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Abstract: Predicting seed germination in the field is a critical part of anticipating the impact of climate
change on the timing of wild species regeneration. We combined thermal time and soil heat sum
models of seed germination for three endemic Mediterranean mountain species with endospermic
seeds and morphophysiological dormancy: Aquilegia barbaricina, Paeonia corsica, and Ribes sandalioticum.
Seeds were buried in the soil within the respective collection sites, both underneath and outside the
tree canopy, and their growth was assessed regularly and related to soil temperatures and estimates
of the thermal characteristics of the seeds. The thermal thresholds for embryo growth and seed
germination of A. barbaricina assessed in previous studies under controlled conditions were used
to calculate soil heat sum accumulation of this species in the field. Thermal thresholds of seed
germination for P. corsica and R. sandalioticum were not previously known and were estimated for
the first time in this field study, based on findings of previous works carried out under controlled
conditions. Critical embryo length and maximum germination for A. barbaricina were reached in
April, and in December for R. sandalioticum. Seeds of P. corsica stay dormant in the ground until
the following summer, and the critical embryo length and highest germination were detected from
September to December. Soil heat sum models predicted earlier germination by one month for all
three species under two Intergovernmental Panel on Climate Change (IPCC) scenarios, based on
the assumption that the estimated thermal thresholds will remain constant through climate changes.
This phenological shift may increase the risk of mortality for young seedlings. The models developed
provide important means of connecting the micro-environmental niche for in situ seed germination
and the macro-environmental parameters under a global warming scenario.

Keywords: embryo growth; global warming; Grossulariaceae; IPCC scenarios; morphophysiological
dormancy; Paeoniaceae; phenology; Ranunculaceae; soil temperature; tree canopy

1. Introduction

The Mediterranean climate is characterized by a high seasonality in temperature and precipitation,
which leads to a hot drought in summer and a cool, wet winter [1]. These conditions impact the
timing of plant emergence, since dry summer conditions limit water availability and thus seed
germination and growth, while cool winter temperatures can limit germination, even when the season
has high water availability [2–4]. In seasonal climates and in moist soils, temperature is usually the
main environmental factor influencing seed germination [5], which is a complex adaptive trait that
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determines plant establishment and contributes to population persistence [6]. Moreover, this adaptive
trait becomes even more complex in species that produce dormant seeds, by which germination is
prevented before or during unfavourable environmental conditions for emergence and subsequent
seedling development [7]. Dormancy breaking and germination requirements are specific for each
species and depend on phylogeny, geographical distribution, habitat preference, life cycle and type
of dormancy [8]. Two common dormancy types are morphological (MD) and physiological (PD),
and these may also be found in combination (e.g., morphophysiological dormancy, MPD) [5,7]. MPD is
frequent in parts of the world with moist seasonal climates [5], and breaking MPD requires the initial
growth of the embryo within the seed and an environmental treatment, often exposure to a precise
temperature, to overcome the physiological block to radicle emergence [7,9]. Thus, morphological
and/or physiological changes may occur as dormant seeds gain the ability to germinate at some
particular time(s) during the year [7]. Generally, in seeds with MPD, the seed can germinate after
the embryo has grown to a critical size and developed morphologically inside the seed, and the
physiological limitations of the embryo been overcome. In some species, embryo growth and dormancy
break are promoted by the same environmental conditions, while in others they require different
conditions [7]. Therefore, to understand the performance of the seeds in the field, information is
needed on the various changes that occur in the seeds and how they are correlated with the annual
climatic cycle in situ [10].

In non-dormant seeds, the germination response to accumulated temperature has been modelled using
a thermal time (θ) approach [11–17]. In this model, seeds accumulate units of thermal time to germinate
for a percentile g of the population, and when some dormancy is present seed germination may be
predicted in relation to thermal time accumulation above a gradually changing base temperature (Tb) [18].
Furthermore, as reported recently by Porceddu et al. [19] for Aquilegia barbaricina Arrigoni & E.Nardi,
this approach may be applied also to identify the thermal thresholds (Tb andθ) requirements for embryo
growth within the seed. Thermal time models have been shown to be robust and have many purposes,
including predicting seed germination in the field (i.e., [20–22]), assessing the impact of different
simulated climate warming scenarios on seed dormancy release and germination [23,24], and identifying
the role of diurnally alternating temperatures in seed responses to climate change [25]. Porceddu et
al. [26] used a soil heat sum model to predict in situ seed germination of Rhamnus persicifolia Moris, both
underneath and outside an Alnus glutinosa (L.) Gaertn. canopy. Similarly, Ordoñez-Salanueva et al. [27]
used this approach to examine if the shrub canopy might maintain a favourable temperature for seed
germination of Polaskia chende (Rol-.Goss.) A.C. Gibson & K.E. Horak and Polaskia chichipe (Rol.-Goss.)
Backeb under predicted climate change scenarios.

The Intergovernmental Panel on Climate Change (IPCC) has predicted temperature increases
of approx. 2–4 ◦C by 2090–2099 [28]. In the Fifth Assessment Synthesis Report [29], the IPCC
integrated and described four different Representative Concentration Pathways (RCPs), including two
intermediate scenarios (RCP4.5 and RCP6.0) and one scenario with very high (RCP8.5) anthropogenic
greenhouse gas emissions. The increase of global mean surface temperature by the end of the
21st century (2081–2100) is likely to be 1.1–3.1 ◦C under RCP4.5 and RCP6.0 and 2.6–4.8 ◦C under
RCP8.5 [29].

