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Abstract

The study aimed to model and quantify the health burden induced by four non-communica-

ble diseases (NCDs) in Egypt, the first to be conducted in the context of a less developing

county. The study used the State-Space model and adopted two Bayesian methods: Parti-

cle Filter and Particle Independent Metropolis-Hastings to model and estimate the NCDs’

health burden trajectories. We drew on time-series data of the International Health Metric

Evaluation, the Central Agency for Public Mobilization and Statistics (CAPMAS) Annual Bul-

letin of Health Services Statistics, the World Bank, and WHO data. Both Bayesian methods

showed that the burden trajectories are on the rise. Most of the findings agreed with our

assumptions and are in line with the literature. Previous year burden strongly predicts the

burden of the current year. High prevalence of the risk factors, disease prevalence, and the

disease’s severity level all increase illness burden. Years of life lost due to death has high

loadings in most of the diseases. Contrary to the study assumption, results found a negative

relationship between disease burden and health services utilization which can be attributed

to the lack of full health insurance coverage and the pattern of health care seeking behavior

in Egypt. Our study highlights that Particle Independent Metropolis-Hastings is sufficient in

estimating the parameters of the study model, in the case of time-constant parameters. The

study recommends using state Space models with Bayesian estimation approaches with

time-series data in public health and epidemiology research.

Introduction

The epidemiological burden of chronic diseases is increasing worldwide, in the developed

countries (DCs) as well as in the less developing countries (LDCs), marking that non-commu-

nicable diseases (NCDs) are no longer related to affluence. NCDs are responsible for almost

70% of all deaths worldwide; 85% of these deaths occur in less developing countries [1]. Three

main demographic factors drive the noticeable increase in NCDs; aging of the population,

population growth, and unplanned urbanization, and other factors such as globalization of

unhealthy lifestyles [1, 2]. Egypt, one of the less developing countries where GDP per capita is
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$3,019 ranking the 132nd [3], is facing a rapid increase in its population size, approaching

over 100 million in 2020, with a 2.56% increase rate over the period 2006–2017. Although the

share of the older adults aged 60 or above represents 6.7% of the total population in 2017, the

old population is increasing faster than the entire population ((intercensal growth rate 3.2 vs

2.40) and amounts over 6 million– far exceeding the size of the older people in most European

Union countries [4]. In Egypt, in 2016, 84% of the total number of deaths were due to NCDs,

with four groups of diseases accounted for about 60% of the total death, they include; cardio-

vascular diseases, cancer, chronic respiratory diseases, and Diabetes and kidney diseases

(accounted for 40%, 13%, 4%, 3% of the total deaths, respectively) [5]. The probability of pre-

mature death induced by NCDs between age 30 and 70 was nearly 28%. Additionally, these

four groups of diseases accounted for nearly 44% of the total DALYs in 2019, respectively [6].

Furthermore, the NCDs related risk factors signify an undue load on the health of its adult

population. One-third of the adult Egyptian population suffers from high blood pressure, close

to one-half of its adult male population smoke tobacco. Rates of physical inactivity, raised cho-

lesterol and obesity are 22%, 23%, and 49%, respectively, among women and 28%, 14% and

25%, among men [7]. Non-communicable diseases (NCDs) and their related risk factors con-

stitute a significant burden over the individuals and the health system in Egypt; where per cap-

ita health expenditure is $132 [8], and out-of-pocket health spending is about 60% of the total

health expenditure [9]. Although NCDs signify a substantial challenge for socio-economic

development, efforts to quantify their burden on the Egyptian population’s health are lacking.

During the past few decades, quantifying the disease’s burden over the population’s health

has been a topic of great interest to researchers as well as policymakers. A great deal of research

has been conducted in the developed world to quantify the disease burden (communicable

and non-communicable) on the population’s health. However, such efforts are rare in develop-

ing countries [10], and Egypt is no exception. The grand achievement in measuring the popu-

lation’s health status has taken on many forms. Under the umbrella of summary measures of

population health (SMPH), some studies assembled information from different health and

mortality indicators in one index that reflects the health status of a specific population [11].

Most of these studies used exploratory factor analysis to develop health indices [12–14]. The

prime advantage of this method, besides its simplicity, is that it gives one single interpretable

value for the individual or the population. However, the disadvantage of using aggregated

scores is the inability to know how much information of each domain was included in such a

measure [15]. The widely applied type of SMPH, which is based on the life table approach,

includes that combined information on fatal and non-fatal health indicators into one compre-

hensive metric of overall population health [11]. Examples include; active life expectancy

(ALE), disability-free life expectancy (DFLE), and disability-adjusted life expectancy (DALYs),

with DALYs the primary summary measure of health that is of high usage. These health indices

provide internationally standardized measures of populations’ health and allow the assess-

ment, evaluation, and monitoring of an individual’s or a given community’s health status and

health-related quality of life. However, they overlook the fact that the average number cannot

represent the entire population’s health conditions. Most importantly, allocating resources

based on the average health index will deepen the inequity between underprivileged and

wealthy communities [16]. DALYs faced some additional critiques regarding the assumption

of equity of the same disease’s burden among varying populations. The severity of the diseases

should also be contingent on the social background of subpopulations. Furthermore, the bur-

den should not be alike for developed and underdeveloped countries [17]. Also, in calculating

DALYs, the health concept is reduced to the main seven health domains suggested by WHO,

which has led to a model specification error. The assumption of independence between sever-

ity weights and duration of diseases does not hold [18]. Also, DALYs overlooks the fact that
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the availability, quality, and accessibility of healthcare services significantly affect the popula-

tion’s health. The third type of SMPH is based on Multiple Indicator Multiple Cause (MIMIC)

models in which health is dealt with as an unobserved construct or latent variable to be deter-

mined by its causes and indicators and to be estimated in a system of structural equations.

Examples; Multiple Indicator Multiple Cause health Status Index (MIMIC- HSI) [19], and

Multiple Indicator Multiple Cause Burden of Disease Index (MIMIC—BDI) [18]. MIMIC-

HSI gives more availability for health status with multiple domains. MIMIC-HSI was used to

measure the disability caused by some diseases [20]. It was also applied to studies concerned

with the population’s health and the individual’s [21, 22]. The main shortcoming of MIMIC—

HSI is the exclusion of non-fatal health outcomes from the index’s estimation [23]. Both

MIMIC—HSI and DALYs presume the parameters’ stability and constant severity weights

over a given time [24]. In 2004, Kaltjob proposed (MIMIC—BDI) [18], the disease-related var-

iables were added, and the independence between severity weights and duration of disease was

not presumed. Kaltjob used his suggested metric to rank ten different diseases in the year

