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Recent advances in the metagenomics field have had huge

effects on the identification and characterization of newly

emerging viral pathogens. To allow timely and efficient

responses to future viral threats, an integrated multidisciplinary

approach utilizing expertises in several areas, including clinical

assessment, virus surveillance, virus discovery, pathogenesis,

and the molecular basis of the host response to infection, is

required. It requires the scientific community involved in virus

discovery to go one step beyond.
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Introduction
After an initial decrease in industrialized countries in the

first half of the last century, the burden of infectious

diseases on human health worldwide has markedly

increased in the past decades [1]. A complex mix of

predisposing factors in our modern world has created

new opportunities for the emergence of infectious diseases

in animals and humans alike. This is largely related to

globalization, environmental and anthropogenic changes,

and the changing nature of contacts between animals and

humans [1,2�,3��,4]. Most of these emerging events in

humans are caused by viruses that have their origin in

the animal world [2�,5–8,9�,10,11]. Following initial zoo-

notic transmissions these viruses usually go through a

period of adaptation to the new human host, after which

they may spread to cause epidemics or eventually a true

pandemic. The most devastating examples of pandemics

caused by initially zoonotic viruses are the acquired immu-

nodeficiency syndrome (AIDS) pandemic caused by

human immunodeficiency virus (HIV) that spilled over

from chimpanzee reservoirs and Spanish influenza that

spilled over from bird reservoirs [12–14]. Other examples

are severe acute respiratory syndrome (SARS) coronavirus
www.sciencedirect.com
from bats and civet cats, swine influenza A virus H1N1

2009, and Nipah virus from bats and pigs [15–17,18�]. The

human mortality figures associated with these emerging

viral diseases ranged from hundreds in limited epidemics

to many millions in pandemics. For example, the ongoing

AIDS pandemic caused the deaths of tens of millions of

people, whereas SARS that had apparently spilled over

from a bat reservoir, and caused a starting pandemic could

for the first time in history be halted before more than one

thousand people had died [19]. A major impact of newly

emerging and re-emerging virus infections is also seen on

animals. In wildlife it poses a direct threat to biodiversity,

and in domestic animals it causes huge losses to livestock

production. The latter may be due to direct mortality or to

culling strategies for disease control [2�].

In this light it is important to create a well coordinated

global effort to monitor viral pathogens to gain a thorough

understanding of the diversity of viruses in animals and

humans, virus transmission routes, and virus tropism

providing information about potential pathogenic threats

from animal reservoirs to human health [2�,18�,20]. Thus,

an integrated multidisciplinary approach utilizing exper-

tises in several areas, including clinical assessment, virus

surveillance, virus discovery, virus diversity, evolutionary

processes, epidemiology, pathogenesis, and the molecular

basis of the host response to infection, will be required to

understand the dynamics of infection and to mitigate

potential effects of future infectious threats (Figure 1).

Clinical assessment and surveillance
One of the most overlooked but crucial aspects in iden-

tifying new infectious disease threats is the role that

clinicians, veterinarians and epidemiologists play in the

recognition of idiopathic cases of newly emerging virus

infections. These professionals are the first to recognize

relatively uncommon or completely new infectious dis-

eases, on the basis of changing clinical and epi-

demiological trends. They should participate in well-

coordinated collaborative networks that may function

as our first line of defence against newly emerging viruses.

These networks should be involved in syndrome surveil-

lance in combination with routine surveillance activities

for known pathogens in both animals and humans to

identify at a very early stage, emerging viral infections

that would otherwise fly under the radar [16] This is

essential for a timely response that ideally could even

abrogate the viral threat altogether.

Key human target populations for these syndrome and

virus surveillance activities are those with either a high

exposure to wild or domestic animals, such as hunters,
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Figure 1
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Viral genomics aims at identification and characterization of emerging and re-emerging viruses. It requires different disciplines in an integrated

response to allow viruses to be discovered and their potential pathogenic threat to be effectively countered.
butchers, farmers, veterinarians, and zoo workers, or

populations with increased susceptibility, such as inject-

ing drug users and immunocompromised individuals. In

addition, syndrome and virus surveillance should focus on

domestic animals as well as wildlife with key reservoir

species that have previously shown to represent an immi-

nent health threat to humans like domestic poultry, pigs

and ruminants, as well as wild birds rodents and bats,

respectively. Such efforts will lead to the identification of

future viral threats and allow early detection of emer-

gence in humans and control of their eventual spread

[2�,3��,18�,20]. In combination with knowledge about the

molecular basis of pathogenicity and transmissibility in

the respective species, this information may even allow

prediction of the viruses that are most likely to cross the

species barrier and what is required for the evolutionary

transition of an animal virus into a human pathogen.