Large increases in temperature have been predicted and reported for the Mediterranean mountain
ranges [30,31]. A characteristic trend of Mediterranean mountains is that warming is generally coupled
with a reduction in precipitation mainly in summer [31]. This trend makes Mediterranean mountains
particularly sensitive to climate change [32]. The effects of the temperature rise on the reproductive
success of plant species may be anticipated in Mediterranean mountains [32], and these changes can be
considered in the context of global warming scenarios [33]. In addition, Mediterranean mountains
represent one of the most important centres of biodiversity and differentiation of the world [34].
The mountains of Central Northern Sardinia (Italy), precisely Supramontes and Gennargentu massif,
have been recognised as two of the biodiversity micro-hotspots within Sardinian region [35]. In detail,
Supramontes and Gennargentu largely coincide with two of the richest floristic territories for endemics
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and are considered two of the main massifs of Sardinia, with mountains reaching the highest altitudes
in the Island [36,37]. Although in mountainous areas climate warming is expected to shift species’
ranges towards higher altitudes [38], for some species growing in these areas the altitudinal shifts of
their distribution may be more complex. For example, in mountain species located at the edge of its
distributional and ecological range, such as Gentiana lutea subsp. lutea L. in Sardinia, the effect of global
warming would tend to reduce the altitudinal range towards higher elevations, increasing the risk
of local extinctions due their isolation and restriction to marginal habitats [39]. Therefore, to better
understand the impact of global warming on seed germination and seedling emergence of species
growing in restricted areas of Mediterranean mountains (which may coincide with its elevational
limits) is fundamental.

Riparian vegetation present in Supramontes and Gennargentu massif is dominated principally
by Alnus glutinosa (L.) Gaertn. with associated taxa such as Taxus baccata L., Ilex aquifolium L. and
R. persicifolia. The canopies of woody plants modify the microclimate beneath and around them
through interception of precipitation and by shading, which influences maximum soil temperatures [40].
Lower air and soil temperatures below canopies could be critical for seedlings to withstand the summer
drought, consequently suggesting that shade constitutes a key facilitative mechanism in Mediterranean
systems, even without improving soil water conditions [41].

In this work, we focused our attention on three rare and threatened Sardinian endemic species
growing in the upper part of the mountains of Gennargentu massif and Supramontes, such as
Aquilegia barbaricina, Paeonia corsica Sieber ex Tausch, and Ribes multiflorum Kit ex Roem & Schult.
subsp. sandalioticum Arrigoni. These taxa frequently grow in the same ecosystem and under ecological
conditions and close to the canopy of woody plants. Seeds of A. barbaricina, P. corsica, and R. multiflorum
subsp. sandalioticum (hereafter R. sandalioticum) are endospermic and contain a linear underdeveloped
embryo (sensu [42]). The seeds of these species show morphophysiological dormancy (MPD) [19,43,44].
Warm (25 ◦C for three months) followed by a cold stratification (5 ◦C for 3 months) release dormancy in
A. barbaricina [19], while warm stratification (25 ◦C for three months) is required for dormancy break in
seeds of P. corsica and R. sandalioticum [43,44]. Although these species were thoroughly studied under
laboratory controlled conditions [19,43,44], how the seed germination kinetics of these species interact
with their natural habitat (e.g., favourable environmental conditions for seed dormancy release, embryo
growth, and radicle protrusion) needs to be investigated in order to supplement the limited knowledge
present in the literature about the thermal control of MPD-type seeds. Thermal threshold requirements
for embryo growth and seed germination for A. barbaricina have been previously estimated in controlled
conditions [19] and the base temperature and thermal time values were used here to predict and
validate the seeds in situ germination. Thermal thresholds for seed germination of P. corsica and R.
sandalioticum were not previously known and were estimated based on findings of studies previously
carried out under controlled conditions [43,44] and field observations in this study. The study comprises
two representative localities for the species under study: Rio Correboi (located in the Gennargentu
massif) for A. barbaricina and P. corsica, and Monte Novo San Giovanni (located in Supramontes) for
R. sandalioticum.

In this work, embryo morphology, seed germination, and thermal requirements of A. barbaricina,
P. corsica, and R. sandalioticum were correlated with the environmental temperature conditions, in order
to: (1) investigate the field embryo growth, seed germination and epicotyl emergence of these
Sardinian endemic mountain species with endospermic seeds and morphophysiological dormancy;
(2) develop thermal time and soil heat sum models to predict their seed germination phenology in the
field, under present climatic conditions and two different IPCC scenarios of increasing temperatures,
under the assumption that the estimated thermal thresholds will remain constant through climate
changes. We expected that the studied species growing in the same habitat and ecosystem may respond
to current and predicted mountain temperature differently by synchronizing the time and the rate
of embryo growth and radicle protrusion in a period of time favourable for the subsequent seedling
development in situ.
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2. Results

2.1. Embryo Growth and Germination Tests in Natural Conditions

Soil temperatures recorded by data loggers were very similar for the two localities (RC, “Rio
Correboi”; MSG, “Monte Novo San Giovanni”; Figure 1A), with an annual mean temperature of
ca. 9.5 ◦C for IN (i.e., underneath the tree canopy) in both populations, and of ca. 10.2 ◦C and ca.11.8
◦C for OUT (i.e., outside the tree canopy) in RC and MSG, respectively, ranging from a minimum of
−0.6 ◦C (OUT; 12 January 2012) to a maximum of 29.6 ◦C (OUT; 12 July 2012) in RC, and a minimum of
0.2 ◦C (OUT; 23 February 2012) to a maximum of 27.7 ◦C (OUT; 13 July 2012; Figure 1A) in MSG. The
lowest mean temperatures (ca. 1 ◦C) were detected in the period III in all experimental sites, whereas
the highest mean temperatures were reached in the period VI with ca. 18 ◦C for RC IN and MSG IN,
and ca. 22 ◦C for RC OUT and MSG OUT (Figure 1A). The length of the effective cold stratification
periods (i.e., mean daily temperatures < 5 ◦C) was 92 days for RC IN and MSG IN (both with 41 days
of snow cover), and 98 days for RC OUT (with 47 days of snow cover) and 93 days for MSG OUT
(with 44 days of snow cover), and occurred from December to March (Figure 1A). The number of days
with mean daily temperatures > 20 ◦C was 64 and 44 days for RC IN and MSG IN, respectively, and
80 days for RC OUT and 96 days for MSG OUT, and occurred from June to August-early September
(Figure 1A).
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Generalized linear models (GLM) identified a high statistically significant (p < 0.001) effect for 
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embryo length. For seed germination and epicotyl emergence, GLMs highlighted a high statistically 
significant difference (p < 0.001) for the “D” and “S” factors and a statistically significant (p < 0.05) 
effect for the “P” factor (Supplementary Table S1). A highly significant difference (p < 0.001) was 