2000, as well as to investigate their burden on the French population [23]. MIMIC model,

however, suffers from several shortcomings. It is found incompetent in circumstances with a

small number of observations or observations with absent values [25] and is problematic for

applying on time-series data [26, 27]. Additionally, its presumptions of independence between

the structural and measurement errors, and the stationary or normally distributed observa-

tions are not always applicable [26]. Furthermore, MIMIC’s estimated coefficients are not

consistent with diverse sample sizes [28]. Although the NCDs’ encumbrance in Egypt is sub-

stantial, no attempt was conducted to measure their burden. Therefore, the study aims at fill-

ing this gap by measuring the NCDs burden trajectories in Egypt. The study’s main objective

is to develop non-communicable diseases’ burden-related health status index (NCDs-BDI) in

Egypt. In such an endeavor, health is dealt with as an unobserved (latent) construct character-

ized by its observable determinants and observable indicators [22]. This effort is the first to be

conducted in the context of one of the less developing countries (LDCs), and among the few

performed worldwide. Our suggested health metric used the State-Space Model (SSM) to rep-

resent the latent health variable’s relationship with its causes and indicators. SSM avoids sev-

eral drawbacks of the Multiple Indicator Multiple Cause (MIMIC-BDI) model [23]. In

contrast to the MIMIC, SSM has several advantages. It allows the current state of the latent

construct to depend on its previous state and, most importantly, does not impose restrictions

on the number of the causes and indicators added to the model [29–31]. SSM is used in studies

with a small number of observations. Additionally, it is applied to model time-series observa-

tions and studies wherein the number of time points is greater than the number of individual

cases. It also allows examining the intra-observations variability [29, 32]. We applied the State-

Space Model with two Bayesian methods: Particle Filter (PF) or Sequential Monte Carlo

(SMC) method and the Particle Independent Metropolis-Hastings (PIMH) method, and we

estimated the burden trajectories of four NCD diseases: 1) cardiovascular diseases, 2) neo-

plasms, 3) diabetes and kidney diseases, and 4) chronic respiratory diseases. Additionally, we

estimated the relationships between the burden and its causes and indicators and compared

between the two estimation methods. In composing the non-communicable diseases’ burden

(NCDs-BDI) index, the study drew on [23][P. 13–16] conceptual framework for population

health assessment. In building such a health metric, we conducted some adjustments on the

determinants and indicators of the health construct to accommodate better the NCDs’ impact

(Fig 1, see colored boxes).

Fig 1 summarizes the proposed leading causes and indicators of the disease-related popula-

tion health index. The supposed determinants include biological and behavioral risk factors,

the disease’s prevalence, and disease-related disability weight. The study assumed that the
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biological risk factors (including high blood pressure or high blood glucose) and the behavioral

risk factors (such as smoking, unhealthy diet, obesity, alcohol consumption, and physical inac-

tivity) affect health status not only indirectly through increasing the disease incidence [33], but

also directly. The risk factors may influence disease burden directly through the behavior of

the patients towards their illness. The study assumed that patients with higher risk factors are

with low ability to confront their diseases, do not respond quickly to their pains, nor comply

with the new therapy, which, in turn, affect the burden of the diseases [34]. The biological and

behavioral risk factors were not considered in Kaltjob the framework [18]. The increase in the

incidence of a specific pathology causes a rise in the burden of disease-related population’s

health. Disease-related disability weights are essential determinants of the burden of disease.

The study assumed that there is a positive relationship between disability weight and the bur-

den of illness. Indicators of the disease-related population’s health metric are presumed to

include; premature mortality and health services utilization (hospital facilities utilization and

ambulatory health service utilization). Considering premature deaths as an indicator or a

cause of disease burden is controversial. In this study, contrary to kaltjob study [18] and in

accordance to other studies [35, 36], our framework adopted that premature death is an indi-

cator (i.e., it is a consequence of the population’s health status, not a cause). Accordingly, we

assumed a positive relationship between the burden of disease and the mortality rates. This

assumption is also one of DALYs’ main features; the higher the age-specific mortality rates, the

worse the health metric [37]. Population’s health status, no doubt, is a significant determinant

of health service use (both of the hospital facilities and ambulatory health service). Most of the

studies agreed that the lower the population health status (i.e., higher disease burden), the

higher the utilization of all health services [38–41]. On the other hand, it is not always the case

that higher utilization of health services is induced by a higher disease burden. More

Fig 1. Conceptual framework for the determinants and indicators of the NCDs burden of diseases. Source: [18][P. 14]. Note: Modifications by the

authors are in colored text in boxes.

https://doi.org/10.1371/journal.pone.0245642.g001
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heightened awareness of the population can make them quickly respond to their pain. Some

studies assumed that increased use of health services might indicate an improvement in popu-

lation health status because it is associated with therapy and early diagnosis of the diseases or

periodical check-ups [42]. Nevertheless, the study assumed that the higher the disease burden,

the greater is the utilization of health care services, particularly in a less developing country

such as Egypt. Two significant external variables explain health indicators; health care services

supply and the population’s financial capabilities. Literature supported a positive effect of the

availability of health services on its utilization [43]. Moreover, population socio-economic sta-

tus and its related financial capabilities is a significant determinant of health services utiliza-

tion. Population socio-economic status is strongly related to the population’s awareness and

lifestyle, the behavior against the disease symptoms and acute cases, and access to health ser-

vices [38–40]. In societies such as Egypt, where there is no full health insurance coverage, and

individuals’ out-of-pocket health expenditure represents about 60% of total health expendi-

ture, financial capabilities positively impact health service utilization, especially if the prices

are affordable. Some literature showed a negative relationship between higher prices and utili-

zation of health services [44]. In this study, one of the relationships that were suggested by

Kaltjob studies [18, 23], the effect of the disability weights on health services’ use, is eliminated

as it has no theoretical base. We believe that disability weights indirectly affect the use of health

care services through the disease burden. To meet our objective, we organized the study into

five sections. Following the introduction, section two displays variables, data sources and their

limitations, and details the SSM model and inference methods. Section three delivers the esti-

mates of disease-related population health metrics for four groups of diseases. The discussion

and conclusion are provided in section four and five, respectively.

Materials and methods

Variables and data sources

The proposed disease-related population health metric NCDs-BDI is estimated for the four

groups of NCDs using Egypt macro-level time series data from 1990 to 2017. We used data on

disease prevalence rate instead of the incidence rate. It is challenging to find incidence and

average duration of disability for all diseases and sequelae [45], notably in LDCs. Estimates of

disability weights using population-based surveys have been used as a component of DALYs’

measures after 2010 [46]. Therefore, our study as well used the general population disability

weights data. Data on the prevalence of each group of diseases (cases per 100,000 population),

years of life lost by cause, and the general population disability weights were collected from the

Institute for Health Metrics and Evaluation website (IHME) [47]. We used [48] estimates of

the prevalence of the five biological and behavioral risk factors: High cholesterol, high blood

glucose, high blood pressure, obesity, and smoking. Following [49], we used the number of

beds and the number of physicians to measure the supply of health care services: health facili-

ties and ambulatory services. The number of days spent in the hospital and the number of out-

patients were used as a proxy of health services (facilities and ambulatory) utilization. Data on

these variables were gathered from the Annual Bulletin of Health Services Statistics, Central

Agency for Public Mobilization and Statistics, Egypt [50], and were categorized according to

physicians’ specialities. GDP per capita data are used as a proxy for health services financial

access and were gathered from the World Bank’s national accounts data [51].