Virus discovery — state of the art techniques
Despite the use of a wide range of sensitive diagnostic

assays, in a relatively large proportion of patients and

animals suffering from apparently infectious disease, no

pathogens can be detected, suggesting the presence of

unidentified viruses in human and animal populations. In

the pre-genomics era, new viruses were first identified by
Current Opinion in Virology 2013, 3:e1–e6
animal experiments, virus isolation in tissue culture or

standard molecular detection methods. Nowadays, in

order to discover and isolate new or (re-)emerging

viruses, it is crucial to develop and implement a set of

novel molecular techniques, which, when applied as a

technology platform, increase the success rate of finding

new viruses in humans and animals that may or may not

be associated with new or already identified disease

entities.

Besides classical continuous cell cultures, in which many

of the recently discovered viruses fail to replicate, several

new ex vivo culture systems are being developed. Natural

viral replication circumstances may be best mimicked by

infection of organ cultures of surgery-derived by-product

tissues. An example of the success of this approach is

human rhinovirus C (HRVC), recently implicated in

upper and lower respiratory tract infections of children

and individuals with chronic respiratory diseases.

Although HRVC was discovered in 2006 [21], efforts to

propagate the virus culture failed until Bochkov and

coworkers [22] employed human organ culture of sinus

mucosa to serially propagate human rhinovirus C, which

ultimately allowed complete full-length genome sequen-

cing and cloning [22]. Likewise, ex vivo swine respiratory
www.sciencedirect.com
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and enteric tract cultures have been used to study influ-

enza virus infections in their natural target cells [23–25].

With the development of PCR and novel sequencing

techniques, we have seen an enormous increase in the

identification and characterization of viral genomes.

This has lead to development of new species-specific

assays for routine diagnostic surveillance in animals

and humans. In addition, generic PCR assays, that is

PCR assays specific for a broader taxonomic range than

one virus species (e.g. a whole virus genus or family)

were developed which allow the identification of new

virus species within already known virus families [26–
29]. A method for comprehensive and unbiased

analysis of viral prevalence in biological specimens

was devised using long oligonucleotide (70-mer)

DNA microarrays with the potential to simultaneously

detect hundreds of viruses [30]. The ‘pan-viral micro-

array’ not only allows detection of known viruses, but

also discovery of new viruses if they are sufficiently

related to those already known to permit specific

hybridization [31–34].

Breakthroughs in the field of metagenomics have had far-

reaching effects on the identification and characterization

of newly emerging viral pathogens and on the recognition

that a growing number of diseases that were once attrib-

uted to unknown causes are actually caused or triggered

by infectious agents [1,35]. Viral metagenomics assays

rely on sequence-independent amplification of nucleic

acids from clinical samples, in combination with next-

generation sequencing platforms and bioinformatics tools

for sequence analysis [3��,10,18�,35–37]. They are rela-

tively simple and fast, and allow detection of new viruses

even if they are highly divergent from those that are

already known [3��]. Since, the first application of meta-

genomics to the field of virology [38], it has been increas-

ingly applied for virus discovery purposes resulting in an

>100-fold increase in related publications in this field in

2010 and a substantial increase in the identification of

new viruses [3��,39,40��]. With the development of these

new techniques, the identification of a new virus and its

complete genomic characterization can be done in a

matter of days and at a fraction of the costs compared

to only a few years ago [41,42�].

It is unlikely, however, that genomics-based tools will be

used in a clinical diagnostic setting within the next

decade. Methods need to be cost–effective and in a

high-throughput format, which requires investment in

bioinformatics tools, databases, and data management.