Figure 1. (A) Annual trends of mean daily temperatures recorded in the soil both underneath (IN) and
outside (OUT) the tree canopy for Rio Correboi (RC) and Monte Novo San Giovanni (MSG), and mean
monthly rainfall obtained from the nearby weather stations of Fonni for RC and of Montes for MSG from
June 2011 to August 2013 and from June 2011 to August 2012 for RC and MSG, respectively. (B) Embryo
length in mm (20 seeds at each exhumation time). (C) Field germination (3 replicates of 25 seeds each)
IN and OUT at each time of exhumation. (D) Field epicotyl emergence (3 replicates of 25 seeds each)
IN and OUT at each time of exhumation of P. corsica and R. sandalioticum. The background grey squares
correspond to the presence of the tree canopy. I, II, III, IV, V and VI correspond to different periods.
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Embryos of A. barbaricina seeds (with initial embryo length of ca. 0.3 mm; Table 1) grew slowly
from July 2011 (date of field sowing) to December 2011 (period II; Figure 1B). In March 2012 (period
IV) embryos started to grow rapidly and reached an embryo length of ca. 1.1 mm both in RC IN
and OUT; at the same time a few seeds (ca. 30%) had started to germinate in RC IN (Figure 1B,C).
In April 2012, between period IV and V, the seeds reached their critical embryo length (ca. 1.2 mm) and
the majority of the seeds had germinated, reaching values of approx. 80% both in RC IN and OUT
(Figure 1B,C). In June 2012 (period VI), the percentage of germinated seeds of A. barbaricina was ca. 95%
both IN and OUT RC experimental sites (Figure 1C). More specifically, both critical embryo length and
maximum germination were recorded in April (Figure 1B,C), however, considering that this species is
characterised by a multi-step seed germination with significant overlap among all the phases [19], it is
likely that the critical embryo length may be also reached before radicle protrusion.

Table 1. Published thermal traits and germination characteristics of A. barbaricina, P. corsica and,
R. sandalioticum. Tb and Tbe correspond to the base temperatures for seed germination and for embryo
growth, respectively. θe50 and θg50 correspond to the threshold values for embryo growth and seed
germination, respectively. * Tb values estimated as the lowest tested temperature at which germination
occurred (sensu [16]).

Species A. barbaricina P. corsica R. sandalioticum

Population Rio Correboi (Villagrande
Strisaili, NU)

Rio Correboi (Villagrande
Strisaili, NU)

Monte Novo San
Giovanni (Orgosolo, NU)

Maximum Germination in
Laboratory (%) 81 ± 12 63± 10 88 ± 3

Tb (◦C) Dormant Seeds > 25 15 * 10 *
Tb (◦C) Non-dormant Seeds 5.34 ± 1.38 10 * 5 *
Initial Embryo Length (mm) 0.29 ± 0.06 1.40 ± 0.20 0.52 ± 0.08

Critical Embryo Length (mm) 1.17 ± 0.23 3.90 ± 0.70 1.80 ± 0.39
Tbe (◦C) 5.20 ± 0.60 ND ND

θe50 (log ◦Cd) 2.10 ND ND
θg50 (log ◦Cd) 2.04 ND ND

Source [19] [44] [43]

Embryo length in P. corsica seed did not change from the initial value (ca. 1.4 mm; Table 1) from
the date of sowing (September 2011) to June 2012 (period VI; Figure 1B). By September 2012 (period I),
the embryo approximately doubled in length, reaching 2.6 and 3.4 mm for RC IN and OUT, respectively
(Figure 1B). By this time, ca. 10% and 56% of seeds for RC IN and OUT, respectively had germinated
(Figure 1C). Critical embryo length (ca. 4 mm) was reached at the end of December 2012, between the
end of period II and the start of period III (i.e., start of cold stratification period), and 78% and 50% of
seeds germinated in RC IN in RC OUT, respectively (Figure 1B,C). At this exhumation time, no seeds
in RC IN and 30% of seeds in RC OUT had emerged epicotyls (Figure 1D). At the last exhumation,
in April 2013 (period IV), emerged epicotyls were ca. 45 and 70% for RC IN and OUT, respectively
(Figure 1D). Each phase of seed germination in P. corsica occurred in the second year after sowing.
The critical embryo length was reached during September to December (depending on the site position),
seeds germinated in December in RC IN and in September in RC OUT, but epicotyls emerged in April
in both experimental sites (Figure 1).

Seed germination in R. sandalioticum was faster than the other two species. From the date of
field sowing (September 2011) to December 2011 (period II) the embryo grew from an initial length of
ca. 0.5 mm (Table 1) to around the critical embryo length (ca. 1.8 mm), and the seeds germinated to
58% in RC IN and 84% in RC OUT; but no seeds had emerged epicotyls (Figure 1B–D). To summarize,
the critical embryo length in R. sandalioticum seeds was reached in December, and at the same time the
seeds germinated, while epicotyl emergence occurred in March (Figure 1).

Generalized linear models (GLM) identified a high statistically significant (p < 0.001) effect for
all three factors (“Date of exhumation”, D; “Position”, P; “Species”, S; Supplementary Table S1) for
embryo length. For seed germination and epicotyl emergence, GLMs highlighted a high statistically
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significant difference (p < 0.001) for the “D” and “S” factors and a statistically significant (p < 0.05) effect
for the “P” factor (Supplementary Table S1). A highly significant difference (p < 0.001) was found for
all the two-way interactions (D × P, D × S, and P × S) on embryo length, seed germination and epicotyl
emergence (Table S1). No significant differences (p > 0.05) were detected for the three-way interaction
(D × P × S) for embryo length, seed germination, and epicotyl emergence (Supplementary Table S1).

