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Abstract 

Background:  Cancer evolution consists of a stepwise acquisition of genetic and 
epigenetic changes, which alter the gene expression profiles of cells in a particular tis‑
sue and result in phenotypic alterations acted upon by natural selection. The recurrent 
appearance of specific genetic lesions across individual cancers and cancer types sug‑
gests the existence of certain “driver mutations,” which likely make up the major con‑
tribution to tumors’ selective advantages over surrounding normal tissue and as such 
are responsible for the most consequential aspects of the cancer cells’ gene expression 
patterns and phenotypes. We hypothesize that such mutations are likely to cluster with 
specific dichotomous shifts in the expression of the genes they most closely control, 
and propose GMMchi, a Python package that leverages Gaussian Mixture Modeling to 
detect and characterize bimodal gene expression patterns across cancer samples, as a 
tool to analyze such correlations using 2 × 2 contingency table statistics.

Results:  Using well-defined simulated data, we were able to confirm the robust 
performance of GMMchi, reaching 85% accuracy with a sample size of n = 90. We were 
also able to demonstrate a few examples of the application of GMMchi with respect to 
its capacity to characterize background florescent signals in microarray data, filter out 
uninformative background probe sets, as well as uncover novel genetic interrelation‑
ships and tumor characteristics. Our approach to analysing gene expression analysis 
in cancers provides an additional lens to supplement traditional continuous-valued 
statistical analysis by maximizing the information that can be gathered from bulk gene 
expression data.

Conclusions:  We confirm that GMMchi robustly and reliably extracts bimodal patterns 
from both colorectal cancer (CRC) cell line-derived microarray and tumor-derived 
RNA-Seq data and verify previously reported gene expression correlates of some well-
characterized CRC phenotypes.

Availability:  The Python package GMMchi and our cell line microarray data used in 
this paper is available for downloading on GitHub at https://​github.​com/​jeffl​iu6068/​
GMMchi.
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Introduction
Gene expression data are one of the most widely used tools in multiple aspects of under-
standing cell biology. There is a range of tools developed to evaluate expression levels 
including the microarray and RNA-seq technologies. Gene expression data produced 
across all platforms inherently results in a continuous-valued dataset representing the 
levels of expression of individual genes. The field of computational gene expression anal-
ysis is thus an analysis of continuous distributions and the correlative understanding of 
between genes or sets of genes activities within a biological context [5].

In cancer biology, tumorigenesis is driven by stable or meta-stable alterations at the 
genetic or epigenetic levels. Many of these changes probably lead to minor changes in 
the phenotype of a cell and minimal, if any, reproductive advantage. Some genetic muta-
tions or meta-stable epigenetic expression changes that are common across different 
types of cancers do however lead to phenotypes that confer considerable reproductive 
advantages characteristic of a tumor, such as uncontrolled proliferation countering the 
control of normal differentiation, anti-apoptosis, and immune evasion [2]. These muta-
tions and gene expression changes causing such strong reproductively advantageous 
phenotypic changes are known as driver mutations or epigenetic drivers because it is the 
successive accumulation of these advantageous genetic or epigenetic changes that drives 
the major development and progression of a cancer.

A single selectively advantageous mutation or epigenetic change may often lead to 
changes in the expression level of a whole set of other genes. This will give rise to a clus-
ter of gene expression changes associated with such a particular mutation or meta-stable 
epigenetic change. The expectation is then that each expression distribution of a gene in 
such a cluster, over a range of cancers, will be bimodal with the mutation or epigenetic 
change associated with one mode and the corresponding normal version with the other 
mode of the bimodal distribution [18].

The more closely a change in a gene expression level is associated with a given muta-
tion or epigenetic change, the more likely it is to give rise to a bimodal distribution 
differentiating wild-type and mutation. More generally, on the other hand, the more 
striking is the distinction between two particular phenotypes over a range of cancers, 
the more likely it is to have a measurable effect on the biology of the cell, and the more 
likely it is to be due to a single mutation or stable epigenetic change. This is simply an 
extension of the principle by which Mendel established his laws of inheritance. Thus, the 
more distinctive is the bimodality of the expression of a gene over a range of cancers, the 
more likely it is to be due to, or strongly associated with, a genetic mutation or meta-sta-
ble epigenetic change that is giving an advantage to the outgrowth of the tumour, namely 
a cancer driver. The interest is then to identify striking bimodal gene expression distri-
butions, over a given range of cancers, that lead back to novel mutations or epigenetic 
drivers. Here this is approached by fitting mixtures of two normal distributions, called 
Gaussian Mixture Models or GMM, to the gene expression data [12, 18].

As shown in Fig. 1, the most common distribution patterns found in gene expression data 
are unimodal or bimodal distributions consisting, respectively, of 1 or 2 normal (Gaussian) 
distributions. The distributions shown in Fig. 1 are histograms of gene expression data over 
a collection of 78 cell lines derived from different colorectal cancers (CRC), with the num-
ber of cancer cell lines on the y-axis and the expression levels in log2 from micro-array data 
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on the x axis. The distribution for the gene GJC2 (coding for a gap junction protein) is clearly 
unimodal and well fitted by a single normal distribution, while that for gene CDX1 (coding 
for a homeobox transcription factor) is clearly well fitted by a mixture of two normal distri-
butions. One of the major challenges for GMM is to test the validity of the assumption that 
the data either fit a unimodal normal distribution or a mixture of two normal distributions. 
In Fig. 1 the distribution for the gene CDH1, encoding E-cadherin, only fits a normal distri-
bution at its upper end, while having a ’tail’ of lower values that do not fit a normal distribu-
tion. We coined the phrase the ‘tail problem’ to describe a non-normally distributed tail that 
is inadequately dealt with by traditional GMM which assumes input data are all expected 
to be mixtures of normal distributions. In this paper, we describe a systematic approach to 
a novel GMM method capable of identifying normal and non-normal components across 
data on samples of any given form of expression data and give examples of the method’s 
application to expression data on a panel of CRC derived cell lines.

Pipeline development: introduction
Gene expression categorization

The primary objectives of this analytical approach are twofold:

1.	 Develop an unsupervised method for determining whether a gene’s expression pat-
tern across a set of cell or tissue samples is unimodal or bimodal. If the expression 
data are a mixture of normal and non-normal components, separate the samples into 
normal and non-normal components before making the appropriate cutoff separat-
ing the samples into individual subgroups.

2.	 For genes with bimodal expression patterns, analyze their patterns of association 
into sub-group clusters using 2 × 2 contingency table analysis and explore the asso-
ciations of these clusters with gene mutations and biological properties, such as pat-
terns of differentiation.

Fig. 1  Common distributions in gene expression analysis: examples of common histogram distributions seen 
in gene expression data from a panel of 78 colorectal cancer (CRC) derived cell lines. Expression levels based 
on microarray analysis are given as log2 on the x-axis, and numbers of samples with given expression levels 
on the y-axis. The continuous curves are fitted normal distributions and the vertical dotted red line marks the 
best estimate for separating low and high levels of expression, derived as described later. The mRNA for the 
gene coding GJC2, a gap junction protein, exhibits a unimodal distribution representing a single Gaussian 
distribution while the mRNA for the gene coding CDX1, a homeobox protein, exhibits a bimodal distribution 
representing two distinct Gaussian distributions. The gene for CDH1, encoding E-cadherin, shows a unimodal 
distribution with a tail of low expression values, whose estimation is one of the main challenges for GMM
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This analytical pipeline takes standard normalized and batch-removed gene expres-
sion datasets as input obtained either from microarrays or by RNA-Seq.