Molecular diagnosticians need to gain experience in, and

have the ability to interpret the data generated by these

radically different genomics-based techniques and hur-

dles regarding patient privacy issues may need to be

resolved before transition of genomics-based tools from

a research setting to the clinic.
www.sciencedirect.com
One step beyond . . .
After virus discovery and initial genomic characterization

of the viral genome, an integrative approach to determine

epidemiology and pathogenicity of the virus and the

disease it causes is required in order to develop and tailor

effective intervention and containment strategies. Many

factors, among which immune status, age, and nutritional

status, play an important role in the clinical outcome of

infection. This underlines the importance of studying

both host and pathogen parameters in an integrated way

in the combat against virus infections. Comparisons be-

tween closely related viruses in different but related host

species provides crucial information into various host path-

ways involved in different outcomes of disease. This is

perhaps best exemplified by simian immunodeficiency

virus (SIV) infections in different primate host species.

Generally, non-human primate species that are naturally

infected by SIV do not develop AIDS whereas non-natural

hosts, like, for example humans when infected with HIV,

do develop immunodeficiency and AIDS. Genomics-

based approaches to delineate host responses to infection

in both natural and non-natural hosts revealed that non-

natural hosts have a higher viral load, immune activation,

loss of certain T-cell subsets, and higher production of

interferon-a in response to SIV infection than natural hosts

[43–45]. Thus, the study of key interactions between host

and pathogen may unravel possibilities for development of

(multi-targeted) therapies designed to limit virus replica-

tion and to mitigate (immune)pathology and transmissi-

bility. A few examples of recent important zoonotic events

and the role of an integrative approach to elucidate their

pathogenesis in order to combat such viral infections will

be discussed below.

Highly pathogenic H5N1 avian influenza virus may cause

infection of the lower respiratory tract and severe pneu-

monia in humans [46]. In contrast, human influenza A

H1N1 and H3N2 viruses are important causes of upper

respiratory disease, but rarely cause pneumonia [47]. Viral

attachment to the host cell is a critical determinant for

infection and tropism of the virus and studies into re-

ceptor attachment of human influenza A viruses and avian

H5N1 influenza A virus revealed that the pattern of

attachment in the respiratory tract coincides well with

the difference in disease outcome. H5N1 influenza A

virus primarily attaches to type II pneumocytes, alveolar

macrophages, and nonciliated cuboidal epithelial cells in

terminal bronchioles [48], whereas seasonal human influ-

enza A viruses attaches primarily to tracheal and bronchial

epithelium and type I pneumocytes in the alveoli [49].

Essentially, human seasonal influenza viruses mainly

bind to the upper respiratory tract whereas H5N1 avian

influenza viruses have a predilection for the lower respir-

atory tract [50].

The pattern of receptor attachment also correlates with

marked differences in the efficiency of human-to-human
Current Opinion in Virology 2013, 3:e1–e6
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transmission of influenza A viruses, with H5N1 influenza

A viruses displaying a notoriously low level of human-to-

human transmission. There are concerns that the H5N1

virus could acquire molecular characteristics that would

allow it to become more readily transmissible between

humans and initiate a pandemic. The binding preference

of the HA surface glycoprotein of H5N1 influenza A virus

can be changed from avian a-2,3-linked sialic acid recep-

tors to the human a-2,6-linked sialic acid receptors result-

ing in the associated change in tropism for the upper

respiratory tract [51]. To study the conditions that would

indeed allow H5N1 influenza A virus to acquire the

ability of aerosol transmission in vivo, H5N1 influenza

A virus was genetically modified to study whether the

virus could be transmitted through air. Five amino acid

substitutions proved to be consistently present in air-

borne-transmitted H5N1 influenza A viruses in ferrets

[52–54]. The collective data suggest that highly patho-

genic avian influenza H5N1 viruses have the potential to

evolve directly in ways that allow airborne transmission

between mammals, without reassortment in any inter-

mediate host, illustrating the risk that these viruses may

eventually become pandemic in humans. The next step is

to perform a risk assessment of the likelihood of such a

virus to arise and spread using computer simulations and

associated laboratory experiments. This will ultimately

allow informed decision making to justify efforts for

pandemic preparedness for highly pathogenic H5N1

avian influenza A virus.