Data manipulation

Handling missing data. Out of the 14 variables, four had missing observations; mainly,

the two indicator variables that measure the use of health services (number of days spent in
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the hospitals and number of outpatients) and the supply of health services (number of spe-

cialists and number of beds). In applying the Particle Filter method of estimation, we used a

single imputation method to fill in the missing values for the variables number of specialists

and the number of beds. We calculated the averages in this method because the missing data

were less than 40% [52]. For the indicators, the number of outpatients and number of days

spent in hospitals, we used a technique stemmed from literature [53]. Whenever there was a

missing value at time t, they estimated the states based on the available information up to

time t-1 [53][Algorithm 2, P. 522]. Inspired by this technique, we used only the available

information for each indicator or response variable in time t to calculate the likelihood func-

tion; otherwise, the likelihood function of the missing value is considered one and equal

weights are assigned to the particles 1

N

� �
(see Algorithm 1). Accordingly, the likelihood func-

tions were used to calculate the importance weights of the simulated particles according to

formula 13, 14, and 15. Assigning a value one to the likelihood function for the missing value

will allow us to ignore it in the process of estimating the importance weight as a multiplica-

tion of the three weights.

In the instance of applying the Particle Independent Metropolis-Hastings (PIMH), we used

a new approach of multiple imputations technique with Amelia package in R [54]. This

method has several advantages as it can fit different data mechanisms, keeps the data variabil-

ity, and gives efficient results in small samples [55]. This new method uses the Expectation-

Maximization Bootstrapping approach (EMB). Bootstrapping in Amelia refers to getting sev-

eral copies from the same dataset and filling them using the expectation-maximization

method. Copies of multiple samples ensure the uncertainty in the imputation process. This

method uses all the available data, even if it is not used in the analytic model. Multiple imputa-

tion gives unbiased estimates and works well with missing at random or missing completely at

random data [56]. It is also influential in longitudinal data [57].

Suppose that D is the data matrix, D*(i.i.d.)MVN(μ, σ). At first, we assumed initial val-

ues for μ and σ, then we drew values ð~DÞ from the assumed multivariate normal distribution

(MVN) with these initial values of μ and σ for each copy of the data sets. Afterwards, the

expectation-maximization starts. The Expectations is performed using the estimated values

of μ and σ (from the previous step) to draw random numbers from the normal distribution

to fill in the missing data. Then, we used the complete data to maximize the likelihood func-

tion for the two parameters. Iterate until convergence [54]. The likelihood function is

Lðm; s j DÞ
QN

i¼1
fMVNðdi j m; sÞ; di is the ith observation. The most conservative assumption in

this method is that the data should follow a multivariate normal distribution. If this assump-

tion is relaxed, we can make some transformations to get it as close to normal as possible

[54]. In many cases, if we have non-normal or discrete variables, Amelia’s normal model

works well in imputation [58].

Two steps detected the linear trend of the data. First, we applied the non-parametric Mann-

Kendall (MK) test [59, 60] to check the existence of a monotonic upward or downward trend

of each series. The null hypothesis of the test assumes that there is no upward or downward

trend. It can be applied in case of missing data, but this test doesn’t confirm the linearity of the

trend. The main advantage of this test, it doesn’t require any presumptions of the data distribu-

tion. Second, we performed linear interpolation for the missing data, and checked the linearity

of the trend to affirm the choice of the linear function in interpolation. We used t-test with

Sieve-bootstrap to allow for dependence between observations, assuming that there is no linear

trend in the null hypothesis [61, 62]. The following table (Table 1) summarizes the results of

the two tests:
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The results indicate the rejection of the null hypothesis in the two tests, implying the mono-

tonic and linear trend in all of the series. Consequently, it was possible to apply the linear

imputation in the five series.

Algorithm 1 Particle Filter
INPUT S0, Transition equation, Measurement Equation, Observed data
(Ot,1:3)
OUTPUT: Ŝðt¼2:TÞ ¼ ½x̂; ŷ1 ; ŷ2 ; ŷ3 ; ŷ4 ; ŷ5 ; ŷ6 ; ŷ7 ; �̂1 ; �̂2 ; �̂3 ; �̂4 ; �̂5 ;

^s2
1m ; ŝ

2
2m ; ŝ

2
3m ; ŝ

2
s �

1: Generate iid Particles S0 * P(S0)
2: for t = 2:T do
3: η1:15 * N(0, 0.01)
4: for i = 1:N do
5: Sit  Transition equations
6: yi1, yi2, yi3  Measurement equation
7: ei,1:3 = Ot,1:3 − yi,1:3
8: end for
9: if y1t = Nan then
10: wi,1t|t−1 = 1
11: else
12: Compute wi,1t|t−1
13: end if
14: if y2t = Nan then
15: wi,2t|t−1 = 1
16: else
17: Compute wi,2t|t−1
18: end if
19: if y3t = Nan then
20: wi,3t|t−1 = 1
21: else
22: Compute wi,3t|t−1
23: end if
24: wi,1t|t−1�wi,2t|t−1�wi,3t|t−1  wi,t|t−1
25: ~wi;tjt� 1 ¼ wi;tjt� 1=sumðwi;tjt� 1Þ  normalized � weights
26: Compute Ŝtjt ¼

PN
i¼1

~wi;tjt� 1 � Sitjt� 1

27: Resample
28: end if

Handling high correlation among the five biological and behavioral risk factors. The

five variables that indicate biological and behavioral risk factors, logically, are highly corre-

lated. Therefore, we used the suggested time series factor analysis (TSFA) to collect these vari-

ables in one factor that indicates risk factors’ prevalence [63]. Time series factor analysis uses

the same equation of ordinary exploratory factor analysis but with subscript t. The R package

TSFA has been used in this analysis to get the factors that represent the prevalence of risk fac-

tors [64]. According to TSFA, we can relax the observation independence and normality; we

only need to check if the data are stationary or not and apply differencing if required. Suppose

Table 1. Mann-Kendall test and t-test results.