Gaussian mixture modeling

Gaussian Mixture Modeling (GMM) is performed using the sklearn.mixture package in 
Python. The expression pattern of each gene or probe set is examined as a univariate dis-
tribution across the set of samples in the dataset. One or two Gaussian distributions are 
fitted to each distribution, in the latter case allowing for unequal sub-distribution frac-
tions and variances, using the expectation–maximization algorithm built into sklearn.
mixture.GMM. For bimodal gene expression distributions, each sample is given a value 
1 or 2 according to the sub-distribution it more likely belongs to, based on the posterior 
probability outputted by GMM.

Model selection, in particular the choice of either one- or two-Gaussian fitted distri-
butions, is based on maximization of the Bayesian Information Criterion (BIC) defined 
in Eq. (1) or, its approximation, (2):

where LM,G

(

x|θ̂
)

 is the maximized likelihood function of model M with G components, 

with maximizing parameters θ̂ , determined through the EM algorithm, n is the sample 
size, and k is the number of estimated parameters [7]. The BIC is a log-likelihood func-
tion, with a penalty term that increases with the number of parameters to counteract 
overfitting, and which has been shown to perform well in a range of applications [8, 16]. 
BIC is calculated for deciding between fitting our data with one or two Gaussian compo-
nents. The model with the lower BIC value is selected. All data analyzed will be log2
-transformed to better represent data for downstream analysis [11].

Non‑normally distributed tail problem

The challenges faced with directly applying GMM to expression data analysis and the 
identification of bimodal distributions lie within the nature of gene expression datasets. 
Although expression data like many other datasets mostly behave as Gaussian distribu-
tions after log2 transformation [14], a large proportion of gene expression data exhibits 
a pattern where there is a, sometimes quite long, tail of outliers outside the normal dis-
tributions which contain most of the data, as exemplified in Fig. 1. We call this the ‘tail 
problem’. This non-normally distributed tail is inadequately dealt with by GMM which 
assumes input data are all expected to be mixtures of normal distributions.

An example of the tail problem in the returned output of GMM is illustrated in Fig. 2. 
The dashed blue lines in Fig. 2a, c are the GMM fitted normal distributions, while Fig. 2b, 
d are the corresponding Q-Q plots, which show whether the quantiles of the fitted dis-
tributions are as expected for a normal distribution. In Fig. 2b, the data lie perfectly on 
the 450 diagonal lines when plotted against the theoretical normal distributions, indicat-
ing normality for both components of the sample distribution. On the other hand, in 

(1)BICM,G = k log (n)− 2 log LM,G x|θ̂

(2)BIC = χ2 + k ln (n)
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Fig. 2d, the line for the righthand tail distribution is markedly skewed from the diagonal 
at both ends, strongly showing the non-normality of the tail distribution.

A GMM with a Chi‑square pipeline: GMMchi
To deal with the tail problem we need to distinguish between a good GMM fit of two 
normal distributions with different variances and a poor over fit due to a mixture of one 
or two normal distributions with non-normal tail distributions. To make this distinction 
we add iterative Chi-square fitting to GMM and call this GMMchi. There are four steps 
to this iterative optimization process: dynamic binning, tail identification, iterative tail 
trimming, and a final condition criterion. We now address each step of the pipeline in 
turn.

Dynamic binning

The most important factors that determine how a series of individual data on a single 
continuous measurement are presented in a histogram are the number of bins and 

Fig. 2  GMM on a simulated mixture of normal distributions: a a mixture of two Gaussian components fitted 
to a simulated bimodal distribution using sklearn.mixture. The red dotted line represents the separation 
between the two fitted normal components. In the case of two normal distributions, the red dotted line 
is the intersection between the two distributions where the probability of a data point categorized under 
either of the two distributions crosses over from to another. b A Q–Q plot that measures the normality of 
the fitted data by plotting the theoretical quantile of a normal distribution with the computed mean and 
variance against the sample quantile of the input data. Normality is visualized by the scatterplot lying on the 
45-degree line suggesting the quantiles of the theoretical and sample data behave similarly. a, b Examples 
of a bimodal distribution adequately identified by GMM. c A simulated bimodal distribution with a ‘tail’, 
representing a non-normal spread of outliers inadequately fitted by GMM. Compared to b where the dots 
lie on the 45-degree line, d how a non-normal tail can skew the alignment of dots on the 45-degree line of 
the Q–Q plot. The slight uptick of blue dots near the red line represents the small overlap between the tail 
on the right and the normal distribution on the left where the assignment to the distribution to which each 
datapoint belongs is less well defined



Page 6 of 27Liu et al. BMC Bioinformatics          (2022) 23:457 

their widths. This is a particular problem when the number of individual observations 
is not very large. Both the bin width and the number of bins create problems for the 
iterative testing of the fit of the observed data to estimated normal distributions.

To create a fully automated pipeline, we have incorporated the Mann and Wald bin 
criterion [4] defined in Eq. (3):

Here b is the number of bins while n is the number of samples. This method pro-
vides a consistent approach to deciding on the number of bins that best represents 
the data.

Next, since the iterative process within GMMchi is based on the chi-square good-
ness of fit test as the main criterion for measuring the fit of the mixed normal distri-
bution model to the observed data, it is important for the validity of the Chi-square 
test to have at least 5 measurements in each bin. This is achieved by an algorithm 
called dynamic binning, which involves automatically combining bins while applying 
the least manipulation to the histogram for ensuring optimal results of the underlying 
chi-square test within GMMchi. The three-step process is as follows:

1.	 Use the Mann and Wald bin criterion to determine the number of bins b. Using b 
and the range of our data we can then propose that initially the width of our bins be 
range
b

, where range = maximum observation−minimum observation.
2.	 Quantify the number of observations per bin.
3.	 Starting from the upper and lower ends of the distribution, combine adjacent bins 

that have < 5 observations until all bins have at least 5 observations.

The results of dynamic binning are illustrated in Fig. 3. As shown, the dynamic bin-
ning ensures there are more than 5 observations in every bin and so the validity of the 
chi-square goodness of fit test used in the subsequent steps. Dynamic binning is thus 
applied to all data before GMM fitting.

(3)b = 1.88× n2/5

Fig. 3  Dynamic binning: based on simulated data that creates a bimodal distribution. The mean and 
variance of the simulated 400 random samples in each histogram are 5, 10, and 3, 10, respectively. On the 
left is the histogram before applying dynamic binning. Samples within each bin in the far left and right of 
the left histogram are less than 5 thus falling below the prerequisite of applying the chi-square goodness of 
fit test. On the right, dynamic binning solves this by dynamically combining bins without over-manipulating 
the overall distribution. In this example, only 15 samples were combined via dynamic binning. The bins 
combined via dynamic binning are boxed in red dashes
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Tail criterion

The next step deals with the tail problem. Our pipeline first identifies whether the data 
are a mixture of normal distribution(s) or a mixture of non-normal tails and normal 
distribution(s). If the data fit the non-normal tail criterion, GMMchi will iteratively 
remove one data point at a time from the extreme end of the tail while fitting the remain-
ing points with GMM. At each tail point removed, the χ2 value for the remaining points 
as well as the BIC will be calculated to determine the best fitting outcome. The χ2 value is 
defined in Eq. (4):

The χ2 value is thus the sum of the squared difference between the observed number, 
Oi, in the ith area under the curve, and Ei , the estimated number based on the currently 
fitted single or bimodal normal distributions, divided by Ei.