2.2. Soil Heat Sum for Embryo Growth and Seed Germination of Aquilegia barbaricina

To calculate soil heat sum accumulation for embryo growth and germination of A. barbaricina,
the estimated thermal threshold values obtained previously in controlled conditions were used [19].
Base temperature for embryo growth (Tbe) in non-dormant seeds of this species was 5.2 ◦C, and a base
temperature for germination (Tb) of 5.3◦C (Table 1). Tb > 25 ◦C was assumed for dormant seeds of
this species (Table 1). θ50 threshold values for embryo growth and seed germination (i.e. the value to
achieve 50% of seeds that reached the critical embryo length and 50% of germination in controlled
conditions) were 2.10 log ◦Cd and 2.04 log ◦Cd, respectively [19]. Figure 2 shows the soil heat
sum accumulation until the achievement of θ50 threshold value for embryo growth (Figure 2A) and
germination (Figure 2B) in the field for A. barbaricina seeds, both IN and OUT of the tree canopy,
according to field germination and temperatures recorded by each data logger. Immediately after
sowing (period VI), and during periods I, II, and III, Tb of dormant seed of A. barbaricina was higher
than the mean soil temperatures, and this prevented the soil heat sum accumulation both for embryo
growth and germination (Figure 2). However, after cold stratification (period III), when the seed
dormancy was broken, the lower Tb values and the increasing soil temperatures allowed the threshold
of 2.10 log ◦Cd (for embryo growth) and 2.04 log ◦Cd (for germination) to be reached from late April to
early May (period V; Figure 2A,B). More specifically, θ50 for embryo growth was reached on 29 April
for IN and 03 May for OUT (287 and 291 days after sowing for IN and OUT, respectively; Figure 2C),
while θ50 for germination was reached on 28 April for IN and 02 May for OUT (286 and 289 days after
sowing for IN and OUT, respectively; Figure 2D). This estimated time was confirmed by the embryo
measurements and germination recorded in the field (see Figure 1).
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Figure 2. Soil Heat Sum (expressed in log ◦Cd) to achieve the θ50 threshold value for (A) embryo
and (B) germination of Aquilegia barbaricina, both underneath (IN) and outside (OUT) the tree canopy.
Data are from July 2011 to July 2012. The inset plots (C,D) show the details of the achievement of the
θ50 threshold value (2.10 and 2.04 log ◦Cd, for embryo and germination, respectively). Dark grey short
dashes represent the base temperature before (Tb > 25 ◦C) and after (5.2 and 5.3 ◦C for embryo growth
and seed germination, respectively) cold stratification. The background grey squares correspond to the
presence of the tree canopy. I, II, III, IV and V correspond to different periods.
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2.3. Soil Heat Sum Estimates for Seed Germination of Paeonia corsica and Ribes sandalioticum

In controlled conditions, non-dormant seeds of P. corsica and R. sandalioticum germinated only at
two of the tested temperatures, namely 10 ◦C and 15 ◦C [43,44]. The dataset was not large enough to
correlate germination rate and temperature for germination for both species and, consequently, it was
not possible to build a complete thermal time model to calculate their Tb, unlike for A. barbaricina seeds.
For these two species, Tbs were estimated using the lowest tested temperatures at which germination
was recorded. These values were 10 ◦C for non-dormant seed of P. corsica, and 5 ◦C for non-dormant
seed of R. sandalioticum (see Table 1). Therefore, the soil heat sum accumulation range to achieve the
θ50 threshold value, both IN and OUT (Figure 3), was estimated from the thermal thresholds calculated
under laboratory controlled conditions (Table 1) and according to field seed germination percentages
obtained during different exhumation times (Figure 1C) combined with the temperatures recorded by
each data logger (Figure 1A). From the date of sowing (September; period I) to the end of period V
(June), seeds of P. corsica were not exposed to warm temperature (i.e. period VI) and Tb estimated
for dormant seeds was higher than the mean soil temperatures; and this prevented the soil heat sum
accumulation (Figure 3A). The increasing soil temperatures during period VI allowed the beginning of
soil heat sum accumulation. During this period, seeds of P. corsica released PD dormancy and the Tb

estimate decreased to a value of 10 ◦C. Consequently, the rate of soil heat sum accumulation increased.
The absence of germination (0%) observed in June and the germination obtained in September in RC
OUT (ca. 56%) allowed us to estimate that the θ50 values for seed germination were within the range of
2.48 log ◦Cd–3.08 log ◦Cd in this experimental site. In contrast, the germination of ca. 10% and ca. 76 %
recorded in RC IN in September and in December, respectively (see Figure 1C), indicated that the θ50

estimates were within the range 2.77 log ◦Cd–2.90 log ◦Cd (Figure 3A). And the value of 2.90 log ◦Cd
was reached on 16 November.
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Figure 3. Soil Heat Sum (log ◦Cd) for the achievement of the predicted minimum and maximum values
for germination near to θ50 threshold value (50% of seed germination in the field) of (A) Paeonia corsica
and (B) Ribes sandalioticum, both underneath (IN) and outside (OUT) the tree canopy, calculated
according to their exhumation times. Data are from September 2011 to January 2013 and form
September 2011 to April 2012 for P. corsica and R. sandalioticum, respectively. The background grey
squares correspond to the presence of the tree canopy. I, II, III, IV and V correspond to different periods.
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As regards R. sandalioticum (Figure 3B), the Tb estimated for dormant and non-dormant seeds of
this species (Table 1) was lower than the mean soil temperatures, and this promoted soil heat sum
accumulation during September (period I). During the first exhumation carried out in December
(period II), seed germination was > 50% in both experimental sites of MSG (see Figure 1C). By this
time, seeds had accumulated 2.77 log ◦Cd in MSG IN and 2.80 log ◦Cd in MSG OUT (Figure 3B).