Variable P-value Mann-Kendall P-value t-test

Obesity <.001 <.001

Tobacco <.001 .026

Blood glucose .009 <.001

Raised blood pressure <.001 <.001

Cholesterol .002 .006

https://doi.org/10.1371/journal.pone.0245642.t001

PLOS ONE State-Space model estimation of NCDs burden in Egypt

PLOS ONE | https://doi.org/10.1371/journal.pone.0245642 August 10, 2021 7 / 23

https://doi.org/10.1371/journal.pone.0245642.t001
https://doi.org/10.1371/journal.pone.0245642


that at time t, for t equals 1, . . ., T time points, we have k latent variables (ηt), and M indicators

(yt); the model’s equation will be as follows [63]:

yt ¼ aþ bZt þ �t; ð1Þ

where α is M vector of intercept parameters, β is M�K matrix of factor loadings, �t is M vector

of measurement errors. We assumed that the intercept (α) is equal to zero in the application of

the model [63]. We applied the unit root test Augmented Dickey-Fuller test (ADF) to detect

data stationarity [65]. The ADF test depends on the following equation:

Dyt ¼ aþ bt þ gyt� 1 þ d1Dyt� 1 þ d2Dyt� 2 þ � � � þ dp þ Dyt� p þ et; ð2Þ

where α is a constant, β the coefficient on a time trend, t is the deterministic trend, and p the

lag order of the autoregressive process, and Δyt−p is the difference of pth lag order of the series

yt. The test detects the null hypothesis of γ=0. The five variables are non-stationary (each ser-

ies’s mean and variance are not constant and function in time) and should be differenced.

Obesity, cholesterol, and blood glucose are integrated of order two. Raised blood pressure and

tobacco are integrated of order one (see Table 2).

As we have integrated data of order greater than zero, the mean and variance of indicators

will change over time, and the estimation of the constant parameters will be problematic. Con-

sequently, we applied two differences to the five variables to reach stationarity. Then, the equa-

tion of the time series factor model will be [63][P. 6]:

Dyt ¼ yt � yt� 1 ¼ ðat � at� 1Þ þ bðZt � Zt� 1Þ þ ð�t � �t� 1Þ; ð3Þ

Dyt ¼ tt þ bDZt þ D�t: ð4Þ

The two extracted factors were assumed to be correlated. The correlation between the two

differenced factors was small (0.35). Many methods of rotations can be used in case of interde-

pendent factors such as oblimin, quartimin, geomin, promax, promaj, simplimax, and it is

called oblique rotation. Quartimin rotation was used as a rotation method in this analysis [66].

Moreover, we estimated the undifferenced factor scores using Bartlett factor scores to be con-

sistent with the other variables (have the same number of data points), using the following for-

mula [63][P. 12]:

Zbt ¼ ðb0o
� 1bÞ

� 1
b0o� 1yt: ð5Þ

We were able to obtain not time-dependent parameters from the TSFA model using the dif-

ferenced data series. The resulting Bartlett factor scores depend on the factor loading β
extracted from the TSFA model 4 and the error covariance ω. [63]. The resulting factor scores

were used in the rest of the study.

Table 2. Augmented Dickey Fuller test results.

Augmented Dickey Fuller test results

Variable P-value before differencing P-value after differencing

Obesity .98 .01

Tobacco .62 .05

Blood glucose .98 .02

Raised blood pressure .38 .01

Cholesterol .71 .01

https://doi.org/10.1371/journal.pone.0245642.t002
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Model and statistical analysis

To estimate the latent states’ trajectory and the parameters in the State-Space model (SSM), we

performed a parallel estimation of the course of the latent states and the parameters using the

Bayesian approach. We applied two techniques of the Bayesian approach (we used MATLAB

in applying the two methods [67]): Particle Filter (PF) or Sequential Monte Carlo (SMC)

method and the Particle Independent Metropolis-Hastings (PIMH) method. The PF assumes

that the parameters are dynamic; therefore, we used the online estimation technique in which

the estimation is performed sequentially as a new observation is becoming available. In con-

trast, the PIMH assumes that the parameters are static; hence, we used the offline estimation

technique which depends on the entire observations of y1:t, y for t = 1, . . ., T [68].

Particle filter (sequential Monte Carlo). We estimated the latent states’ posterior density

in the particle filter method based on the observed variables’ available information. It is a

sequential process of obtaining the latent states’ posterior at time t based on the latent posterior

at time t−1 and the new observed points at time t [69]. Assume that we have the following state

equation:

xt ¼ a1xt� 1 þ a2u1t þ a3u2t þ a4u3t þ a5u4t þ �1t; �1t � Nð0; s2
s Þ ð6Þ

The state equation follows the Markov property; the value of the disease’s burden (xt)
depends only on the value (xt−1). The latent variable also depends on the risk factors (u1t), the

disease prevalence (u2t), the average of mild and moderate disability weights (u3t), the average

of severe disability weights (u4t), and the state noise (�1t). Additionally, we have three measure-

ment equations for the three indicators. The first measurement equation for (y1t) refers to the

years of life lost due to death (YLL). The indicator variable (YLL) is assumed to be a function

in the burden of disease (xt) only, and it takes the form:

y1t ¼ y1xt þ �2t; �2t � Nð0; s2
1mÞ: ð7Þ

The second measurement equation is for the ambulatory health services utilization (y2t)

(proxied by the number of outpatients). It is assumed to be a function in the burden of disease

(xt), the ambulatory health services supply (measured by the number of specialists) (Z2t), and

health services financial access proxied by GDP per capita (Z3t) (an estimate of the individual’s

financial capability); it is written as:

y2t ¼ y2xt þ y3z2t þ y4z3t þ �3t; �3t � Nð0; s2
2mÞ: ð8Þ

The third measurement equation is for the indicator (y3t), the hospital facilities utilization

(proxied by the number of days spent in hospitals). It is assumed to be influenced by the bur-

den of disease, hospital services supply (proxied by the number of beds) (z1t), and GDP per

capita (z3t).

y3t ¼ y5xt þ y6z1t þ y7z3t þ �4t; �4t � Nð0; s2
3mÞ; ð9Þ

where �1t, �2t, �3t are the three measurements’ noises respectively. For simplicity, we assumed

that they follow Gaussian distribution. Regarding the normality assumption of the indicators,

we have three response variables. The first response variable, years of life lost (YLL), is a con-

tinuous variable due to its calculation methods [70, 71]. The other two response variables (the

number of days spent in a hospital and the number of outpatients) have missing values. There-

fore, in PIMH, these two response variables needed imputation using EM algorithm to assist

random draws of missing values from the normal distribution even if the main distribution of

the data is not normal. Consequently, the imputed versions of the data are of continuous type,
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and the assumption of normality in PIMH can be acceptable in case of using the imputed data.

In particle filter (PF) analysis, we have to choose between two ways of handling count data:

either using robust linear models that overcome the shortfalls of the non-normality of the data

or make the transformations to approach normality such as log transformation, square root,

standardization, Box-Cox transformation [72, 73]. We standardized all the variables to

approach normality and have the same assumptions of the normal distribution in the two

methods (PF and PIMH) to achieve proper comparison.