Recently, a previously unknown coronavirus HCoV-

EMC was isolated from a patient presenting with acute

pneumonia and renal failure with fatal outcome in Saudi

Arabia [55]. The clinical presentation of the patient was

remarkably similar to that caused by the SARS corona-

virus in SARS patients during the outbreak in 2002/2003

[55,56], whereas most infections caused by other human

coronaviruses are relatively mild. The functional receptor

for SARS coronavirus in humans is angiotensin-convert-

ing enzyme 2 (ACE2) [57], but it was soon established

that HCoV-EMC uses a different receptor [58]. Fourteen

human HCoV-EMC cases have been identified to date,

resulting in eight fatalities from respiratory disease. The

transmission chain of HCoV-EMC remains unclear and

could be explained by human-to-human transmission as

well as repeated introductions from a reservoir animal

host. The complete genome of the virus was character-

ized soon after the discovery of the virus [41]. On the basis

of the genetic relatedness between HCoV-EMC and bat

coronaviruses, it is most likely that this virus emerged

from bats. Such host species switching is plausible in light

of the recent identification of dipeptidyl peptidase 4

(DPP4), an evolutionary well-conserved protein, as the

functional receptor of HCoV-EMC and the ability of

HCoV-EMC to use bat DPP4 as a functional receptor

[59]. The identification of the receptor will contribute to

the understanding of the pathogenesis and epidemiology
Current Opinion in Virology 2013, 3:e1–e6
of HCoV-EMC and may facilitate development of anti-

viral strategies.

Interestingly, SARS coronavirus is also thought to

originate from bats, by recombination between two bat

viruses. The resulting bat virus supposedly was trans-

mitted first to palm civets (Paguma larvata) or other

carnivores, and subsequently to humans at live animal

markets in southern China [17]. Studies into the patho-

genesis of the SARS coronavirus revealed that cynomol-

gus macaques (Macaca fascicularis) show lung pathology

similar in nature to that observed in human adults with

SARS upon infection [60,61]. Using a combined approach

of animal experiments with immunohistochemistry and

functional genomics, it was shown that the induction of

early interferon signaling may be critical in conferring

protection against SARS coronavirus [61]. This notion

was enforced by showing that aged SARS coronavirus-

infected macaques show more severe pathology under

similar viral replication levels, which is associated with an

increase in differential gene expression, inflammation,

and reduced type I interferon expression compared to

young adult macaques [62]. Interestingly also in humans a

clear age-related susceptibility to developing clinical

symptoms and severe disease has been noted. Sub-

sequent therapeutic treatment of aged macaques with

type I interferon reduces pathology in aged SARS cor-

onavirus infected macaques without affecting virus repli-

cation levels [62], suggesting that not only prophylactic,

but also therapeutic treatment with pegylated interferon-

a should be considered as antiviral treatment [63]. Of

note, however, is that subsequent studies showed that

different non-human primate species develop pathology

upon SARS coronavirus infection through distinct acute

lung injury pathways [64]. This should be taken into

account when analyzing outcomes of intervention strat-

egies.

Conclusions
The increased threat of emerging and re-emerging virus

infections to human and animal health asks for a timely

and effective response to counteract these viral infec-

tions. This has been recognized and has resulted in the

formation of quite a number of initiatives focusing on

improved surveillance, virus discovery, and effective

response management. For example, the European

funded Seventh Framework Project (FP7) entitled Euro-

pean Management Platform for Emerging and Re-emer-

ging Infectious disease Entities (EMPERIE) contributes

to effectively countering the potential public health

threat caused by new and emerging infectious diseases

in Europe by establishing a powerful network capable of

structural and systematic prediction, identification, mod-

eling and surveillance of infectious diseases, health

threats and pathogens. A nationally funded initiative in

The Netherlands — the VIRGO consortium — focuses

on providing the infrastructure for virus discovery and for
www.sciencedirect.com
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progressing our knowledge of viruses and the mechan-

isms of mutual virus-host interactions which will feed into

the subsequent development of novel interventions,

diagnostics and prognostics at the levels of both individ-

ual patients and populations. The FP7 European funded

PATHSEEK consortium will set up a disruptive diag-

nostic technological pathogen sequencing platform that

will deliver in 24–48 hours, all possible drug resistance

mutations as well as data on nosocomial infection, from

one patient sample in one single assay. Another FP7

European funded consortium called ANTIGONE

(ANTIcipating the Global Onset of Novel Epidemics).

These and comparable or related consortia which become

increasingly interlinked, provide international collabor-

ations with different expertise areas to allow broad range

responses to mitigate potential effects of future infectious

threats (Figure 1) with quite some success stories already.
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