2.4. Seed Germination Phenology under Different Climate Scenarios

Figures 4–6 show the soil heat sum accumulation and the achievement of the θ50 of each species in
the field, both IN and OUT, under two different IPCC scenarios (B1, +1.8 ◦C and A2, +3.4 ◦C). Figure 4
shows the soil heat sum accumulation and the achievement of the θ50 threshold value for A. barbaricina.
The increase in temperature of +1.8 ◦C (B1 scenario) and +3.4 ◦C (A2 scenario) in RC should lead
to a reduction of period III (i.e., cold stratification) from ca. 90 days in B1 scenario (Figure 4A1) to
ca. 45 days in A2 scenario (Figure 4A2), with an increase of the mean soil temperature of ca. 3 ◦C in the
latter scenario (Figure 4A2) with respect to the present mean soil temperature (ca. 1 ◦C; Figure 1A).
The increase in the mean temperature during period III would not compromise seed dormancy release
in A. barbaricina. However, after the cold stratification period, the increased temperature would
accelerate germination of non-dormant seeds, bringing it forward from late-April to middle-April
in RC IN and from early-May to late-April in RC OUT for the B1 scenario (Figure 4B1,C1), and to
early-April and middle-April in RC IN and RC OUT, respectively, for the A2 scenario (Figure 4B2,C2).
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Figure 4. (A1,A2) Soil temperatures for Rio Correboi (RC) and (B1,B2) Soil Heat Sum (expressed in
log ◦Cd) to achieve the θ50 threshold value (2.04 log ◦Cd) for Aquilegia barbaricina seed germination,
both underneath (IN) and outside (OUT) the tree canopy, under two different Intergovernmental Panel
on Climate Change (IPCC) scenarios (B1, +1.8 ◦C and A2, +3.4 ◦C). The inset plots (C1,C2) show the
details of the achievement of the θ50 threshold value. The background grey squares correspond to the
presence of the tree canopy. I, II, III, IV, V and VI correspond to different periods.
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Figure 6. (A1,A2) Soil temperatures for Monte Novo San Giovanni (MSG), and (B1,B2) Soil Heat Sum
(log ◦Cd) to achieve the predicted θ50 threshold value for Ribes sandalioticum, both underneath (IN) and
outside (OUT) the tree canopy, under two different Intergovernmental Panel on Climate Change (IPCC)
scenarios (B1, +1.8 ◦C and A2, +3.4 ◦C). The background grey squares correspond to the presence of
the tree canopy. I, II, III, IV, V and VI correspond to different periods.

The mean soil temperature for RC IN should increase from approx. 19 ◦C to approx. 21 and 23 ◦C
in B1 and A2 scenarios, respectively; while for RC OUT it should increase from approx. 24 ◦C to 26 and
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28 ◦C in B1 and A2 scenario, respectively (Figure 5A1,A2). In particular, an increased soil heat sum
would accelerate the achievement of the θ50 threshold value for seed germination in P. corsica, both in
RC IN and RC OUT (Figure 5B1,B2). The increase in temperature predicted in B1 scenario could bring
forward the favourable period for seed germination of this species to June-August for RC OUT and to
August-September for RC IN (Figure 5B1). Similarly, the increase in temperature predicted in the A2
scenario could bring forward the best time for seed germination to June-early August for RC OUT and
to July-August for RC IN (Figure 5B2). Moreover, in these latter scenarios, the seed germination of this
species would coincide mainly with the summer drought period (period VI; Figure 5A2,B2), i.e., in a
period with no or sporadic rainfall, a condition that may compromise the germination of seeds of
P. corsica in RC OUT, where soil moisture would be less than under shade (i.e., absence of tree canopy)
as in RC IN.

An increased soil heat sum would accelerate the achievement of the θ50 threshold value in
R. sandalioticum seeds (Figure 6B1,B2). In the B1 scenario, seed germination should advance to
November (Figure 6A1,B1), while in the A2 scenario it could happen in October (Figure 6A2,B2). More
specifically, seed germination of this species would occur ca. 38 and 45 days earlier in the B1 and A2
scenarios, respectively (Figure 6B1,B2).

3. Discussion

3.1. Ecological Correlates of Embryo Growth, Seed Germination, Epicotyl Emergence and Seedling
Establishment in Natural Conditions

The phenology of embryo growth, radicle, and epicotyl emergence were analysed in seeds of
three mountain species (A. barbaricina, P. corsica, and R. sandalioticum) occupying similar habitats.
All three species have endospermic seeds that are reputed to have MPD. In addition, seeds of P. corsica
and R. sandalioticum have been shown to have epicotyl dormancy [43,44]. The seed embryos are
small at dispersal and must grow before radicle emergence. As detected in controlled conditions,
the seeds of these species require specific temperature treatment to overcome their morphophysiological
dormancy [19,43,44]. However, in their natural habitats, these taxa responded differently to temperature
and this impacts the timing of in situ germination. All studied species disperse seeds between period VI
and I, in the presence of the tree canopy. Thereafter, seeds have increased access to water through higher
rainfall. Nonetheless, the three species have developed subtle differences in interpreting temperature
so that their seed germination strategies to avoid unfavourable environmental conditions for plant
establishment vary. In detail, seeds of A. barbaricina are dispersed in summer [19] and germinate the
following spring/early summer in the presence of tree canopy. During the summer and early autumn,
the embryos grow slowly, and low temperature during autumn/winter (mean soil temperature ≤ 5 ◦C)
facilitates cold stratification and the release of physiological dormancy. Germination ensues after
winter when mean soil temperatures reach at least 10–15 ◦C. From our understanding of the seed and
embryo response to temperature, once dormancy is broken through cold treatment the embryos start
to grow more rapidly inside the seeds; and once the critical embryo length is reached, germination
completion (i.e., radicle emergence) happens quickly. Thus, the multi-step process of germination in
this species [19] ensures that the seeds germinate during the early spring and the seedlings can grow
before the dry summer period.