The recursive computation of the latent states works as follows [74, P. 139–141]:

According to the Bayes theorem, we can compute the posterior density from the following

equation:

Pðxtjy1:tÞ ¼
PðytjxtÞPðxtjy1:t� 1Þ

pðytjy1:t� 1Þ
; ð10Þ

where the prior density of the latent variable is P(xt|y1:t−1), the likelihood of the data is P(yt|xt),
and the normalising constant or the marginal likelihood is p(yt|y1:t−1). We discarded the nor-

malising constant for simplicity as it is not always tractable. The previous equation can be

rewritten as:

Pðxtjy1:tÞ / PðytjxtÞPðxtjy1:t� 1Þ: ð11Þ

Accordingly, the first step assumes that the initial value of the state, x0 at t = 1 follows a den-

sity p(x0). Each iteration t starts with the posterior of xðiÞðt� 1jt� 1Þ obtained from the previous itera-

tion t−1; we can calculate xðiÞðtjt� 1Þ from the state (transition) equation to get new samples. We

started from t = 2, and the estimated states at t = 1 are assumed to be the average of the simu-

lated particles from the uniform distribution (Algorithm 1). The importance weight of each

particle wðiÞtjt� 1 is calculated according to:

wðiÞtjt� 1 ¼
Target
Proposal

¼
1

N
PðxðiÞtjt� 1jy1:tÞ

PðxðiÞtjt� 1jy1:t� 1Þ
; for i ¼ 1; . . . ;N: ð12Þ

Where N is the number of particles, xðiÞtjt� 1 are iid samples from P(xt|y1:t−1), and their corre-

sponding weights wðiÞtjt� 1. From Eq 12, as we do not have information about the target distribu-

tion we can rewrite the weights as follows:

wðiÞtjt� 1 / Pðytjx
ðiÞ
tjt� 1Þ; for i ¼ 1; . . . ;N: ð13Þ

In each iteration, the particles with low weights are discarded, and the new iteration starts

with the highly weighted particles. The weights in Eq 13 have three dimensions based on the

three measurement Eqs (7, 8 and 9), so we need to estimate w1t, w2t, w3t. The three weight

functions are estimated as follows:

ŵi
jt ¼ Pðyjt j xt; yÞ ¼

1

ðsj
ffiffiffiffiffiffi
2p
p
Þ
e
� 0:5ððyjt � ŷ jt ðy

0 ÞÞ2

s2
j ; t ¼ 1; . . . ;T; j ¼ 1; . . . ; 3: ð14Þ

According to the previous studies [18, 23], and in agreement with our conceptual frame-

work, the response variables are conditionally independent given the state variable and the

parameters (see Fig 1). Assuming that the three indicator variables are independent, we
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multiplied the three unnormalized weights following [75]:

ŵi
t ¼ ŵi

1t � ŵi
2t � ŵi

3t: ð15Þ

The normalized weights (sum to one) are given by:

vit ¼
wðiÞt

PN
i¼1
wðiÞt

: ð16Þ

The state estimation was calculated as the average of weighted particles using the following

formula:

x̂tjt ¼
1

N

XN

i¼1

xðiÞtjt� 1w
ðiÞ
tjt� 1: ð17Þ

Finally, we added an artificial noise ψ to assume state equations for the parameters, and to

allow for the change of parameters through time using a random walk process:

yt ¼ yt� 1 þ c;c � Nð0; 0:01Þ: ð18Þ

It should be noted that whatever was the prior distribution of the error term, it would not

affect the final results [76]. Using the samples of x1:t we got an unbiased estimator of the likeli-

hood function which was used in the PIMH method according to the following formula [30]:

LogL̂ðy1;1:T ; y2;1:T; y3;1:T; y1:7; a1:5; s
2
1
; s2

2
; s2

3
Þ

¼ log
YT

t¼1

p̂ðy1t; y2t; y3t j xt; y1;1:t� 1; y2;1:t� 1; y3;1:t� 1; y1:7; a1:5; s
2

1
; s2

2
; s2

3
Þ

¼
XT

t¼1

log
1

N

XN

i¼1

ðy1t; y2t; y3t j x
i
tjt� 1

; y1:7; a1:5; s
2

1
; s2

2
; s2

3
Þ:

ð19Þ

Particle Independent Metropolis-Hastings. Particle Independent Metropolis-Hastings

method facilitates the inference of the latent state and the parameters of the transition and the

measurement equations using Particle Filter (PF) and Markov Chain Monte Carlo (MCMC)

simultaneously [77]. It allows for the aligned estimation of the latent states and parameters

[30]. As it is an approach for inference by sampling, the parameters are drawn from a proposal

density. The main idea is trying to find a Markov Chain for each parameter that converges to a

stationary posterior distribution. The principal privilege of this method is that it reaches unbi-

ased estimates [78].

Suppose we have proposal distribution Q, target distribution π, and proposed or candidate

parameter θ0 from proposal distribution Q(θ0jθk−1). We should determine if the candidate

parameter would be accepted in our chain and becomes θk, or stay in the previous position

θk−1. This decision is based on an acceptance probability (The numerator and the denominator

contain the posterior distribution π so we do not need the normalized constant in this case as

it will be cancelled out). α(θ0, θk−1) [79, P.9-10].

aðy
k� 1
! y

0
Þ ¼ minð1;

pðy
0
ÞQðy0 ! y

k� 1
Þ

pðy
k� 1
ÞQðyk� 1

! y
0
Þ
Þ ð20Þ
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Q(θ0 ! θk−1)is the transition probability from θ0 to θk−1, and Q(θk−1! θ0)is the transition

probability from θk−1 to θ0. If the proposal distribution is a symmetric distribution then,

Q(θ0 ! θk−1) = Q(θk−1! θ0), and the acceptance probability becomes as follows [80]:

aðy
k� 1
! y

0
Þ ¼ minð1;

pðy
0
Þ

pðy
k� 1
Þ
Þ: ð21Þ

The acceptance probability checks if the new proposed point, under the posterior distribu-

tion, is more plausible than the previous one or not. If it is the case, then the acceptance proba-

bility would be equal to 1, and the new point will be accepted. Alternatively, we will generate a

random number from U(0, 1). If this number is less than the acceptance probability we will

accept it with probability α; otherwise, the new point will be rejected [79]. The parallel estima-

tion of the latent states and the parameters was a challenge. The combined evaluation will be

like two loops: one outer loop for parameters’ estimation, and an inner loop for sequential

Monte Carlo estimation of the latent states’ trajectory and the related likelihood functions

based on the estimated parameters in the outer loop (see Algorithm 2) [81]. The unbiased esti-

mator of the likelihood estimated from the particle filter was used in PIMH to calculate the

posterior of the parameters (the formula in Eq 19 was used in Algorithm 2, line 7).

In PIMH, the initial points of the parameters were zeros, and that for the measurement and

the state’s error variances were 0.01. In both techniques, PF and PIMH, we presumed that the

coefficients were all positive except for the impact of the diseases’ burden on health services’

utilization (θ2 and θ5), and assumed that the proposal distribution is U(−1, 1). The indepen-

dent Metropolis-Hastings sampler’s positive parameters followed U(0, 1), and the variance

of the measurement errors was U(0.1, 1.5). The burden of the disease’s initial value follows

U(−3, 3).

