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Purpose: Gastric cancer is a common tumor of the digestive system. Identification of
potential molecules associated with gastric cancer progression and validation of potential
biomarkers for gastric cancer diagnosis are very important. Thus, the aim of our study was
to determine the serum metabolic characteristics of the serum of patients with chronic
gastritis (CG) or gastric cancer (GC) and validate candidate biomarkers for disease
diagnosis.

Experimental Design: A total of 123 human serum samples from patients with CG or GC
were collected for untargeted metabolomic analysis via UHPLC-Q-TOF/MS to determine
characteristics of the serum. Principal component analysis (PCA), partial least squares
discriminant analysis (PLS-DA), and heat map were used for multivariate analysis. In
addition, commercial databases were used to identify the pathways of metabolites.
Differential metabolites were identified based on a heat map with a t-test threshold (p <
0.05), fold-change threshold (FC > 1.5 or FC < 2/3) and variable importance in the
projection (VIP >1). Then, differential metabolites were analyzed by receiver operating
characteristic (ROC) curve to determine candidate biomarkers. All samples were analyzed
for fasting lipid profiles.

Results: Analysis of serum metabolomic profiles indicated that most of the altered
metabolic pathways in the three groups were associated with lipid metabolism (p <
0.05) and lipids and lipid-like molecules were the predominating metabolites within the top
100 differential metabolites (p < 0.05, FC > 1.5 or FC < 2/3, and VIP >1). Moreover,
differential metabolites, including hexadecasphinganine, linoleamide, and N-Hydroxy
arachidonoyl amine had high diagnostic performance according to PLS-DA. In addition,
fasting lipid profile analysis showed the serum levels of total cholesterol (TC), high-density
lipoprotein cholesterol (HDL-C) and apolipoprotein A1 (Apo-A1) were decreased
concomitant to the progression of the progression of the disease compared with those
in the control group (p < 0.05).
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Conclusions: Thus, this study demonstrated that lipid metabolism may influence the
development of CG to GC. Hexadecasphinganine, linoleamide, and N-Hydroxy
arachidonoyl amine were selected as candidate diagnostic markers for CG and GC.
Keywords: chronic gastritis, gastric cancer, untargeted metabolomics, lipid metabolism, candidate biomarkers
INTRODUCTION

Gastric cancer (GC) is a common digestive system tumor
worldwide with a five-year survival rate ranging from 30 to
65% (1). The development of GC is a complex process involving
environmental factors and molecular changes at the cellular level
(2). Helicobacter pylori (H. pylori) infection is the primary risk
factor for gastritis, and chronic gastritis (CG) is the main cause of
GC. Great efforts have been made to the diagnose and treat this
disease; however, the mortality rate has remained essentially
unchanged worldwide in the past decades (3). Currently,
clinicians extensively use diagnostic and prognostic biomarkers
to improve the clinical course of GC (4, 5). However, gastric
carcinoma involves mixed cell types with variable degrees of
differentiation, and the majority of serum biomarkers have low
sensitivity and low positive predictive value, such as CEA, CA19-
9 and CA72-4 (6–8). Therefore, investigation of the mechanisms
of the development and identification of novel biomarkers with
high sensitivity and specificity for GC is very important for
decreasing the incidence and mortality of GC.

Metabolomic technologies, especially untargeted metabolomic
approaches, often provide additional information about the global
profiling of the metabolome and are used to explore new
mechanisms of carcinogenesis (9, 10). Metabolomic technology is
also a powerful tool for the discovery of key differential metabolites
that can be used as biomarkers in various tumors, such as breast
cancer (11), epithelial ovarian cancer (12), lung cancer (13), GC
(14). Metabolites of four major classes of biomolecules
(carbohydrates, amino acids, lipids, and nucleic acids) were
altered in GC according to the results of metabolomic analysis of
cell lines, serum, plasma, urine or gastric juice (15–17). However,
the results across different studies are inconsistent apparently due to
different sensitivity of metabolomic methods (18), variability of
experimental subjects, and differences in the number of samples.
Additionally, the values of biomarkers should be validated.
Furthermore, the investigations of the mechanism of alterations in
themetabolism and specific metabolic pathways in GC are relatively
insufficient; thus, it is difficult to clearly define metabolic changes in
this disease based on metabolomic data. Overall, additional
C, Gastric cancer; ESI, Electrospray
l t ra -h igh-per formance l iqu id

e-of-flight mass spectrometry; PCA,
, Partial least squares discriminant
e importance in the projection; IS,
l; TG, Triglycerides; HDL-C, High-
Low-density lipoprotein cholesterol;
Apolipoprotein B; ROC, Receiver
der curve; CI, Confidence interval;
32, G-protein coupled receptor 32;
transcription 3.
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exploration of metabolic disorders for gastric carcinogenesis is
needed (16).