Seeds of P. corsica are dispersed in late summer/early autumn in the presence of the tree canopy,
and are exposed to a mean soil temperature near and below 20 ◦C. However, the seeds stay dormant
until the following summer when they are then exposed to warm temperatures (mean soil temperature
> 20 ◦C), during which the length of the embryo remains stable. During the following late summer/early
autumn, when the temperature falls to 10 ◦C–15 ◦C and the rainfall increases, the embryos grow inside
the seeds; a doubling in embryo length is necessary before radicle emergence is possible. The critical
embryo length and radicle protrusion are reached in late autumn before the natural cold stratification
period but after that the seeds accumulate warm temperature during summer, consistent with the
multi-step seed germination observed in controlled conditions [44]. Seed germination starts in the
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presence of tree canopy and is completed in December when the canopy is absent. Germinated seeds
go through the winter with an emerged radicle, and the cold stratification period allows epicotyls to
emerge in the following April when mean soil temperatures reach at least 10 ◦C–15 ◦C. Seedlings with
well-developed roots and shoots are established before the end of the second wet season and before the
dry summer period when the canopy is absent. Successively, the young plants growing underneath of
tree canopy may benefit from the closure of the canopy during the summer.

Berries of R. sandalioticum are dispersed in late summer (mainly by birds and ⁄ or mammals, although
many fruits simply drop to the ground). After dispersal, the seeds of R. sandalioticum are exposed
immediately to mean soil temperatures near to 20 ◦C [43]. During this time, seed temperature facilitates
removal of MPD by promoting embryo growth. Subsequent seed germination, from September
onwards, is enabled by increased availability of water through higher rainfall. Embryos start to grow
inside the seeds from November to December, likely when mean soil temperatures drop below 15 ◦C.
Germinated seeds of R. sandalioticum go through the winter with an emerged radicle and are exposed
to cold temperature (mean soil temperature ≤ 5 ◦C) during December to March. In spring, when mean
soil temperatures again reaches 10–15 ◦C, the epicotyls emerge, and the seedlings establish before the
end of the wet season and prior to the start of the summer.

Seed germination of A. barbaricina and R. sandalioticum occurs during periods IV and II, respectively;
therefore, the seed germination for these two species seems not be linked to the presence of the tree
canopy. A similar pattern was found in Rhamnus persicifolia, a species that grows in the same ecosystem
and ecological conditions in Sardinia [26]. In P. corsica, on the contrary, the tree canopy seems to have a
negative influence on seed germination. Maximum germination for OUT (i.e. outside the tree canopy)
is in September and only a few germinated seeds appear for IN in this period, while the maximum
germination for IN is in December when the canopy is absent. In all species, however, closure of the
tree canopy could influence survival of newly established seedlings due to microclimate amelioration
(moister and cooler) during the dry and hot Mediterranean summers [41,45,46]. The seeds of the all the
investigated species showed a high synchronisation with the Mediterranean seasonality with respect
to embryo growth, seed germination and seedling establishment, and thus demonstrate particular
adaptations to the harsh Mediterranean climatic conditions.

3.2. Soil Heat Sum for In Situ Seed Germination

The quantification of thermal time for germination has been used in different studies to
characterize changes in seed dormancy and subsequent germination in the field (i.e., [20,22,26,47]).
Although complex, such modelling can be used to connect laboratory and field studies. Here, we used
the soil heat sum model [26], and the thermal threshold (θ50) of A. barbaricina estimated in the
laboratory [19] to predict embryo growth and seed germination phenology in the field. We observed a
high correlation between soil heat sum accumulation to reach θ50 for the critical embryo length and
seed germination. The model showed that, in the original population, these values are reached between
April and May, thus confirming that the θ50 for embryo growth and the θ50 for seed germination of
A. barbaricina approximately coincide. Results were validated through field observations of embryo
growth measurements and seed germination. The model can also be used to estimate the range of θ50

for seed germination in species where the thermal time value (θ50) in controlled conditions is unknown.
By evaluating the seed germination behaviour in field conditions and by using the recorded soil
temperatures, the model generated estimates for soil heat sum accumulation for seed germination of
P. corsica and R. sandalioticum seeds and an approximation of seed thermal requirements. The estimated
θ50 values for seed germination of P. corsica fall within the range of 2.48–2.90 log ◦Cd, while for
R. sandalioticum θ50 values for seed germination are estimated around 2.70 log ◦Cd. One benefit of
knowing the thermal requirements for each species is being able to predict the seed germination
phenology under increasing temperatures due to global warming.
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3.3. Phenology of Seed Germination under Global Warming