Algorithm 2 Particle Independent Metropolis Hastings
INPUT:x0, prior distribution of parameters.
OUTPUT: Estimated Parameters, Estimated states.
1: θ0 Initialize parameter θ0
2: fP̂yðŷ

ð0Þ

1:TÞ;X
ð0Þ

1:Tg  Particle filterðy0
;X0Þ

3: p0 � P̂yðŷ
ð0Þ

1:TÞ

4: for i = 2:N do
5: θi

�

* q(θi
�

)
6: fP̂yðŷ1:TÞ;X1:Tg  Particle filterðyi�;X0Þ

7: pi� � P̂yðŷ1:TÞ

8: Acceptance Probability = min(1, pi��priorðyi�Þ
pi� 1�priorðyi� 1Þ

)

9: U * U(0, 1)
10: if Acceptance Probability < U then
11: θi  θi

�

12: Xi
1:T  Xi�

1:T

13: πi  πi
�

14: else
15: θi  θi−1

16: Xi
1:T  Xi� 1

1:T

17: πi  πi−1

18: end if
19: end for
20: Compute the average of each parameter after excluding burn-in

iterations: ŷ

21: X1:T  Particle filterðŷ;X0Þ
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Results

Table 3 displays the estimated parameters of the state and measurement equations according

to the PF method. For each parameter, the estimation converged to a single value, ensuring

that the parameters are time-invariant. The computation of the coefficients demonstrates

some differences for different diseases.

According to the PF findings, all the diseases’ burdens are on the rise, (Fig 2). However,

chronic respiratory diseases showed a sharp rise at the beginning of the 1990s, and it leveled

off during the time interval 1995 to 2005, then it steeply increased after that. The other three

diseases showed a gradual increase with neoplasm revealed a slight rise in its slop after 2005.

The burden of the preceding year weakly predicts the disease burden in the current year for

all the diseases (α1). The risk factors (α2) have a strong influence on the burden of neoplasms,

chronic respiratory, and diabetes and kidney diseases except for cardiovascular diseases. On

the contrary to our hypothesis, the disease prevalence exhibits a low positive impact (α3) on

the disease burden of the four groups. The mild/moderate weights apparently affect the burden

of the four groups of diseases (α4) and results show a salient positive impact of the severe

weights (α5) on the disease burden of chronic respiratory diseases and diabetes and kidney dis-

eases. Considering the health metric’s indicators, YLL shows high loadings (θ1) in cardiovascu-

lar, and diabetes and kidney diseases; moderate in neoplasms, and low loading in chronic

respiratory diseases. The number of outpatients (θ2) has low positive loadings in neoplasms

and cardiovascular diseases and low negative ones in the remaining two diseases. The number

of days spent in hospitals (θ5) indicates negative loadings in all the diseases, but neoplasms.

The number of specialists’ effect on the number of outpatients (θ3) reveals a strong positive

impact. GDP per capita (θ4) has a weak influence on the number of outpatients in cardiovascu-

lar diseases, and it shows a strong positive effect in the rest of the diseases. On the other hand,

the number beds’ influence on the number of days spent in the hospitals (θ6) was positive

strong for the four diseases. Finally, GDP per capita (θ7) strongly affects the number of days

spent in a hospital only for chronic respiratory diseases.

Table 3. Estimated parameters using particle filter.

Cardiovascular diseases Neoplasms Diabetes and kidney diseases Chronic respiratory diseases

α1 0.321 0.29 0.125 0.158

α2 0.048 0.955 0.951 0.316

α3 0.219 0.226 0.28 0.011

α4 0.941 0.563 0.811 0.754

α5 0.26 0.063 0.695 0.916

θ1 0.668 0.41 0.939 0.354

θ2 0.217 0.18 -0.152 -0.272

θ3 0.815 0.941 0.882 0.734

θ4 0.27 0.564 0.576 0.827

θ5 -0.817 0.251 -0.406 -0.381

θ6 0.753 0.637 0.788 0.769

θ7 0.276 0.208 0.151 0.612

s2
1m 0.043 0.112 0.189 0.093

s2
2m 0.053 0.099 0.132 0.068

s2
3m 0.064 0.551 0.094 0.115

s2
s 0.538 1.254 0.366 0.368

https://doi.org/10.1371/journal.pone.0245642.t003
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The estimated error variances of the three measurement equations for the different diseases

range between 0.043 (cardiovascular) and 0.189 (diabetes and kidney disease), except for the

third measurement error variance in neoplasms (0.551). state equation’s error variances are

between 0.366 (Diabetes and kidney diseases) and 1.254 (neoplasms).

Regarding PIMH, the resultant estimated parameters were calculated as an average of five

imputed samples for each of the four diseases. We used 5000 iterations that were left after dis-

carding the first 1250 burn-in iterations (Burn-in iterations are the first group of iterations

that should be discarded from the chain [78]). The number of particles was 1000 in this

method [30].

The judgment on the method was performed through several diagnostics. First, the chains’

trace plots are stationary around specific values, showing high quality and samples’ stability

representing the posterior distribution [82] (S1–S4 Figs). The second examines the auto-corre-

lation as an essential indicator of the convergence [81]. We have minimal correlations between

the samples and the previous ones (the correlation vanishes after the fourth lag). Also, we have

many independent samples that reflect the target distribution (Table in S1 Table). The final

diagnostic compares the means of two different segments in the chain; usually the first 10%

samples and the last 50% samples. The null hypothesis assumes that the two samples’ means

are the same [83]. The null hypothesis was accepted, which means that the samples are from

the same distribution (p-values of the test are presented in S2 Table). The computation time of

PIMH becomes higher, the number of iterations and particles increases (see S3 Table).

Fig 2. Particle filter estimated trajectories for the four NCDs group of diseases.

https://doi.org/10.1371/journal.pone.0245642.g002
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PIMH results revealed an increasing trend of all diseases’ burdens (always the first year is

affected by the assumed initial values). Cardiovascular, neoplasm, and diabetes and kidney dis-

eases showed a sharp rise, overall, notably after the 2011 revolution. After a sudden decline

around 2015, neoplasm kept rising, cardiovascular and chronic respiratory rose then tended to

decline, and diabetes and kidney diseases are plateauing after 2015, (Fig 3, and for details, see

Fig in S9 Fig).

Regarding NCDs-BDI determinants, results reveal that the rise in the previous year’s bur-

den caused an increase in this year’s burden with a moderate impact. The higher prevalence of

the disease and the prevalence of the risk factors caused a higher disease burden. The same

results were reached regarding the moderate impact of the severity weights (Table 4).

Years of life lost due to death (YLL) were significantly affected by diseases’ burden (high

loading). The average estimated loadings of the number of outpatients (θ2) are very small and

negative in all the diseases (ranges between -0.16 and -0.002). Similarly, the number of days

spent in hospitals (θ5) shows a very weak loading and indicates a negative relationship with the

burden for all the diseases but neoplasms (Table 4).