To determine whether there is a non-normally distributed tail the overall input data 
will first be fitted by GMM after applying dynamic binning. The returned output of the 
GMM consists of the number of normal components fitted to the data based on BIC, the 
posterior probability of each data point (x), and the characteristics of each component 
distribution, namely the mean (µ) and the variance (σ2). To determine at any given point 
in the pipeline whether there is overfitting of the model with a non-normal tail problem, 
we have devised a criterion based on the goodness of fit testing.

Tails have characteristic flat, spread-out distributions that are the outliers of the input 
data. Under GMM, tails will be fitted as normal distributions but will be expected to 
have poor fits to a normal distribution. Thus, the χ2 value from fitting 2 normal distribu-
tions to data without a tail will be lower, namely have a better fit, than fitting two normal 
distributions to data with a non-normal tail.

Based on this assumption, we can derive a tail criterion based on how well the model 
fits the data. We have selected the chi-square goodness of fit test as our test for model 
fitness due to its simplicity and generalizability. Compared to the BIC, chi-square good-
ness of fit is not directly affected by the total sample size involved in the penalizing 
term of the BIC, which changes with each iteration involved in determining the tail (see 
below), so that the computed chi-square values are comparable across different itera-
tions of the pipeline. This is an important attribute that allows the comparison of the 
model fit across sequential iterations when selecting the best fit.

To determine the acceptable χ2 threshold value for tail detection, we plotted the distri-
bution of the χ2 values of all our GMM bimodally fitted genes in the 78-cell line panel, as 
shown in Fig. 4. The degrees of freedom used to calculate the χ2 values for the estimated 
distribution are given in Eq. (5):

Since dof are calculated based on the number of bins b, they decrease very gradually as 
we remove 1 datapoint at each iteration because tails are outliers of the normal distribu-
tion and so only a limited number of datapoints are usually in the tail. This effect on the 
decrease of dof has, therefore, a minimal effect on the χ2 values.

(4)χ2 =

i=b
∑

i=1

(Oi − Ei)
2

Ei

(5)dof = b− 1
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The histogram of all χ2 values shows a clear bimodal distribution with two normal 
components fitted by GMM estimation (Fig.  4). Drawing from the argument of data 
dichotomization, it is reasonable to assume that the two modalities observed represent 
distinct groups with different statistical meaning. The interpretation of the upper nor-
mal distribution represents genes with non-normal tails, hence a higher χ2 value, and the 
lower normal distribution represents well-fitted distributions with lower χ2 value. Using 
the estimated mean of the upper distribution of 8.48 and a standard deviation of 1.5, we 
estimate a lower threshold of 5.52 for the log2 χ2 values that indicate the presence of a 
non-normal tail at a false-negative rate of 5%. This threshold is only specific to our data-
set and not generalizable to other datasets. Threshold will need to be redetermined with 
a new set of data.

Iterative tail trimming (ITT)

After determining whether a distribution has a non-normal tail, our next goal is to iden-
tify the correct threshold that separates the tail from the main distribution. As discussed 
in the previous section, the tail criterion will label the result as ‘pass’ or ‘tail’. If the model 
is labeled as ‘pass’, the model passes the criterion and the result of the GMM will be 
respected and returned as the final output. If the model is labeled as a ‘tail’ we assume 
that the initial GMM fit to the data was inadequate and that the data consists of a mix-
ture of normal distribution(s) with a non-normal tail that should be subjected to itera-
tive tail trimming.

Iterative tail trimming (ITT) is an optimization process where the algorithm 
searches for the best fitting datapoint where the cutoff can be made to separate the 
tail from the rest of the normally distributed data. The process is as follows:

Fig. 4  Determining the Chi-square threshold value for identifying a poorly fitted tail: this histogram is the 
distribution of the spread of the log2-transformed χ2 values of all genes identified by GMM as bimodal in our 
panel of 78 cell lines. The histogram has a clear bimodal distribution with two normal components that are 
well fitted by GMM estimation. We assume the two distributions represent: (1) On the low side, the well-fitted 
distributions with lower χ2 values, and (2) the higher χ2 values indicating inadequately fitted distributions 
containing non-normal tail components. Using the estimated mean of the upper distribution of 8.48 and 
a standard deviation of 1.5, we estimate a lower threshold of 5.52 for the log2 χ2 values that indicate the 
presence of a non-normal tail at a false-negative rate of 5%
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1.	 At each iteration, we begin by removing one data point from the tail, perform 
dynamic binning to adjust the appropriate number of observations per bin, and fit 
the resulting distribution with GMM.

2.	 Then, we determine the chi-square goodness of fit (χ2) using parameters from the 
output to determine how well the revised model fits the input data.

3.	 We next compare χ2 n and χ2 (n−1), the χ2 values of the current iteration (n) and the 
previous iteration (n − 1), as well as the BIC score to determine whether the model 
is fitting better than the previous fit. We use the BIC score to determine whether a 
lower χ2 value is also the least complex model with the best fit.

4.	 The algorithm iterates (1), (2), and (3) until no other conditions produce a lower χ2 
and BIC.

The result of ITT is thus a series of χ2 values representing the fit of the model at 
each iterative step. The lower the χ2 value the better the model fits. Even though BIC 
is a criterion that is equal to the χ2 value with a penalizing term, as shown in Eq. (2), 
the reason why we are unable to depend solely on BIC is because the penalizing term 
is dependent on the sample size. Since we are removing 1 datapoint at each iteration 
during ITT, the sample size n is constantly decreasing making BIC a relative value that 
is only relevant when comparing inputs with the same sample size. This means that 
the χ2 value itself is an absolute number we use to compare across all data points to 
determine how well the new model fits and the BIC values are relative terms used to 
compare, within the same sample data, what is the best number of fitted distributions.

Multiple conditions for iterative tail trimming

Having established Iterative Tail Trimming (ITT), there is another important factor to 
consider before applying ITT. There are four basic possible distribution patterns a tail 
problem can give rise to in a GMMchi, as illustrated in Fig. 5:

1.	 One normal distribution plus a low tail
2.	 One normal distribution plus a high tail
3.	 Two normal distributions plus an extreme low tail
4.	 Two normal distributions plus an extreme high tail

The algorithm takes all possible scenarios listed above into account in performing 
ITT on the data. This process runs ITT removing data from both low or high tails 
if the χ2 value is > 2 5.52 and fitting the remaining data with one or two mixtures of 
Gaussian distributions, covering all four possible scenarios mentioned above. The 
cutoff that determines where each tail starts is based on the intersection of the two 
overlapping normal distributions. This ensures all scenarios are well-considered 
within our model and the output represents the optimal tail trimming of the best fit-
ting model. Possible scenarios including unimodal or bimodal distribution with both 
upper and lower tails are not considered in GMMchi due to their rare occurrence in 
gene expression data.
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Final criterion for determining the cut‑off that separates the main distributions 

from the tails: returned output of GMMchi

The final criterion is determined by identifying the lowest chi-square value, which indi-
cates the best fit, and the lowest BIC score, which suggests the least complex model, 
across all 4 possible scenarios. This results in the definition of the tail data points and 
so the definition of the boundaries between the estimated normal distributions and the 
tails. The last step, when there is a well fitted bimodal distribution after omitting the 
tail(s), is to show the boundary between the high and low values of these two distribu-
tions by their point of intersection.