Results of this study highlighted that a uniform increase of temperature under B1 (+1.8 ◦C) and
A2 (+3.4 ◦C) scenarios would affect the rate of seed heat sum accumulation. In particular, soil heat
sum under these two different IPCC scenarios bring completion of germination forward by about one
month for all three studied species. As reported by Mondoni et al. [48], climate warming could lead to
a shift of the timing of seed germination but the extent of this change across species will be driven by
seed dormancy status. Porceddu et al. [26] indicated that the warmer temperatures predicted by two
simulated IPCC scenarios may reduce the cold stratification period useful for dormancy release in R.
persicifolia seeds; however, the increasing temperatures and the consequent reduction of the stratification
period would not be detrimental per se for seed germination. Similarly, an increase in soil temperature
may alter the timing of germination of Polaskia chende and P. chichipe but this will not be detrimental for
germination success [27]. In addition, a decrease in the length of winter due to global warming may
not affect seed dormancy release, e.g., in Halenia elliptica D. Don [49]. Contrary to these responses, the
future conditions may not meet the requirements for breaking physiological dormancy in Gentiana lutea
subsp. lutea [24] and Vitis vinifera subsp. sylvestris [23] seeds and will be detrimental to the proportion
of seeds which germinate. The increasing temperature predicted in both scenarios tested in this study
might not compromise the dormancy release of A. barbaricina; however, as seeds of this species need a
cold stratification period to promote dormancy release, further research is recommended to understand
the seed germination behaviour under a probable cold stratification reduction, as previously done for
R. persicifolia [26] and G. lutea subsp. lutea [24]. In addition, the phenological shift of seed germination
could enhance the seedling growth of this species before the harsh conditions set in. On the contrary,
this phenological shift, in particular in A2 scenario, could increase the risk of late frosts in spring
which could damage young seedlings and increase the potential mortality of plants. Dormant seeds
requiring warm stratification may exhibit little difference in dormancy release if moisture increases,
but they may not lose dormancy if soil moisture decreases [33]. The rate of dormancy loss may vary
due to the temperature rise and germination could be triggered outside normal wet seasons leading to
lowered seedling survivorship during the dry conditions [33]. The increasing temperature might be a
disadvantage for P. corsica, as some seed germination could occur during the summer when there are
short episodes of rainfall. However, these are interspersed by drought, and the risk of mortality for
young seedlings would also increase. Closure of the canopy in the riparian woods could counteract
some of this risk. Microclimate amelioration (moister and cooler) under shade, even during the dry
and hot Mediterranean summers, would mean less evaporation of water from soil and the newly
established seedlings might survive better. The bringing forward of seed germination in R. sandalioticum
would not cause particular problems for the seedlings growth because it would coincide with the
period of maximum rainfall and mild temperatures. However, the sensitivity of R. sandalioticum to
low temperatures for seed germination highlights the presence of an increasing threat from global
warming. In fact, as detected in laboratory conditions, embryo growth and seed germination occur only
at 10◦C and 15◦C [43]. This narrow temperature requirement for seed germination of R. sandalioticum
could reduce the level of natural emergence in the field [43]. Similar behaviours have also been
identified for the only congeneric species, Ribes sardoum Martelli, which is also present in Sardinia [50].
However, while the results of this study are based on the assumption that the thermal thresholds for
seed germination will remain constant trough climate change, further studies should be carried out on
these species to understand how climate change might affect the successive steps of seed production,
dispersal, dormancy, and germination, as they also have a thermal memory (via phenotypic plasticity)
that incorporates information from past thermal history [51].

In summary, we have provided a detailed explanation of the ecophysiology of seed germination
in three Mediterranean mountain species with morphophysiological dormancy. Moreover, through the
quantification of seed germination, we have been able to provide an important means of connecting
the micro-environmental niche for in situ seed germination of the species, both under and outside a
tree canopy, and the macro-environmental parameters under various global warming scenarios.
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4. Materials and Methods

4.1. Study Species

Aquilegia barbaricina (Ranunculaceae), Paeonia corsica (Paeoniaceae) and Ribes sandalioticum
(Grossulariaceae) (Figure 7) are endemic species of Sardinia and grow frequently in the same localities
from ca. 1000 m a.s.l. to the higher elevation of CE-Sardinia mountains, in wet woodlands, meadows
and stream margins under and near riparian woods (see Table 1 and Supplementary Table S2). In detail,
A. barbaricina is endemic to the Gennargentu and Supramontes regions where the plant grows from 800
to 1400 m a.s.l. [52]. P. corsica is endemic of Sardinia and Corsica, and in Sardinia, it grows from 600 to
1700 m a.s.l. [53]. R. sandalioticum is found in small populations in the Supramontes, Gennargentu
Massif, Catena del Marghine and Limbara Mountain, growing at altitudes above 1000 m a.s.l. [54].
The seeds of these species are endospermic and the embryos are linear, underdeveloped at dispersal,
and need to grow to a critical length before radicle emergence (see Figure 7).
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Figure 7. Flowers, fruits/seeds, initial and critical embryo length, and germinated seed of three
endospermic species studied: Aquilegia barbaricina, Paeonia corsica and Ribes sandalioticum.

Information of initial (i.e., the length of the embryo at dispersal) and critical (i.e., the length of the
embryo in seeds with a split seed coat but no radicle protrusion) embryo length and seed germination
obtained in controlled conditions were taken from previous works and are reported in Table 1.

4.2. Seed Lot Details

Seeds of A. barbaricina, P. corsica and ripe berries of R. sandalioticum were collected directly from
plants at the time of natural dispersal in 2011 in their representative natural populations, named Rio
Correboi (RC) and Monte Novo San Giovanni (MSG) (Table 1; Figure 8; Supplementary Table S2).
Seeds of R. sandalioticum were immediately separated from the pulp by rubbing fruits through sieves
under running water. The cleaned seeds were then spread out and left to dry at room temperature.
Seeds of all species were manually cleaned, and well-developed seeds were selected in the laboratory,
discarding any visually malformed seeds, and maintained at room temperature (ca. 40% of relative
humidity and 20 ◦C) until the start of the in situ experiments.
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Figure 8. (A) Geographical location of Sardinia in the Mediterranean context, (B) localisation of
Monte Novo San Giovanni (MSG) and Rio Correboi (RC), (C) representation of the experimental sites
underneath (IN) and outside (OUT) the tree canopy characterised by (C1) the presence or (C2) absence
of canopy during the year, (D) envelops and data logger buried in the soil and (E) example of retrieved
envelope with germinated seeds.

4.3. Seed Germination and Embryo Growth in Natural Conditions

According to the methodology in Porceddu et al. [26], seeds of each species were placed in
fine-mesh polyester envelopes (3 replicates of 25 seeds) and buried in the soil at a depth of 2–3 cm,
within ca. 20 days after seed collection (Figure 8; Supplementary Table S2). Envelopes were buried
both underneath (IN) and outside (OUT) the tree canopy (Figure 8), with a distance between them of
ca. 6 m, in each natural population (Supplementary Table S2). Envelopes buried in the experimental
sites were exhumed at approximately three-month intervals from September 2011 to June 2012 (with an
intermediate exhumation also in April 2012) for A. barbaricina, from September 2011 to March 2012 for
R. sandalioticum, and from September 2011 to December 2012 for P. corsica. A further exhumation for
P. corsica was also performed in March 2013 to evaluate the number of seeds with epicotyl-plumule
(hereafter epicotyl) emerged.