For all diseases, the effects of the specialists’ number (θ3) and GDP per capita (θ4) on the

number of outpatients approached 0.5. On the other hand, the number of beds (θ6) and the

GDP per capita (θ7) showed a moderately positive effect on the number of days spent in hospi-

tals (around 0.47). Finally, the state and the measurement errors’ variances show low variation

between diseases 0.7 and 0.8.

Discussion

The study aimed to develop a burden of disease index in Egypt. In developing such an index, it

adopted the conceptualization that it is essential to consider the demand for health care ser-

vices induced by the disease alongside the disease-related morbidity and mortality. In this

endeavor, we adopted the Kaltjob suggested framework [23]. However, we conducted three

modifications: (a) We added the biological and behavioral risk factors as one of the major

Fig 3. Particle Independent Metropolis-Hastings estimated trajectories for the four NCDs group of diseases.

https://doi.org/10.1371/journal.pone.0245642.g003
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causes of the disease burden (were not considered in Kaltjob framework), (b) we considered

premature deaths as an indicator (i.e., is a consequence of the population’s health status) not a

cause as formulated by Kaltjob, and (c) his presumed direct effect of the disability weights on

health services’ use is eliminated as it has no theoretical base. We believe that disability weights

affect the use of health care services indirectly through the disease burden.

This endeavor is the first to be conducted in the context of a less developing county, Egypt,

and among the few that had been performed worldwide. The study estimated four burdens of

disease indices (NCDs-BDI) for four non-communicable diseases using two Bayesian estima-

tion methods of the State-Space model: The Particle Filter (PF) and the Particle Independent

Metropolis-Hastings (PIMH).

The estimated parameters using the Particle Filter method noticeably varied between dis-

eases but static through time, while in the PIMH, the estimated parameters were very close to

each other.

Both methods; PF and PIMH came to the conclusion that all the diseases’ burdens are on

the rise. The slow rise in the burden of neoplasms and chronic respiratory diseases that began

at the mid-nineties is most probably influenced by the health sector reform program. The

health sector reform program started in 1997 and planned to be accomplished in 2015. It tar-

geted comprehensive coverage of health services and the realization of better health indicators

[84, 85]. However, it was obstructed by the aftermath of political instability and economic

hardships following the 25th January, 2011 revolution.

Most of the two methods’ findings agreed with our assumptions and are in line with the lit-

erature. High prevalence of the risk factors, increased disease prevalence, and the increase in

the disease’s severity level all increase illness burden. The results also showed high loadings for

the years of life lost due to death YLL in all the diseases, except for in PF estimation results,

YLL has weak loadings for the neoplasms and chronic respiratory. The previous year’s burden

strongly predicts the current year’s burden (the PF results have not confirmed this

assumption).

Table 4. Estimated parameters using Particle Independent Metropolis-Hastings.

Cardiovascular diseases Neoplasms Diabetes and kidney diseases Chronic respiratory diseases

Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50% Mean SD 2.50% 97.50%

α1 0.401 0.272 0.025 0.95 0.382 0.264 0.021 0.934 0.423 0.285 0.014 0.962 0.422 0.283 0.019 0.944

α2 0.469 0.293 0.024 0.985 0.469 0.291 0.024 0.963 0.483 0.291 0.015 0.98 0.474 0.284 0.026 0.979

α3 0.474 0.275 0.03 0.964 0.466 0.284 0.023 0.958 0.47 0.283 0.03 0.956 0.463 0.278 0.036 0.964

α4 0.457 0.292 0.008 0.976 0.447 0.283 0.018 0.956 0.469 0.283 0.021 0.952 0.46 0.287 0.019 0.968

α5 0.452 0.28 0.014 0.963 0.438 0.286 0.03 0.954 0.461 0.284 0.019 0.954 0.454 0.278 0.019 0.965

θ1 0.488 0.289 0.0192 0.982 0.517 0.292 0.021 0.982 0.482 0.277 0.031 0.964 0.49 0.277 0.035 0.979

θ2 -0.093 0.528 -0.967 0.883 -0.002 0.547 -0.953 0.945 -0.166 0.537 -0.969 0.928 -0.086 0.552 -0.943 0.939

θ3 0.526 0.283 0.027 0.967 0.476 0.291 0.033 0.972 0.485 0.278 0.033 0.967 0.47 0.291 0.017 0.971

θ4 0.47 0.287 0.022 0.978 0.52 0.293 0.029 0.982 0.476 0.289 0.019 0.968 0.494 0.286 0.019 0.967

θ5 -0.035 0.538 -0.93 0.902 0.003 0.513 -0.923 0.917 -0.212 0.535 -0.961 0.915 -0.083 0.556 -0.944 0.927

θ6 0.472 0.278 0.017 0.959 0.477 0.291 0.024 0.976 0.473 0.281 0.016 0.975 0.452 0.288 0.019 0.976

θ7 0.463 0.283 0.014 0.974 0.505 0.279 0.028 0.98 0.458 0.289 0.026 0.98 0.469 0.288 0.025 0.973

s2
1m 0.753 0.402 0.123 1.454 0.79 0.41 0.121 1.469 0.751 0.405 0.14 1.45 0.772 0.399 0.134 1.451

s2
2m 0.848 0.401 0.141 1.465 0.824 0.402 0.159 1.449 0.792 0.398 0.151 1.464 0.882 0.368 0.247 1.473

s2
3m 0.854 0.383 0.172 1.469 0.788 0.399 0.158 1.461 0.878 0.387 0.197 1.471 0.882 0.377 0.193 1.46

s2
s 0.857 0.379 0.158 1.461 0.879 0.393 0.182 1.476 0.819 0.398 0.126 1.474 0.872 0.394 0.136 1.459

https://doi.org/10.1371/journal.pone.0245642.t004

PLOS ONE State-Space model estimation of NCDs burden in Egypt

PLOS ONE | https://doi.org/10.1371/journal.pone.0245642 August 10, 2021 16 / 23

https://doi.org/10.1371/journal.pone.0245642.t004
https://doi.org/10.1371/journal.pone.0245642


In contradiction to our assumption but in agreement with others [42], the use of health

care services had low and negative loadings for all the diseases, except for neoplasms and car-

diovascular diseases, suggesting a weak relationship between the burden and utilization. Nev-

ertheless, the results unravel that neoplasms induce hospitalization demand, and

cardiovascular induces outpatient clinics’ demand. In the more developed countries, health

services use can be a matter of high awareness and early check-ups, not a reason for high bur-

den [42]. On the contrary, in Egypt, the negative relationship between disease burden and

demand for health care services can be attributed to the lack of full health insurance coverage.