The resulting best fit can be either the original fit, indicating that a mixture, usually of 
two normal distributions, best represented the data, or a new fit consisting of a mixture 
of normal distributions and non-normally distributed tails.

The output of GMMchi includes the categorization of input data across all samples 
and a set of the means and variances that describe the fitted distributions.

The visual output consists of 4 graphs as in Fig. 6. Figure 6a is the distribution of the 
input data (shown as a histogram) with the fitted model (shown as the line graph mapped 
onto the histogram). Figure  6c is a histogram of the percentage of each categorized 
group. Figure 6b is a graph of the BIC score that decides the number of components at 
each iterative fit and Fig. 6d is a graph of the χ2 value that decides the best-fitting model 
at each iterative fit and eventually the best overall fitting model, which has the lowest χ2 
value reached after removing 9 datapoints from the tail.

Fig. 5  Examples of different distributions found in gene expression analysis: a–d demonstrate good 
examples of a unimodal distribution with a right tail, a bimodal distribution with a right tail, a unimodal 
distribution with a left tail, and a bimodal distribution with a left tail, respectively
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GMMchi validation
To test the robustness and sensitivity of the GMMchi pipeline, we performed two sepa-
rate simulations.

Simulation test 1

The purpose of this simulation is to assess how effective GMMchi is at identifying a 
simulated mixture of normal and non-normal tails with an increasing spread of the tail. 
The spread or size of the tail is defined as its range. There are two components to this 
simulation:

1.	 Unimodal case: Mixture of 1 normal distribution + 1 non-normal tail
2.	 Bimodal case: Mixture of 2 normal distributions + 1 non-normal tail

We randomly generate normal distributions choosing means at random between 5 
and 10 and standard deviations at random between 0.5 and 5. The total number of data 
points is chosen at random to be between 50 and 150. The number of data points in the 
tail is randomly chosen to be between 5 and 25% of the total number of data points. To 

Fig. 6  Example output of the GMMchi python package: a log2-transformed distribution of the gene 
expression level of CDH1 (E-Cadherin) with its fitted normal components along with a red vertical cutoff from 
the tail. b BIC score. The red being the BIC score for fitting 2 normal components, the blue being the BIC score 
for fitting 1 normal component and the grey dashed line indicating which model to pick at each iterative 
step. c Bar graph showing the percentage of samples under each categorized group. d Graph showing the 
χ2 value calculated at each iterative step during iterative tail trimming. The red line represents the χ2 value of 
fitting 1 normal component, the blue line represents the χ2 value of fitting 2 normal components, and the 
red arrows indicate when a better fit is found. The best fit with the lowest χ2 value and the lowest BIC is with 9 
low tail values removed and just one normal distribution for the remaining data
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test how well GMMchi performs with an increasing spread of the tail, we choose the 
lower bound of the tail to be lower bound = m+ 2× std where m and std are respec-
tively the mean and standard deviation of the normal component. This ensures that the 
tail starts at the upper end of the distribution when there is just one normal distribu-
tion. For 2 normal distributions, we use the m and std of the upper distribution and start 
the tail at the upper end of this second distribution. The upper bound is determined by 
upper bound = lower bound + n× std where n is increased incrementally from 1 to 12 
to give a larger spread of the tail with each set of simulations as n increases. We then 
generate 5000 mixtures of normal components and a non-normal tail for each of the 12 
simulations as n increases from 1 to 12. GMMchi analysis is carried out on each of the 
5000 simulated mixtures for each of the 12 sets of simulations to compare the GMMchi 
assessment with the known distribution based on the chosen parameters m, std, the 
number of data points and the proportion of data points in the tail. The accuracy for 
each n is then the percentage of correct categorizations.

The results of these simulations for a single normal distribution and a non normal tail 
are illustrated in Fig. 7a. This shows that once the spread of the tail exceeds 2 standard 
deviations, the accuracy exceeds 90% and plateaus at 97% above 3 standard deviations.

For simulated bimodal distributions with a tail Fig. 7b shows that the accuracy reaches 
a plateau of about 70% when the spread of the tail exceeds 2 standard deviations. The 
accuracy, however, falls rapidly after a spread of 7 standard deviations, suggesting that 
GMMchi is most sensitive within a tail spread range of 2 to 6 standard deviations. We 
suspect this is mainly due to GMMchi using a number of bins that is based only the total 
number of data points. As the tail moves away from the main distribution, in this case, 
a bimodal distribution, the bimodal distribution will be misrepresented as a unimodal 
distribution due to the fixed number of bins, leading to the drop in accuracy. We sus-
pect that as the tail spread increases and moves away from the main distribution, the 
percentage of samples that are predicted by GMMchi to be a unimodal distribution with 
a tail increases while the percentage of samples that are predicted to be bimodal with a 
tail drops sharply. This is because with increasing spread of the tail, a high percentage of 
bimodal distributions with a tail are misclassified as unimodal distributions with a tail. 
Nonetheless, GMMchi is still able to identify accurately the non-normal tail and deline-
ate the threshold between the main normal components and the tail.

Simulation test 2

The purpose of this simulation is to assess how accurate GMMchi is at predicting the 
correct categorization with different sample sizes. The four categorizations we included 
in this simulation are:

1.	 Unimodal distribution
2.	 Bimodal distribution
3.	 Unimodal distribution + tail
4.	 Bimodal distribution + tail

We generate a total of 500 distributions, 125 for each of the above four categoriza-
tions, using the same basic approach as above for simulation test 1, and do this for 
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12 different sample sizes. The mean of the normal component(s) is randomly chosen 
between 3 and 10 and the standard deviation similarly between 0.5 and 5. The number 
of data points in the tail is randomly chosen to be within 5–25% of the total number 
of data points in the normal component(s). The upper range of the tail is anywhere 
below 7 standard deviations away from the mean of the upper normal component. 
After randomly generating 500 simulated mixtures for each of 12 sample sizes from 
10 to 2000 we ran GMMchi on each of the mixtures and compared GMMchi’s predic-
tion with the known distribution. The accuracy is, as before, the percentage of correct 
categorizations. The results of all the simulations are illustrated in Fig. 7c. This clearly 
shows the expected relationship between sample size and average prediction accu-
racy. GMMchi’s accuracy exceeds 80% with a sample size, n, of about 100 and contin-
ues to do well with increasing sample size, exceeding 90% accuracy with a sample size 
of about 1000. For our microarray data on 78 CRC derived cell lines, which we discuss 
in the next section, we expect GMMchi to give a prediction accuracy of around 80%.

In the current data landscape, with many datasets having sample sizes well above 
100 and often approaching 1000, such as the TCGA CRC data on 637 samples, 
GMMchi should provide good data models for the objective analysis of observed 
mRNA expression level distributions.

