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Perspective

Introduction

Microparticles (MPs) were increased in patients with 
coronary heart disease (CHD), with the subtypes and quantity 
of MPs variate in different types of CHD. There were 
emerging reports indicating that MPs may play important 
roles in the pathogenesis of CHD. Here in this review we 
summarized the pro-inflammation, pro-coagulation effects 
of MPs, as well as their impacts on endothelial function 
and angiogenesis. MPs have the potential of being powerful 
diagnostic biomarkers and therapeutic tools in CHD patients 
in the future.

MPs, which were first described as “cell dust,”[1] are intact 
vesicles derived from the outer membrane of cells during 
cell activation or apoptosis. MPs are mostly derived from 
platelets,[2] whereas MPs are also present in endothelial cells, 
erythrocytes, granulocytes, monocytes, lymphocytes and 
smooth muscle cells in lower numbers.

Microparticles are composed of a phospholipid bilayer and 
cytosolic components such as enzymes, transcription factors, 
and mRNA.[3] Under a resting state, phosphatidylserine is 
located in the inner monolayer. When the concentration 
of calcium rises in the cytosol, for example during cell 
activation or apoptosis, phosphatidylserine translocates 
to the outer layer, which ultimately leads to the escape of 
MPs from cytoskeleton and degradation by Ca2+ dependent 
proteolysis.[4]

Microparticles are found in low concentrations in the 
plasma under physiological conditions. However, the 
circulating levels are increased in pathological conditions 
such as atherosclerosis, sepsis, diabetes, chronic severe 

hypertension, preeclampsia, etc.[3,5] Importantly, a recent 
study showed significantly higher levels of endothelial 
MP (EMP) but not platelet MP (PMP) in the sudden cardiac 
death patients compared with the ST‑segment elevated 
myocardial infarction  (STEMI) patients, suggesting a 
crucial role of MPs in acute coronary events.[6] It was 
also found that the EMP level can predict major adverse 
cardiovascular and cerebral event risk in a sample of 200 
CHD patients.[7] Another study specified that only those 
activated EMPs  (CD62E positive) but not the apoptotic 
EMPs could predict cardiovascular events in 300 patients 
with a recent stroke.[8] MPs were increased in CHD patients 
comparing with non‑CHD patients, with the amount of 
PMPs and EMPs higher in acute coronary syndrome (ACS) 
patients than stable angina patients.[9] A cross‑sectional 
study of 190 healthy males found that the PMP count was 
significantly correlated with the 10  years Framingham 
CHD risk score.[10] In 488 consecutive patients with various 
CHD risks, plasma EMP was found to be a significant and 
independent predictor of future cardiovascular events during 
a three years follow‑up, highlighting the prognostic value of 
EMP in CHD patients.[11]

The reports above strongly indicate that MPs may play 
important roles in the pathogenesis of CHD. Here, we 
summarize the possible pathogenic mechanisms of MPs in 
modulating inflammation, coagulation, endothelial function 
and angiogenesis. The outline of this review is as follows: 
The first part describes current MPs isolation and detection 
methods; The second part describes possible pathogenic 
mechanisms of MPs.

Isolation and Detection of Microparticles

The quantification of MPs is important for establishing a 
consistent standard of research. Unfortunately, it is not easy 
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because of MPs’ small size  (reported diameters ranging 
between 100 nm and 1 μm),[12] which are below the detection 
range of conventional detection methods. As a consequence, 
the isolation protocols have not been standardized. Moreover, 
the results could be influenced by preanalytical factors such 
as venipuncture, time between blood collection and handling, 
the anticoagulant, centrifugation and washing procedures, 
the presence of lipoprotein particles and small platelets, and 
the viscosity of blood. Therefore, it was suggested that blood 
be withdrawn using a large diameter needle, and a tourniquet 
be only applied for locating the vein. Sodium citrate, 
ethylenediaminetetraacetic acid, and citrate, theophylline, 
adenosine, and dipyridamole anticoagulants could be used 
for blood collection, with blood immediately centrifuged 
to isolate plasma at a speed determined experimentally.[13]

Several methods have been employed to measure MPs 
[Table  1, adapted from van der Pol et  al.],[13] of which 
fluorescent flow cytometry was most commonly used. It 
applied fluorescent labeled specific antibodies to identify 
the cellular origin of MPs. These antibodies could 
distinguish MPs derived from PMP, leucocytes  (LMP), 
and EMP cells. A list of such antibody combinations has 
been published on the Forum “Measuring circulating 
cell‑derived MPs” [Table 2, adapted from Jy et al.].[14] It 
has shown that differences exist in the isolation of MP, 
means of generic MP detection, and cell lineage‑specific 
antigenic markers used.