Approximately half of the Egyptian population are covered by health insurance. Likewise, half

of the retired people that are significantly exposed to chronic diseases have health insurance

[86]. Lack of health insurance discourages the use of health care facilities, as it makes seeking

health care (visiting doctors for diagnosis, staying at the hospital, buying drugs) costly, and

consequently, out-of-pocket spending on health care represents 60% of total health expendi-

ture. Additionally, some sick individuals seek pharmacists’ advice and medical prescriptions, a

widespread practice in Egypt.

The two methods assure the positive relationship between health services supplies and use,

which coincides with our presumption and literature [43]. In accordance with other studies

[38, 40, 44, 87, 88], findings show a strong positive relationship between the individual’s finan-

cial capabilities and health care facilities’ use (outpatients), indicating the affluent are more

likely to seek health care than the vulnerable and uninsured groups. On the other hand, seek-

ing pharmacists’ advice is a major outlet for the poor in case of illness [89]. On the contrary,

results reveal a weak relationship between individuals’ financial capabilities and hospitalization

(inpatients), reflecting that all people, the better-off and the poor, can not escape hospitaliza-

tion if needed.

It is worth mentioning that although the two methods are different in the assumption of

parameters’ dynamism; they exhibited a substantial similarity in their findings. It is notewor-

thy to mention that using PIMH is promising in estimating the parameters and the latent states

of the study model, as the parameters converged to a constant value. Diagnostics in PIMH

methods assured the convergence to the posterior distribution. On the other hand, in PF, han-

dling missing data in the indicators was much easier than the multiple imputation method

applied with PIMH. We performed a sensitivity analysis to assess the performance of the Parti-

cle Filter inference method. The Particle Filter method was numerically sensitive to changing

the initial values’ distribution boundary; it gives estimated parameters of similar directions but

with different magnitude. However, it retains the behavior of the latent state. Besides, we used

root mean square discrepancy (RMSD) to assess the performance of the varying number of

particles (Table in S4 Table). Another difference between the two methods is that PIMH is less

numerically sensitive than PF but has greater computation time and (Tables in S3 and S4

Tables). Moreover, we should admit that using PIMH method gave us a higher estimated vari-

ance for measurement and state errors.

Conclusion

The study aimed to estimate an index of the burden of non-communicable diseases on the

population’s health. This metric will help providing policymakers in Egypt with tools to moni-

tor and forecast future NCDs’ progression and model their impact on several dimensions of

the societies’ demographic and socio-economic development. It also aimed to contribute to

the efforts of modeling non-communicable disease trajectories. This attempt is the first to be

conducted in Egypt.
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The study provided evidence that the burdens of the four NCDs are on the rise. They are

positively influenced by their recent past, risk factors, disease prevalence, disability weight, and

disease-related deaths.

Our study provided evidence that the State-Space model is a concise representation of the

latent variable and its indicators and determinants. The study opens richer insights for the

usage of State-Space models with Bayesian estimation approaches in public health and epide-

miology instead of ordinary econometric models. Using the previous techniques facilitates the

investigation of disease dynamics and simultaneous estimation of latent construct and parame-

ters. The negative and weak relationship between the burden and utilization of health care ser-

vices found in Egypt’s case cannot be generalized. The model should be applied in different

countries to assess the assumed relationship between the burden and utilization of health care

services in the model. It also highlights the need to enhance Egypt’s health registration system

as most of the data on demand for health care services are not available and if available, are

incomplete.
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79. Elster C, Klauenberg K, Walzel M, Wübbeler G, Harris P, Cox M, et al. A Guide to Bayesian inference

for regression problems. Germany: the European Metrology Research Programme (EMRP): EMRP

Project NEW04 “Novel Mathematical and Statistical Approaches to Uncertainty Evaluation”; 2015.

PLOS ONE State-Space model estimation of NCDs burden in Egypt

PLOS ONE | https://doi.org/10.1371/journal.pone.0245642 August 10, 2021 22 / 23

https://doi.org/10.3978/j.issn.2305-5839.2015.12.60
https://doi.org/10.1017/S0003055401000235
https://doi.org/10.2307/1907187
https://doi.org/10.2307/1907187
https://doi.org/10.2307/3318584
https://doi.org/10.2307/3318584
https://doi.org/10.1016/j.jhydrol.2011.09.008
https://doi.org/10.1016/j.jhydrol.2011.09.008
http://www.rug.nl/research/portal.
http://www.rug.nl/research/portal.
https://cran.r-project.org/web/packages/tsfa/index.html
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.1080/01621459.1979.10482531
https://doi.org/10.20982/tqmp.10.1.p040
https://doi.org/10.1214/14-STS511
https://doi.org/10.1186/1478-7547-11-18
https://link.springer.com/referenceworkentry/10.1007/978-0-387-78665-0_22
https://doi.org/10.7275/pj8c-h254
https://doi.org/10.1371/journal.pone.0085150
https://doi.org/10.1016/j.compchemeng.2016.08.015
https://doi.org/10.1016/j.compchemeng.2016.08.015
https://doi.org/10.1155/2015/837070
https://doi.org/10.1155/2015/837070
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.1111/j.1467-9868.2009.00736.x
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.3758/s13423-016-1015-8
https://doi.org/10.1371/journal.pone.0245642


80. Bolstad M. Understanding computational Bayesian statistics. Hoboken, New Jersey: John Wiley &

Sons, Inc.; 2010.

81. Dahlin J, Schön TB. Getting started with particle Metropolis-Hastings for inference in nonlinear dynam-

ical models. Journal of Statistical Software. 2019; 88(1):1–39. https://doi.org/10.18637/jss.v088.c02

82. Dong T, An D, H Kim N. Prognostics 102: efficient Bayesian-based prognostics algorithm in MATLAB.

In: Pedro F, Marquez G, editors. Fault detection, diagnosis and prognosis. IntechOpen; 2019. p. 1–24.

Available from: https://www.intechopen.com/books/fault-detection-diagnosis-and-prognosis/

prognostics-102-efficient-bayesian-based-prognostics-algorithm-in-matlab.

83. Geweke J. Evaluating the accuracy of sampling-based approaches to the calculation of posterior

moments. In: Bernardo JM, Berger J, Dawid AP, Smith AFM, editors. Bayesian statistics. 4th ed.

Oxford: Oxford University Press.; 1992. p. 169–193.

84. El-Saharty S, Antos J, Afifi NH, Schieber G. Egypt—health sector reform and financing review. Wash-

ington, DC: The World Bank; 2004. February.

85. Haley DR, Bég SA. The road to recovery: Egypt’s healthcare reform. The International Journal of Health

Planning and Management. 2012; 27(1):e83–e91. https://doi.org/10.1002/hpm.1088

86. CAPMAS. Statistical yearbook. Cairo, Egypt: Central Agency for Public Mobilization and Statistics;

2017.

87. Lepine A, Le Nestour A. The determinants of health care utilisation in rural Senegal. Journal of African

Economies. 2013; 22(1):163–186. https://doi.org/10.1093/jae/ejs020
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