Fig. 7  GMMchi simulated validation tests: a, b show respectively the sensitivity of the GMMchi pipeline 
for identifying tails with a unimodal distribution or a bimodal distribution (see the text for details of the 
simulations and their analysis), c GMMchi’s Accuracy for Categorization of Simulated Distributions for different 
sample sizes. The graph shows the mean prediction accuracy and its standard deviation in the vertical bars 
given by the GMMchi pipeline for increasing sample sizes
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Application of GMMchi to microarray data from 78 colorectal cancer derived 
cell lines
Background noise threshold

The background noise threshold is an essential measurement needed when exploring 
gene mRNA expression data, especially if the data come from a fluorescence-based plat-
form. The background arises necessarily from, for example, the within-array fluorescence 
noise. An estimate of its level is needed to distinguish convincingly the background from 
genuine low-level expression. Previous extensive analyses of our microarray data sug-
gested a background noise level between 100 (26.65) and 128 (27). We now use GMMchi 
analysis of our overall expression data on the 78 CRC derived cell lines to provide an 
objective statistically based estimate of the background noise level.

The distribution of the microarray expression data for all 54,675 probes on the 78 CRC 
cell lines is shown in Fig. 8a. The number of probes with a given expression level is on 
the y-axis and the expression levels on the x-axis. The a priori expectation is that this 
distribution is a mixture of one for probes that are truly −ve on all the cell lines with 
one for those that express detectable levels of message. The distribution has a shape that 
looks like a bimodal normal distribution mixing the expected distribution for negative 
probes with that for positive probes with varying levels of expression, and this is sup-
ported by the good fit of a bimodal normal distribution using GMMchi.

Fig. 8  Determining the background threshold for microarray data using GMMchi: a Overall distribution of 
all the expression levels in our microarray data from all the 78 cell lines. The dotted vertical green line and 
the blue arrow are estimates of the position of the threshold separating the background noise from the true 
positive expression levels. The estimation is based on a GMMchi fit of two normal distributions to the overall 
data. b Probe filter pipeline for removing probes and so genes that are predicted to have no significant 
expression above the background noise threshold
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The intersection between the two normal distributions is used to define the back-
ground noise threshold, which on this basis was 26.59 or 96.4, as shown by the vertical 
green line in Fig. 8a. This result agrees with the previous observation of about 27 as a 
rule of thumb for the background threshold. To clearly distinguish bins expressing back-
ground signal from bins with real but low signals, for example in Fig. 9, the graphical 
output of GMMchi colors bins below the threshold 26.59 pink and bins below the thresh-
old 27.16 as yellow. The threshold 27.16 is derived from 2 standard deviations (σ = 1.01) 
away from the mean (µ = 5.14) of the background distribution to ensure we remove 95% 
of the background expression level. This ensures more confidence in the identification of 
genuine positives for further GMMchi analysis.

Therefore, in further analysis of the CRC cell line data we include the background 
noise threshold to signify lack of expression, namely any expression value less than the 
background threshold is counted as no expression. This variable is a built-in function in 
the current GMMchi pipeline. GMMchi analysis thus categorizes cell lines into three 
groups: background, low, and high, which we aim to associate with different biological 
functions.

Probe filter

The probe filter removes genes that are considered as non-expressing, following the pro-
cedure shown in Fig. 8b. Removing genes that are not expressed at all in the cell lines, 
and so do not contribute to functional interpretation, reduces the computational load.

The function GMM.probe_filter first removes genes where all cell lines express lev-
els below the background threshold. The pipeline then searches for genes that are on 
the borderline of being non-expressing, defined as genes that are expressed above the 
threshold level in fewer than 5% of the cell lines and whose distribution variance is less 
than 2.5% of the total range of variances across all genes. These values are arbitrarily 
chosen as the default values to achieve a stringent criterion for complete lack of expres-
sion. They can be easily changed in the algorithm.

Fig. 9  Examples of genes with different categories of unimodal expression: both the examples of unimodal 
distributions have part of their distribution below the threshold for no expression and part above. Pink bins, 
labeled as ‘Background Threshold’, are below the background threshold (> 26.59) while the yellow bins, labeled 
as ‘Two σ Background threshold’, are samples below 2 standard deviations from the mean of the background 
distribution estimated from Fig. 8a (< 27.16)
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Unimodal categorization criterion

We noticed that nearly half of the unimodal distributions had parts of their expression 
distribution at less than the background threshold, suggesting no expression, and the 
rest expressed, but with no clear separation between expression and lack of expres-
sion (see Fig. 9). Inherently, the different groups of genes observed with this pattern of 
unimodal distribution may also be of interest, though less likely to be associated with 
clear cut genetic or stable epigenetic changes. While the aim for bimodal distributions 
is to identify either low versus high expression groups of cell lines or no expression ver-
sus clearly expression groups, the expectation for unimodal distributions is to explore 
whether there is a functionally interesting difference between a non-expressing and a 
clearly expressing subgroup of cell lines within the unimodal distribution. We call these 
types of unimodal distributions ‘categorical’. The threshold for categorical unimodal dis-
tributions is defined as having less than 95% or more than 5% of the data of a unimodal 
distribution without a tail above the background threshold of 27.16. The criterion ensures 
we maximize capturing categorical unimodal distributions while discounting any uni-
modal distributions that are completely background signal or entirely above background 
threshold.

Probe combining pipeline

In microarray-based expression analysis, the expression level of a gene can be linked to 
multiple probe sets owing to microarray’s probe-based method of detecting the level of 
a specific DNA or RNA fragment through groups of probe sets that identify a unique 
region of a gene [10]. The probe is then mapped to a gene name using a predefined 
library consisting of a dictionary of probes to gene translation. Putting this together, 
each probe set is designed to pick up one message type that aims to identify only one 
gene based on the message sequence. The data generated by microarray expression anal-
ysis where a gene name is associated with multiple probe sets is thus trickier to interpret 
than RNA-sequencing where a gene name is only associated with a single probe set.

To address and facilitate analysis on a gene-by-gene basis, we developed a probe com-
bining pipeline that aims to combine expression levels of multiple probe sets represent-
ing a gene into a single gene with a weighted value that encompasses all the combined 
probe sets. However, sometimes not all probe sets associated with a given gene can be 
combined to represent that gene. When we identify probe sets that identify the same 
gene but do not correlate well with most of the other probe sets, we will retain the probe 
set without combining it with the rest and assume it is a splice-variant of the gene since 
we expect splice-variants to behave differently from each other.

As seen in Fig. 10a, the pipeline starts with identifying genes with more than one 
probe set. The pattern of each probe set is predetermined by GMMchi. Bimodal 
probes consist of 1 s and 2 s with 1 representing low expressing cell lines and 2 rep-
resenting high expressing cell lines. In unimodal probes, only probes that exhibit a 
categorical unimodal pattern are not excluded and consist of 1 s and 2 s with 1 s rep-
resenting lower expressing cell lines and 2 s representing higher expressing cell lines. 
As mentioned in the last chapter, we are interested in identifying patterns that result 
in separation into two distinct groups.
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The association between different probe sets from the same gene is determined by 
Pearson’s r correlation. A group of associated probe sets is identified as all those with 
pairwise correlations above 0.69, the threshold that indicates a significant association 
determined by the cutoff of the bimodal distribution identified by plotting out all the 
r-values using GMMchi, as shown in Fig. 10b. A weighted mean for the group is cal-
culated using as weights the inverse of corresponding chi-square goodness of fit value 
returned from the GMMchi output for each probe set member of the group. Thus if
Yi =

1
χ2
i

 is the inverse of the chi-square goodness of fit value from GMMchi for probe i; 

Ytotal = 
k
∑

i=1

Yi is the sum of all inverse chi-square goodness of fit values for the k probe 

Fig. 10  Schematic of the probe combining pipeline: a the pipeline for probe combining is used to combine 
probe sets in microarray data that represent the same gene while keeping together probe sets with a 
different expression patterns as potential splice variants. b Total distribution of the r-values for all pairs of 
probe sets of the same gene. We apply GMMchi to the bimodal distribution which shows the difference 
between pairs of probes that are associated with each other, at the upper end, and those that are not, 
the lower distribution. The cutoff that defines the lower r threshold value for probes that are significantly 
associated with each other is at 0.69, where the two fitted distributions intersect, as indicated by the vertical 
red dotted line
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sets belonging to the group, and vi,j = expression value of probe i for a given cell line j, 
then

is the weighted expression level for this group of probe sets for line j. The inverse of the 
goodness of fit value Yi is used as the weight for each probe i expression value because 
the lower the goodness of fit value the better the fit. If all the weights are the same, then 
the weighted mean is just the arithmetic mean of the k expression values. The weighted 
mean is then put through GMMchi to convert those values into groups of 1 (low expres-
sion) or 2 (high expression) for further analysis.