For each method, the detection limit, ability to measure 
the size distribution and concentration, ability to provide 
biochemical information, and the measurement time are 
estimated. A  method that is incapable, capable but with 
limitations, or capable of providing information on size 
distribution, concentration, or biochemical information is 
indicated by −, −/+, and +, respectively. The measurement 

times shorter than one minute and longer than one hour are 
indicated by + and +++, respectively.

Microparticles and Endothelial Function

Endothel ium has  mult iple  funct ions  including 
antiinflammation, anticoagulation, antithrombosis, vascular 
tone control, and vascular wall permeability maintenance.[15] 
Many CHD risk factors have been found to impair endothelial 
functions.[16] As a result, endothelial dysfunction is thought 
to be an initiating process in CHD.[17] Elevated MP levels 
were also associated with many cardiovascular risk factors, 
which have been proven to impact endothelial function, 
such as obesity, hyperlipoproteinaemia, hypertension, 
and diabetes.[18] It has been found that MPs from patients 
with acute myocardial infarction can cause endothelial 
dysfunction in rat aorta through the endothelial nitric oxide 
synthase  (eNOS) pathway while MPs from nonischemic 
patients had no such effect.[19,20] Another study showed 
that MPs from metabolic syndrome patients could reduce 
nitric oxide and superoxide anion production, resulting 
in endothelial dysfunction. In vivo injection of MPs 
from metabolic syndrome patients into mice impaired 
endothelium‑dependent relaxation and decreased eNOS 
expression.[21] These results suggested a potential link 
between MPs and endothelial dysfunction.

In a study of 50 patients with CHD, the levels of EMP were 
increased in endothelial dysfunction patients defined as a 
loss of vascular relaxation following acetylcholine infusion 
during an angiographic study.[22] In a study of 84 patients 
with CHD, EMP levels were increased, and the EMP levels 
were correlated with severity and location of coronary artery 
stenosis.[23] Higher EMP levels were noticed in patients with 
ACS compared with stable angina patients.[9] Surprisingly, 
patients with stenosis of the left anterior descending artery 

Table 1: Compare of common MP separation methods

Methods Detection limit Size distribution Concentration Biochemical information Measurement time
Scattering flow cytometry ≥ 300 – 500 nm − +/− − +
Fluorescent flow cytometry Single quantum dot − +/− + +
Impedance flow cytometry ≥ 300 – 500 nm − +/− − +
Electron microscopy 1 nm + − +/− +++
Capture based assay Single MP − +/− + +
MP: Microparticle.

Table 2: Compare of common separation methods for Cell‑derived MPs

Method Isolation MP 
(speed, time)

Generic MP 
detection

Platelet MP detection Endothelial MP detection Leukocyte MP 
detection

Flow cytometry 18,000×g, 30 minutes Annexin V CD62P, CD61, CD63 CD31, CD62E or CD144 CD4, CD8, etc.
Flow cytometry − Annexin V – CD51, CD144 or CD146 CD45
Capture based 

assay
− Annexin V, 

tissue factor
CD62P or GPIba CD31 or CD62E CD45

Flow cytometry − − CD41 or CD42b and CD31 CD31 +/ CD42 − or CD62E CD45
ELISA − − GP IX (capture) CD62P, CD40 L − −
Flow cytometry 100,000×g, 30 minutes Annexin V CD41a CD144 CD14 (monocyte)
MPs: Microparticles; ELISA: Enzyme linked immunosorbent assay.
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were associated with higher EMP levels comparing with right 
coronary artery or triple vessel disease, EMP levels were 
also higher in patients with early coronary artery stenosis 
(20%–45%) than severe coronary artery stenosis (> 45%),[24] 
indicating that EMP may participate in the early pathological 
process of CHD. There were reports that MPs from human T 
lymphocytes that harbor Sonic Hedgehog (Shh) can improve 
endothelial function and prevent endothelial dysfunction 
induced by ischemia/reperfusion.[25] The injection of 
engineered MPs from human T lymphocytes Shh could 
prevent endothelial dysfunction and promote angiogenesis in 
animal models.[26‑28] The reports above suggest that MP levels 
have the potential of being biomarkers as well as therapeutic 
targets of endothelial dysfunction in CHD patients.[29,30]