Retrieved envelopes were analysed in the laboratories of the Sardinian Germplasm Bank
(BG-SAR) [55], where they were washed under running water and opened. The number of germinated
and epicotyl emerged seeds was recorded. In addition, embryo growth in the field was assessed
during each exhumation time (Supplementary Table S2), by measuring 20 randomly chosen seeds
among all seeds within the three replicates. Seeds were cut in half under a dissecting microscope and
images of embryos were acquired using a Zeiss SteREO Discovery.V8, with an objective Achromat S
0.63x, FWD 107mm (Carl Zeiss MicroImaging GmbH) at a 6.3×magnification for A. barbaricina and
R. sandalioticum and at a 4.0×magnification for P. corsica, coupled to a Canon (Power shot G11) digital
camera. Embryo and seed lengths were measured using the image analysis software ImageJ 1.41o
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(National Institutes of Health, Bethesda, MA, USA). Seed length was measured ignoring the seed
coat. The critical embryo lengths reported in Table 1 were used for seeds that had germinated before
measurements [56].

4.4. Soil Heat Sum Approach

A soil heat sum approach was used to predict field germination phenology for all the investigated
species according to [26]. Soil temperatures at the level of the envelopes were recorded both underneath
(IN) and outside (OUT) the tree canopy of the natural population sites at 90-minutes intervals, using data
loggers (TidbiT® v2 Temp logger, Onset Computer Corporation, Cape Cod, Massachusetts, U.S.).
Soil temperatures above Tb of each species (Table 1) were used to assess the temperature accumulation
till the achievement of the thermal time required for 50% germination (θ50). Soil heat sum was
calculated, starting from the date of sowing (Supplementary Table S2), according to the following
equation (Equation (1)):

Soil heat sum (log ◦Cd) = {
∑

[(TS − Tb) x t]}/16, (1)

where TS is the temperature at each logging interval recorded by data loggers, Tb is the base temperature
for seed germination of each species (see Table 1), t is the length of the logging interval expressed in
hours and 16 is the number of logging records per day [26].

In addition, soil temperatures recorded by data loggers at each logging interval (TS) above Tbe

(i.e., the base temperatures for embryo growth) of A. barbaricina [19] were used to estimate the soil heat
sum accumulation till the achievement of the thermal times to reach 50% of seeds that reached the
critical embryo length [19] according to the following equation (Equation (2)):

Soil heat sum (log ◦Cd) = {
∑

[(TS − Tbe) x t]}/16. (2)

Pluviometric data for Rio Correboi (monthly averages of rainfall from 1922 to 2009 from the
nearby climatic station of Fonni, NU) and Monte Novo San Giovanni (monthly averages of rainfall
from 1936 to 2009 from the nearby climatic station of Montes, Orgosolo, NU), were acquired from
Regione Autonoma della Sardegna (http://www.regione.sardegna.it/j/v/25?s=131338&v=2&c=5650&t=1).
The presence/absence of the tree canopy of riparian wood (Figure 8) was observed at each field excursion
during this study; according to the seasons and to the presence/absence of the canopy, the different
periods were identified [26]. In detail, the different periods correspond to: (I) from late August at the
end of September/early October to the disappearance of the tree canopy in mid-October; (II) from the
disappearance of the canopy in mid-October to the start of the cold stratification period, when mean
daily temperatures fell to 5 ◦C in December; (III) the main cold stratification period, from December to
March, when mean daily temperatures are close to 5 ◦C; (IV) from the end of the cold stratification
period in March to the appearance of the canopy in April; (V) from the appearance of the canopy in
April to the start of the summer droughts in June/July; and (VI) the summer drought period when
rainfall drastically reduces and the temperatures are high.

Seed germination phenologies under different climate scenarios [28,29] were estimated increasing
the soil temperature recorded for each study area according to IPPC scenarios B1 (low emissions
scenario, +1.8 ◦C, which falls within the range of the two intermediate scenarios RCP4.5 and RCP6.0)
and A2 (high emission scenario; +3.4 ◦C; value within the range of the RCP8.5 scenario). Accordingly,
the soil heat sum to achievement of the estimated threshold values for seed germination (θ50) were
calculated again according to the previous equation.

4.5. Statistical Analysis

Generalized linear models (GLMs) were used to compare the field embryo length, seed germination
and epicotyl emergence percentages of each species at different exhumation dates, both IN and OUT

http://www.regione.sardegna.it/j/v/25?s=131338&v=2&c=5650&t=1


Plants 2020, 9, 1382 16 of 19

the tree canopy. GLM with a log link function and quasipoisson error structure was used for analysing
embryo length values, while GLMs with a logit link function and quasibinomial error structure were
used when analysing seed germination and epicotyl percentages. Quasibinomial and quasipoisson
error structures and F tests with an empirical scale parameter instead of chi-squared on the subsequent
ANOVA were used to overcome residual overdispersion [57]. All statistical analyses were carried out
with R v. 2.14.0 [58].

5. Conclusions

In conclusion, the seed germination phenology of three endemic Mediterranean mountain
species with endospermic seeds growing in the same ecosystem was shown to vary considerably.
Using parameters generated on the thermal requirements for embryo growth and radicle emergence
under controlled conditions for A. barbaricina, it was possible to predict in situ emergence and the
responses were validated through field observations. The results show that it is possible to combine the
developed species-specific models with a soil heat sum approach and predict with good accuracy seed
germination in the field. Furthermore, this approach and the model developed may have applicability
for the prediction of in situ regenerations under different IPCC scenarios of increasing temperatures.

Supplementary Materials: The following are available online at http://www.mdpi.com/2223-7747/9/10/1382/s1,
Table S1: GLMs results for the effect on (I) embryo length, (II) seed germination and (III) epicotyl emergence
in the field of the following factors: “Date of exhumation” (D: see Table S2), “Position” (P: IN and OUT) and
“Species” (S: A. barbaricina, R. sandalioticum and P. corsica). Table S2: Locations, habitat characteristics and dates
of experimental trials carried out in each site (Rio Correboi: RC IN and RC OUT; Monte Novo San Giovanni:
MSG IN and MSG OUT) of the natural populations of each species. For each experimental site, IN and OUT
differentiate between underneath and outside the tree canopy, respectively.
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