Lastly, probe sets that do not behave similarly with other probe sets (r-value < r thresh-
old value) are treated as separate splice variants and kept as a separate probe set anno-
tated with the gene plus the probe number (i.e., CDH1–2). The result of this pipeline is 
then the basis for further downstream analysis.

Examples of specific analyses

Figure 11 shows two examples illustrating the power of GMMchi for categorizing contin-
uous microarray gene expression data. The distribution for gene EPHB3, which encodes 
Ephrin Receptor B3, a receptor tyrosine kinase involved in mitogenic and differentiation 
signaling, is shown in Fig. 11a. A clear cutoff at 9.4 separates the mixture of two normal 
components. The Q-Q plot supports the assumption that the two component distribu-
tions are indeed normal. The expression distribution for the gene CDH1, which encodes 
E-Cadherin, a key epithelial cell integral membrane protein, is shown in the first histo-
gram in Fig. 11b. The initial GMMchi fit shows a normal distribution including a major-
ity of the 78 cell lines expressing high levels of E-Cadherin with a second distribution 
for a small group of lines expressing low or no levels. The application of the tail criterion 
suggests that the small low-level group should be considered as a non-normal tail, as 
shown by the second and third histograms in Fig. 11b. The Q-Q plot in the final panel of 
Fig. 11b then confirms the final result of GMMchi as a normal distribution of positively 
expressing cell lines with a non-normal tail of low or non-expressing lines.

Lumen‑forming CRC cell lines and CDX1 associations

A colorectal cancer can be a mixture of cell types consisting of different stages of dif-
ferentiation. Even though tumors are known to have a higher percentage of cells that are 
the stem cell population, there can also be different subpopulations of differentiated cell 
types. These can be any of the three major differentiated colonic cell types, enterocytes, 
goblet cells, and enteroendocrine cells. Here, we explore genes associated with lumen 
formation and enterocyte differentiation.

It was previously shown that caudal-related protein 1 (CDX1) is the primary tran-
scription factor responsible for enterocyte differentiation with, however, a strong asso-
ciation with the closely related CDX2 [1]. Figure 12 shows the GMMchi analysis for the 
expression of CDX1 and CDX2, and three other differentiation markers, carcinoembry-
onic antigen-related cell adhesion molecule 5 (CEACAM5, the original CEA), villin 1 
(VIL1), and glycoprotein A33 (GPA33). All these 5 gene expressions have clear bimodal 

(6)vwj =

∑k
i=1 Y i × vi,j

Y total



Page 19 of 27Liu et al. BMC Bioinformatics          (2022) 23:457 	

distributions making them good candidates for 2 × 2 association analysis using the func-
tion GMM.run_hits. The 2 × 2 Table 1a shows the close association between the expres-
sion of CDX1 and the 4 other genes. Note that the association between the expressions 
of CDX2 and CDX1 is an inclusion, namely with all CDX1 high being CDX2 high, but 
not the reverse.

In total there are 22 out of 42 cell lines with the phenotype lumen formation as 
assessed from previous experiments by lumen formation assays [1]. Table 1b shows the 
2 × 2 analyses for the 4 gene expressions that are most highly correlated with lumen for-
mation. As expected, this includes the genes CDX1, CDX2 and CEACAM5, all as ’includ-
ing’ lumen formation in the sense that all the lumen forming lines expressed these three 

Fig. 11  GMMchi on gene expression data: as before, in both cases, the pink columns indicate clearly 
negative expression while the yellow columns indicate at most very low-level expression. The dotted red 
lines mark the intersection between the two fitted normal curves (a) or between the fitted single normal 
distribution and the tail (b), and so the best estimate of where to separate low probably negative expressing 
cell lines from those that are clearly positive. The expression distribution in (a) is for gene EPHB3 encoding 
the protein Ephrin Receptor B3. In this example, GMMchi estimates the cutoff between the mixture of two 
normal components that are adequately normal as shown in the Q–Q plot with the data along the 45-degree 
line. In (b), a good example of a tail trimming process, the first histogram shows the expression distribution 
for CDH1, the epithelial membrane protein E-Cadherin, prior to tail trimming. The first Q-Q plot revealed 
datapoints deviating from the 45-degree line, suggesting an inadequate fit. The second histogram shows the 
tail identification step where the grey shading indicates the potential identification of a non-normal tail. The 
third histogram is the result of iterative tail trimming while the last figure shows the Q-Q plot of the resulting 
fit, indicating an adequately fitted normal component with a non-normal tail
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genes at the high level but not the reverse. The expression of the CDX1 associated genes 
GPA33 or VIL1 was not found to be correlated with lumen formation at this high level of 
significance. However, the expression of the neuron-glia-related cell adhesion molecule 
(NRCAM) was significantly associated with lumen formation as an inclusion. It seems 
likely NRCAM, a differentiation marker for neural development, is a nonessential gene 

Fig. 12  Examples of GMMchi analysis on known differentiation markers: here we show examples of known 
differentiation markers that are positively and significantly associated with CDX1, a biomarker for colonic 
epithelial differentiation identified by phenotype association with lumen formation. All genes exhibited a 
well-defined bimodal distribution of expression levels consisting of two subpopulations.

Table 1  Genes significantly associated with CDX1 and lumen formation

The R-values from 2 × 2 association analyses between the genes whose expression is illustrated in Fig. 12. The p-values from 
the χ2s for each pairwise comparison are all Benjamini–Hochberg corrected. (a) Shows that CDX1 expression is strongly 
correlated with those of CDX2 and GPA33, a basolateral intestinal differentiation marker, as well as with CEACAM5 and VIL1 
which are also colonic epithelial differentiation markers. The association between CDX1 and CDX2 is an inclusion, namely 
with all CDX1 high being CDX2 high, but not the reverse. (b) Shows the 2 × 2 analyses for the 4 gene expressions that are 
most highly correlated with lumen formation. Lumen formation is included within CDX1and CDX2 high expression, while 
NRCAM-1 included within lumen formation

+/+ +/− −/+ −/− p value R value

(a)

CDX1

 GPA33 43 4 3 28 1.03E−13 0.81

 CDX2 47 0 8 23 2.29E−13 0.80

 CEACAM5-1 43 4 6 25 6.37E−11 0.73

 VIL1-4 42 5 7 24 1.98E−09 0.68

(b)

Lumen formation

 NRCAM-1 12 10 1 19 6.38E−04 0.53

 CDX1 19 3 9 11 7.99E−03 0.44

 CDX2 20 2 11 9 1.32E−02 0.42

 CEACAM5-1 18 4 9 11 2.23E−02 0.38
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for lumen formation that can nevertheless be expressed in lumen-forming cells as a sort 
of bystander effect [6].

