k value is closely related to the structure of the graph: as the k value increases, the 
precision and recall decrease continuously (Fig.  5g, h). The reason is that when the k 
value increases, the k-mer becomes longer, the opportunity for node merging increases, 
and the structure of the graph becomes loose, which leads to a reduction in the source 
node number. Therefore, regardless of other factors, when we select the k value, the 
smaller the k value is, the better.

Furthermore, as the variants continue, the precision and the recall decrease. We know 
that indel variants have a great negative effect on precision and recall. In a certain range, 
the precision and recall increase with SNV variants, but the recall decreases sharply 
when the SNV mutation rate is outside of this range. The main reason is that the variant 
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Fig. 5  Precision and recall for different simulation parameters
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results cannot be mapped to the graph due to the decrease in sequence similarity; that 
is, the source number is far less than the variant number, which is not in line with our 
primary hypothesis of direct variant and source one-to-one correspondence. Thus, if the 
sequence similarity is insufficient, the variant detection model is not applicable.

In short, the higher the sample similarity is, the higher the precision and recall of SNVs 
for the node-based variant detection method.

Cycle processing

To test the reliability of cycle processing, we used dataset 1 as an example and set k = 18. 
After analyzing the graph, we found two cycles, as shown in Table 8.

Selection of the cutting point.

a.	 Combine adjacent cutting points of the same type and calculate the R-value. Here, 
cycle 1 has a total of 145 integrated cutting areas, in which the numbers of the three 
types of points are 73, 66, and 6. The R-value ranges from 0.5 to 1236; cycle 2 has 
only one type I cutting area, and the length is 26.

b.	 Cutting point selection. Here, cycle 2 is included in cycle 1, and the cutting area of 
cycle 2 is part of cycle 1. The R-value of cycle 1 in this cutting area is 1236, which is 
the most ideal cutting area. Therefore, we chose only one cutting area of cycle 2 as 
the final cutting area, output the base information and position information of the 
cutting area as the reference position, and select the middle position as the reference 
cutting point, as shown in Fig. 6.

Sequence cutting and graph reconstruction

Next, the segment of the cutting region is searched in the original sequence file. Then, 
we placed the sequences in the same area into the same directory. For each colored de 
Bruijn graph we constructed, we ensured that all sequences had the same head and tail. 
Therefore, before reconstructing the colored de Bruijn graph from the cutting sequences, 
we need to supply the same head and tail; that is, if the head/tail is missing, we added 
the appropriate head/tail. After the sequence preparation is complete, the previous con-
struction steps are followed to rebuild the colored de Bruijn graph.

Table 8  Basic information about the two cycles

Id cycle_start_
node

cycle_end_node cycle_start_pos cycle_end_pos Half-visited 
nodes

Type

1 199 71 405 16,288 5 II

2 8532 11,846 8282 8290 1 I

Fig. 6  Final cutting region and reference cut position
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The statistical results are shown in Table 1. Notably, sequence cutting does not sub-
stantially impact the topological structure of a graph.

Discussion
We present cSupB, which is an implementation of graph decomposition and reorgani-
zation, variant detection, and coordinate system design of the colored de Bruijn graph. 
First, we constructed a set of population haplotype genomes into a DAG with a unique 
start and end node. On the basis of the graph, we proposed a cSupB data structure that 
incorporates sample information, such as node sources and path linkages, while inher-
iting the features of superbubbles. Then, we can quickly obtain cSupB structure trees 
through traversing, matching and relationship determination. Moreover, to describe the 
node location information, we introduced the offset value to measure the length of the 
longest path from the start node to each node. Ultimately, we proposed a node-based 
algorithm to identify variants in specified samples and construct a genome graph tri-
tuple coordinate system.

Despite the relative effectiveness of the reference as a coordinate system, using the 
reference as a lens to study all other genomes introduces a pervasive reference bias, 
especially in the population genome era. Our coordinate system, which satisfies mono-
tonicity, readability, and spatiality, provides a means to discuss the genome graph 
in terms of topologic structure to genetic element location. Indeed, the number of 
sequences is amenable to a global or local directed acyclic representation, and our algo-
rithm is compatible with any directed acyclic colored graph; thus, it has wide application 
prospects. Additionally, we can discuss the relationships of any paths or samples quickly 
without reconstructing and querying once the acyclic graph is constructed. The coordi-
nate system can also handle repetitive events. By selecting appropriate k values or cut-
ting sequences, we can transform genomes into one or more directed acyclic colored de 
Bruijn graphs. However, the method of sequence cutting has certain limitations; that is, 
for highly repetitive sequences, especially tandem repeats, the cutting method will make 
the sequence too fragmented, thereby increasing the computational difficulty and error.

The essential assumption of the node-based variant detection algorithm is that the 
generation of the variant corresponds to the source node in a one-to-one manner. Only 
the gap information and the cSupB structure tree near the source node are needed to 
obtain the final variant information efficiently. We demonstrated that when the similar-
ity of the sample decreases, the variant type becomes complicated, and the precision of 
the algorithm is reduced. Therefore, this approach is applicable only when the sample 
has a high similarity and the variant type is relatively simple. In addition, the choice of 
the k value impacts the accuracy of the algorithm, and we preferred a smaller k value to 
ensure acyclicity.

With the introduction of more chromosome-level and haplotype-resolved assem-
blies, our decomposition and reorganization method could also be effectively han-
dled. Moreover, this method is not limited to the VARI/VARI-merge tool, even the 
colored de Bruijn graph, but can theoretically be generated for any colored DAG. 
Compared to other motifs, such as ultrabubbles, the cSupB we proposed overcomes 
the limitation of topology but cannot handle more complex situations. Therefore, 
truly universal and comprehensive spatial framework research for genomic graphs 
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will become a focus in the future. We anticipate that these studies will allow graph 
research to become a more practical analysis approach and increase the accessibility 
of existing possibilities.

Nevertheless, our model has several shortcomings. First, although graph research 
has steadily improved in recent years, almost all colored de Bruijn graph construc-
tion tools, including the VARI-merge used in this paper, do not have functions such 
as mapping, which significantly limits data selection and model promotion. Second, 
if the length of the gene element is less than k, there may be multiple correspond-
ing nodes on the graph, which makes the analysis complicated and ambiguous. Third, 
we cannot handle degeneracy efficiently. Fourth, our variant detection method could 
only address small indels, but for more complicated conditions, such as large indels, 
inversions, and reverse tandem duplications, we do not have an effective solution; 
thus, we expect to introduce more high-quality genomes and comprehensive tools to 
perform genome graph research in the future.

In short, we anticipate that the genome graph research model presented in this 
paper will not only be compatible with more abundant information but also intro-
duce additional computational methods to explore potential biological functions. We 
believe strongly that with the arrival of the population genome era, genome graphs 
and their spatial structure will be deeply studied and will play an important role in the 
research on population genomic diversity.
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