Pro‑inflammatory Effects of Microparticles

Atherosclerosis is the most frequent underlying cause 
of cardiovascular disease, while acute thrombosis in 
atherosclerotic plaque with an eroded surface is the 
main cause of ACSs including unstable angina and acute 
myocardial infarction.[31] Inflammation was found to play 
a key role in the development of plaques, plaque rupture 
and thrombus formation.[32,33] There is increasing evidence 
indicating that the number of MPs increases during 
inflammation in  vivo.[21,34,35] It is reported that MPs from 
leukocytes could stimulate the expression of cytokine 
related genes in vitro through tyrosine phosphorylation of 
c‑Jun NH2‑terminal kinase‑1.[36‑38] These cytokines included 
interleukin‑1 (IL‑1), IL‑6, IL‑8, monocyte chemoattractant 
protein‑1, tissue factor  (TF), tumor necrosis factor‑alpha 
and platelet‑activating factor, which all contributed 
to inflammation.[38,39] Our unpublished results showed 
that inflammatory marker high‑sensitivity C‑reactive 
protein (CRP) was positively correlated with LMP in STEMI 
patients (R2 = 0.79, P < 0.01, n = 24), indicating the potential 
role of MPs in inflammation in CHD patients.

Adhesion to and rolling of monocytes and neutrophils on 
the endothelium is an important step in atherosclerosis, and 
MPs were proven able to increase the expression of adhesion 
molecules.[40] It was found that high shear stress‑induced 
activation of platelets could lead to increased PMPs, which 
enhanced the expression of cell adhesion molecules in 
endothelial cells.[41] In addition, once MPs were exposed to 
complement components C3 and C4, the classical complement 
pathway could be activated.[42] Moreover, CRP, which is a 
sensitive marker of inflammation,[43] was found on the surface 
of MPs.[44,45] PMPs were reported to induce pro‑inflammatory 
molecules cyclooxygenase‑2 and intercellular adhesion 
molecule‑1 expression in endothelial cells,[37] while MPs 
from lymphocytes could activate the inflammatory nuclear 
factor‑kappa B pathway.[46] These reports suggest that MPs are 
involved in multiple processes of the inflammatory response.

Pro‑coagulant Potential of Microparticles

The plaque disruption and organization of thrombi contributes 
to the rapid progression of atherosclerosis, where the 

importance of blood coagulation should not be neglected.[47] 
It is found that the PMP surface is approximately 50–100 fold 
more pro‑coagulant than the surface of activated platelets.[48] 
Moreover, MPs with pro‑coagulant potential were increased in 
the peripheral circulating blood of patients with ACSs.[49] PMPs 
have been reported as a valid marker for a pro‑thrombotic state 
through a survey of 54 stable CHD patients.[50]

Tissue factor on monocyte MPs, which is a receptor for 
factor VII and factor VIIa, was proven to be crucial in 
coagulation.[51,52] MPs correlate with artherosclerosis 
clinically. STEMI patients have high levels of pro‑coagulant 
MPs, and an increased risk of fibrinolysis failure.[53] MPs were 
also present in atherosclerotic plaques, which are considered 
to promote TF‑dependent coagulation, leading to thrombosis 
and arterial occlusion.[54,55] TF played an indispensable 
role in coagulation; its function was dependent on platelet 
P‑selection receptor P‑selectin glycoprotein 1, which was 
on the surface of monocyte MPs.[55,56] PMPs and EMPs 
provided binding sites for coagulation factors IXa, VIII, Va, 
and IIa.[57,58] EMPs also express ultra‑large von Wille brand 
factor multimers, which can promote platelet aggregation.[59]