These analyses show how associations between continuous data, such as the gene 
expression data, can be related to categorical data such as, for example, mutations, dis-
tinctive phenotypes, and methylation, by transforming the continuous data into cat-
egorical data using GMMchi and so revealing interesting patterns of gene expressions 
associated with patterns of differentiation.

MUC2‑expressing goblet cell subpopulation in CRC cell lines

Goblet cells are one of the three differentiated cell types in the colon and are responsi-
ble for the production of mucin 2, MUC2, the major mucin that lines the intestine. The 
GMMchi analysis of MUC2 (the gene for MUC2) and three other genes (TFF3, REG4 
and FCGBP) known to be involved in normal goblet cell differentiation are shown in 
Fig. 13. The QQ plots for GMMchi for TFF3, REG4, and FCGBP in Fig. 13 show multiple 
data points deviating from the 45-degree line near the cutoff threshold (green dashed 
line). This is mainly because of the relatively high overlap between the two normal distri-
butions, making the membership of the data points within the overlap harder to assign 
and thus resulting in a relatively poor separation between the two distributions. This 
may be due to low expression of these three genes being due to a small proportion of 
expressing cells in a cell line rather than an overall low level of expression on all the 
cells. TFF3 and FCGBP are proteins that seem to act as chaperones for the maturation of 
the mucus and our evidence suggests the existence of a significant subset of CRCs that 
express TFF3 and other proteins associated with mucus maturation, but not the mature 
MUC2 itself. The biology of this is now being further investigated.

The GMMchi pipeline allows the possibility of identifying given cell lines or subsets 
of the cell lines in the histogram output. Two in-depth examples of this are given in 
Fig.  14 and show how such analysis can reveal novel subsets of the cancers which 
may be of interest for further experimental investigation. The subset identification in 
Fig.  14a very clearly shows that almost all MUC2 + are TFF3 + while there exists a 
major subset of lines with TFF3 + and no MUC2, as already noted. The two cell lines 

Fig. 13  GMMchi analysis on genes associated with goblet cells: a GMMchi analysis of MUC2 and three other 
genes (TTF3, REG4 and FCGBP) known to be associated with goblet cell differentiation
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(shown in green) that are apparently MUC2 + TFF3-turn out, by immunofluores-
cence (unpublished data), to have very low proportions of TFF3 + cells, emphasising 
the problem of detecting such low levels of expression by mRNA analysis of the bulk 
cell line preparations. Signet-ring-like cancers are a rare subset of CRCs with very 
high MUC2 and TFF3 expression. Figure 14b shows that almost all MUC2 express-
ing cell lines also express high levels of FCGBP, whilst a significant proportion of the 
TFF3 + cell lines express low or no FCGBP.

Fig. 14  Examples of GMMchi outputs with defined subsets of cell lines: a TFF3 expression analysis with 
defined subsets, MUC2 + TFF3 + , MUC2 + TFF3−, MUC2-TFF3 + and Signet-ring-like carcinomas, shown 
by the indicated coloured crosshatched segments. b FCGBP expression analysis with with defined subsets, 
MUC2 + TFF3 + , MUC2 + TFF3-, MUC2-TFF3 + and Signet-ring-like carcinomas, shown by the indicated 
coloured crosshatched segments
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In Table  2, the 2 × 2 analyses of top 50 genes significantly associated with MUC2 
expression are obtained using the function GMM.crosstab_table. Several genes whose 
function has been shown or suggested to be associated with goblet cell differentiation, 
and so MUC2 production, occur in this list They include, for example, REG4, a secreted 
protein found to associate closely with secretory cells as well as playing an important role 
in intestinal morphogenesis [15], FCGBP, Fc-γ binding protein suggested to crosslink 
with MUC2 and have a chaperone like activity on the maturation of MUC2, ST6GAL-
NAC1 and UGT1A8 /// UGT1A9, involved in glycosylation of MUC2 [3], AGR3, whose 
product is involved in catalyzing disulfide bond formation in protein folding and so con-
tributes to maintaining the structure of MUC2, CEACAM5, associated with both gob-
let cell and enterocyte differentiation, and the transcription factor ETS2. A trefoil factor 
TFF1 is also in the list, and we have included the trefoil factor TFF3, though it comes 
just below the cutoff point for the top 50 associations, because of its well known almost 
total association with MUC2 expression in normal colonic tissue. The trefoil factors are 
also known to play an important role in MUC2 maturation, possibly after its secretion 
[9]. Most of the associations are inclusions suggesting functions that may be required for 
goblet cell differentiation and MUC2 maturation but that also have other roles. Further 
experimentation is being carried out to explore the potential role of other genes in the 
Table 2 list in goblet cell differentiation and MUC2 maturation, and to elucidate the sig-
nificance of the relatively large proportion of CRCs that seem to be on their way to gob-
let cell maturation by the expression of TFF3 but do not produce mature MUC2.

Methods summary

A python library was built for easy utilization of the GMMchi pipeline. Built-in meth-
ods (functions) within the pipeline include:

(a)	 GMM.GMM_modeling This is used to perform GMMchi on an input matrix of 
samples x features. The input is a continuous mRNA measurement using either 
RNA-Seq or microarray (as discussed in the main text).

(b)	 GMM.probe_filter This is used to perform probe filtering to remove genes that are 
considered not to be expressed (as discussed in the main text).

(c)	 GMM.find_hits This is used to calculate 2 × 2 contingency tables from the catego-
rized data returned from the GMM.GMM modeling output.

(d)	 GMM.run_hits This is used to output the full 2 × 2 contingency table from a pre-
defined set of genes of interest (as discussed in the main text).

(e)	 GMM.crosstab_table This is used to visualize the full 2 × 2 contingency table from a 
pre-defined set of genes of interest (as discussed in the main text).

The whole program is implemented in Python and can be imported as a library; 
the full code, the library and installation link are online at: https://​github.​com/​jeffl​
iu6068/​GMM.

https://github.com/jeffliu6068/GMM
https://github.com/jeffliu6068/GMM
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Table 2  Top 50 genes significantly associated with MUC2: genes positively correlated with MUC2 in 
78 colorectal cancer cell lines

MUC2 −/− −/+ +/− +/+ p value r-value

REG4_weighted 51 12 1 14 1.17E−07 0.62

FCGBP 50 13 2 13 3.27E−06 0.55

SPINK4 52 11 4 11 6.36E−05 0.49

ST6GALNAC1 39 24 0 15 1.15E−05 0.49

SLC39A5-2 61 2 9 6 4.34E−04 0.48

IGK /// IGKC-4 63 0 11 4 9.57E−04 0.48

TFF1 51 12 4 11 1.14E−04 0.47

RETNLB-1 57 6 7 8 4.63E−04 0.45

nan-983 47 16 3 12 1.47E−04 0.45

AZGP1-1 43 20 2 13 2.18E−04 0.44

FAM3D 52 11 5 10 3.72E−04 0.44

NOSTRIN 34 29 0 15 6.71E−05 0.43

RSPH1 42 21 2 13 2.68E−04 0.42

LRRC19 56 7 7 8 8.98E−04 0.42

SULT1B1 61 2 10 5 2.34E−03 0.42

GPD1-4 63 0 12 3 5.98E−03 0.41

MMP28-5 62 1 11 4 4.22E−03 0.40

RETNLB-2 62 1 11 4 4.22E−03 0.40

SEC16B-3 62 1 11 4 4.22E−03 0.40

AMN-2 62 1 11 4 4.22E−03 0.40

nan-6995 62 1 11 4 4.22E−03 0.40

CYP3A5-1 31 32 0 15 2.26E−04 0.40

DDC_weighted 31 32 0 15 2.26E−04 0.40

CFTR-1 31 32 0 15 2.26E−04 0.40

VDR-2 30 33 0 15 2.83E−04 0.39

AKR1C3 30 33 0 15 2.83E−04 0.39

C2orf89 30 33 0 15 2.83E−04 0.39

AGR3 39 24 2 13 1.04E−03 0.38

DACH1-1 39 24 2 13 1.04E−03 0.38

ATP8B1-2 29 34 0 15 5.99E−04 0.38

CEACAM5-1 29 34 0 15 5.99E−04 0.38

PPARA-7 29 34 0 15 5.99E−04 0.38

ETS2-1 29 34 0 15 5.99E−04 0.38

PPARA-6 29 34 0 15 5.99E−04 0.38

PAPSS2-2 34 29 1 14 9.92E−04 0.37

FOXA2_weighted 34 29 1 14 9.92E−04 0.37

IHH-2 34 29 1 14 9.92E−04 0.37

ENTPD5-2 54 9 7 8 2.77E−03 0.37

UGT1A8 /// UGT1A9 54 9 7 8 2.77E−03 0.37

LGALS9 42 21 3 12 1.37E−03 0.37

TMED6 60 3 10 5 5.52E−03 0.37

NOX1-1 38 25 2 13 1.27E−03 0.37

LYZ-2 38 25 2 13 1.27E−03 0.37

AKR1B10 38 25 2 13 1.27E−03 0.37

SGK2-1 28 35 0 15 6.63E−04 0.37

PIP5K1B-1 28 35 0 15 6.63E−04 0.37

CYP3A5-2 28 35 0 15 6.63E−04 0.37

ELF3-3 28 35 0 15 6.63E−04 0.37

TFF3 13 2 31 32 9.49E−03 0.29
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Discussion
The somatic mutations or stable epigenetic changes whose selection drives cancer pro-
gression are discrete genetic variations analogous to the germ line genetic variants that 
are inherited following Mendelian segregation. The consequences of these somatic 
genetic changes can be seen in changes in the levels of mRNA expression of a wide 
range of genes. These levels are continuous variables. At the simplest level there could, 
for example, be a significant change in the message level of a mutated or epigenetically 
altered gene. A collection of cancers, some of which carry this genetic change and some 
not, would then be expected to have a bimodal distribution of the message levels for 
this gene, giving rise to a dichotomised phenotype of high versus low levels of expres-
sion. The more closely associated the function of the altered gene, for example having a 
role in the control of a particular cellular differentiation process, is with other genes also 
involved in the same function, the more likely it is that these other genes will have simi-
lar correlated bimodal distributions to that observed for the altered gene.

The aim of this paper has been to create a widely applicable and flexible tool to ana-
lyse the relationship between discrete genetic changes and continuously variable gene 
expression levels by transforming the continuous expression levels into dichotomised 
phenotypes. Intrinsically dichotomous phenotypes, such as presence or absence of a 
particular cell type or ability to form a particular differentiated structure or not, can then 
be included with the derived dichotomised gene expression phenotypes for further anal-
yses of their interrelationships.

The obvious first step is to apply GMM (Gaussian Mixture Modelling) to observed 
gene expression levels for a range of cancers, assuming, as has been widely observed 
that, when log2 transformed, these usually have a distribution that is well described by 
a normal distribution. When, however, as is likely for cancers a relatively small subset 
of the cancers has either a higher or lower expression level than their normal counter-
parts, these distributions are less likely to be normal. This is the ’tail’ problem, and so a 
primary goal of the analysis has been to find an objective procedure for identifying non-
normally distributed tails. This has been done by a combination of iterative tail pruning 
and GMM, using a χ2 goodness of fit approach to enable the selection of the best fitting 
mixture of a GMM derived distribution and a non-normal tail. It is important to note 
that χ2-based methods are sensitive to the total number of bins. As GMMchi determines 
the numbers of bins based on the Mann and Wald bin criterion, this renders the bin 
numbers dynamic as data are trimmed away during tail-trimming. Nonetheless, in the 
case of expression data, almost all tails represent less than 10% of the total data thus 
will minimally interfere with the χ2 calculation yielding a reliable result. The success of 
this approach, GMMchi, has been demonstrated using genome wide microarray derived 
gene expression data from a collection of 78 CRC (colorectal cancer) cell lines. The com-
plete pipeline starts by filtering out genes that are not expressed in any cell line, or those 
that are well described by a single unimodal normal distribution and allows for detection 
of splice variants when multiple oligonucleotide sets are used for a single gene. GMMchi 
can be applied to obtain dichotomised phenotypes from any similar source of data, such 
as single cell mRNA data or TCGA RNAseq data, whose analysis will be the subject of a 
further paper.
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Simulated mixtures of normal distributions and tails confirm the overall consistency of 
our pipeline, indicating it reaches an accuracy of 85% once the number of samples is suf-
ficiently large at around a minimum of 90 samples, which is close to the number of cell 
lines in our demonstration data set. The accuracy of identifying a bimodal distribution 
with a tail spread beyond 7 standard deviations decreases quite rapidly with increasing 
tail size. It is, however, rare in practice to find tails that span beyond 7 standard devia-
tions from the main component in gene expression data.

The GMMchi pipeline iterative tail pruning process so far allows for only a single tail at 
either the upper or lower end of the overall distribution. This could readily be extended 
to allow tails at both the upper and lower ends, though we did not see evidence for the 
need for this in our analysis of the CRC cell line data.

The 2 × 2 analyses associated with the analysis of the lumen formation and goblet cell 
differentiation phenotypes can be extended to searches for clusters of gene expressions 
not so far clearly associated with any defined phenotype. If there are different types of 
continuous measurements on the same set of cell lines, for example mRNA by microar-
ray analysis and RNAseq, then each data set can be separately dichotomised by GMMchi 
giving rise to discrete phenotypes that can also be jointly analysed. Missing data are sim-
ply accounted for in a 2 × 2 analysis by only including pairs of cell lines that have data 
for both pairs of dichotomised phenotypes. Thus, for all those genes with at least two 
defined levels of expression, which if there are more than two levels can be condensed 
into just two levels, it is possible to look for associated clusters using 2 × 2 analyses with 
a defined minimum high-level r or low-level p value cut off, using the r values as a dis-
tance measure for clustering. A cluster identified in this way can be turned into a further 
dichotomised phenotype by assigning a cell line to a high or low category depending on 
the consistency of its expression of the members of the cluster at either a high or a low 
level. Such phenotypes could themselves then be used for further 2 × 2 analysis. This is 
an approach used for the early identification of HLA types using antisera from multipa-
rous women known, mostly, to have antibodies to two or more HLA specificities [13].

In conclusion, we propose that GMMchi is a general tool for the analysis of the inter-
relationships between a matrix of measurements of a set of continuous variables on a 
panel of objects, based on dichotomisation of the continuous variables and the analysis 
of their 2 × 2 associations.
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