Microparticles and Angiogenesis

Angiogenesis is a complicated process that includes endothelial 
cell proliferation, migration, differentiation, and morphological 
change.[60] Angiogenesis processes after myocardial infarction 
can improve heart function.[61] In recent studies, MPs were 
found to be involved in angiogenic processes such as tumor 
neovascularization, diabetic retinopathy, wound healing, and 
CHD.[60] MPs derived from many types of cells are found to 
have angiogenic functions.[60] In a rat myocardial infarction 
model, ligating the left anterior descending coronary artery, 
PMPs injection into the peri‑ischemic region resulted in a 
marked increase in new capillaries.[62] PMPs were found to be 
involved in almost all steps of angiogenesis through PI3‑kinase 
and extracellular signal‑regulated kinase pathways.[63,64] EMPs 
could promote vessel formation through elevating matrix 
metalloproteinase‑2 (MMP‑2) and MMP‑9 activity,[65,66] which 
catalyze matrix degradation and angiogenesis. MPs derived 
from Shh, which act as an inter‑cellular signal responsible 
for cellular fate decisions, can up‑regulate angiogenic growth 
factors vascular endothelial growth factor  (VEGF) and 
angiopoietins.[67] It was further confirmed that treatment of 
endothelial cells with MPs derived from Shh induced and 
accelerated the formation of capillary‑like structures in vitro 
through up‑regulation of pro‑angiogenic factors VEGF, 
hepatoctye growth factor, and fms-like tyrosine kinase 
(FLT)‑1.[68] This pro‑angiogenic function could be inhibited 
by blocking the Shh signaling with cyclopamin.[38]

However, there are some contradictory results as well. EMPs 
were also reported to play an antiangiogenic role through 
up‑regulation of antiangiogenic reactive oxygen species.[69,70] 
The differences may be due to different concentrations of 
EMPs because lower concentrations of EMPs were reported 
to promote angiogenesis, whereas higher concentrations 
could suppress angiogenesis.[38,71]
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Perspectives

Given the correlation between MPs and the development of CHD, 
MPs have the potential of being biomarkers for CHD [Table 3]. 
For example, EMPs were reported as a predictor of future 
cardiovascular events in a population with high Framingham 
risk scores.[11] In ACS patients, circulating Annexin V positive 
MPs were strongly correlated with the occurrence of myocardial 
infarction or death.[3,72] In asymptomatic subjects, circulating 
LMPs predicted subclinical atherosclerosis as evaluated by 
plaque numbers in several vascular sites.[3] However, the 
prognostic potential of MPs has not been elucidated, additional 
clinical outcome studies are necessary.

In consideration of their active involvement in multiple 
processes of atherosclerosis, MPs have been proposed as new 
therapeutic targets in the treatment of CHD. First, MPs could 
work as vectors for gene therapy. It has been reported that MPs 
from lung cells contain mRNA that could be released into bone 
marrow cells, and modulate their phenotypes.[73‑76] Moreover, 
engineered MPs generated in  vitro could also incorporate 
mRNA into target cells and modify their phenotype.[38] 
Recently, it was reported that inhaled and oral MPs have been 
developed to deliver therapeutics.[77,78] Second, it has been 
reported that transfection of glioma cells with the oncogenic 
form of the epidermal growth factor receptor (EGFR) induces 
MPs over‑expressing EGFR, which could be transferred to 
cells lacking this receptor.[76] This finding demonstrated a 
natural way to generate MPs overexpressing certain receptor 
molecules. Moreover, due to their pro‑coagulation function, 
MPs may ameliorate platelet function in diseases such as 
thrombocytopenia.[79]

In addition to the molecular application of MPs mentioned 
above, several drugs may influence the release of MPs. 
Statins, for instance, could reduce the expression of 
GPIIIa antigen, P‑selectin and TF on PMPs in patients 
with diabetes, dyslipidemia or peripheral arterial occlusive 
disease,[80‑82] while statins exert controversial effects on EMP 
levels.[83,84] PMPs release could be reduced by ticlopidine and 
clopidogrel.[85,86] Aspirin could reduce the number of EMPs 
and PMPs in patients with CHD.[87] However, an important 
question remains how to control particular MPs to an ideal 
level, so as to achieve benefit actions and limit adverse effects. 
Also, the comprehensive effects of MPs need to be fully 
evaluated before clinical use. MPs as powerful diagnostic and 
therapeutic tools may benefit more CHD patients in the future.
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