Serum markers can reflect systemic metabolic deregulation in
patients. Non-invasive and inexpensive serum biomarkers are
more suitable for clinical application. Therefore, the serum
metabolomic profiles of patients with CG or GC were studied
by untargeted metabolomics to identify significantly altered
pathways and differential metabolites, and fasting lipid profiles
were also investigated. This study may provide insights into the
pathogenesis of GC, and the candidate biomarkers may be used
to diagnose CG and GC.
MATERIALS AND METHODS

Design, Setting and Participants
A total of 123 subjects were enrolled in the clinical laboratory of
Mianyang Central Hospital over a period of 6 months (June to
December 2019); the protocol was approved by the Ethics
Committee of Mianyang Central Hospital. The control group
included 40 patients (20 males and 20 females, age range 27–78
years), the CG group included 32 patients (13 males and 19
females, age range 14–78 years), and the GC group included 51
patients (40 males and 11 females, age range 28–70 years).
Inclusion criteria for the healthy control group were: 1) no
diseases, such as hypertension, cardiovascular disease, diabetes,
and tumor, in the medical history; 2) normal indicators of the
functional capacity of several critical organs and systems; 3) no
other infections (including H. pylori infection) or other diseases
that affect gastric function; 4) the test results for all tumor
markers performed in our laboratory were within the reference
interval within a month before sampling; and 5) no health
products or medicines that influence gastric function testing
have been used within a month before sampling. Exclusion
criteria for the disease groups were: 1) failure to collect blood
as required; 2) women in menstruation, pregnancy, or lactation;
3) metabolism-related diseases and other digestive diseases; and
4) some factors, such as diet and lifestyle that influence gastric
functions. In addition, all diagnoses were confirmed by a senior
clinician according to the clinical diagnostic criteria; the detailed
clinical data are shown in Table 1. Blood from the control
subjects and CG and GC patients was collected after fasting;
the tests included fasting lipid profile assays and untargeted
metabolomic analysis.

Sample Preparation for
UHPLC-Q-TOF/MS Analysis
All serum samples were collected into 5 ml tubes (BD
Vacutainer® SST II Advance tube) in the morning after fasting
March 2021 | Volume 11 | Article 636917
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for 8–14 h according to the criteria. The samples were
centrifuged at 3,000 rpm for 15 min and assayed within 4 h or
stored at −80°C until analysis (19). Internal standard (IS)
solution (10 µl; 10 mg/ml, clenbuterol for the positive ion mode
and chloramphenicol for the negative ion mode analyses) and
800 µl of methanol–acetonitrile (1:1 v/v) were mixed with a 190
µl aliquot of the serum samples; the mixture was vortexed for
approximately 30 s and sonicated for 10 min at 4°C in a water
bath. Then, the mixture was incubated −20°C for 1 h and
centrifuged at 13,000 rpm for 15 min at 4°C. Then, the
supernatant (800 µl) was carefully removed, transferred to
another clean test tube, and evaporated to dryness under
nitrogen at room temperature. The dried residue was
reconstituted in 200 µl of 80% methanol and mixed by
vortexing for 2 min and sonication for 10 min at 4°C. After
centrifuging at 13,000 rpm for 15 min at 4°C, the supernatant
3

was filtered through Acrodisc GHP 0.2 m, 13 mm Minispikes,
and a 5 µl aliquot of the filtrate was injected into the UPLC-MS
system for metabolomic analysis. Additionally, 10 ml from each
sample was pooled to generate quality control (QC) samples for
the UHPLC-MS/MS analysis.

Instrumentation and Conditions for
UHPLC-Q-TOF/MS Analysis
The separation was performed on an Agilent®1290 Infinity II
(Agilent Technologies Inc., USA) using aWaters ACQUITY HSS
T3 column (100 × 2.1 mm, i.d. 1.8 µm) maintained at 30°C. AB
SCIEX® TripleTOF 5600+ Plus ultra-performance liquid
chromatography-tandem mass spectrometer (UHPLC-Q-TOF/
MS) was used to acquire the MS/MS spectra on information-
dependent basis during the LC/MS experiment. In this mode,
acquisition software (Analyst TF1.7 software) continuously
evaluates the full scan survey MS data as it collects and triggers
the acquisition of MS/MS spectra depending on preselected
criteria (20). The mobile phase containing 0.1% formic acid
was composed of water (A) and acetonitrile (B) at a flow rate of
0.3 ml/min. A gradient program was used as follows (time, min/
A%): 0.5/99, 1.5/99, 7/1, 15/1, 15.5/99, 20/99. The injection
volume was 5 ml in partial loop mode. Electrospray ionization
mass spectrometry (ESI-MS) was operated in negative/positive
ion mode under the following operating parameters: curtain gas,
35; ion source gas 1, 55; ion source gas 2, 55; temperature, 550;
declustering potential, ± 80; collision energy, ± 40; accumulation
time, 0.16 s. The pooled QC represented the sample matrix and
metabolite composition of the samples, which were used to
construct the calibration curves and to judge precision, stability
and recovery are within the acceptable range.

Analysis of Differential Metabolites and
Metabolic Pathways
The analysis workflow of differential metabolites and metabolic
pathways included five main steps: data acquisition, spectral
processing, metabolite identification, analysis of metabolic
pathways and diagnostic potential of differential metabolites
(21, 22). The UHPLC-Q-TOF/MS method was used for data
acquisition in all samples in the positive and negative ion modes,
and the processed data were subjected to multivariate statistical
analysis. Initially, individual peaks were filtered to remove noise
based on the relative standard deviation or coefficient of
variation. Then, the missing values were replaced with half of
the corresponding minimum values. Additionally, the IS
normalization method was used for data analysis. The
analytical platform used for metabolomic data analysis was
provided by Biotree Biotech Co., Ltd. (SIMCA15.0.2 software
package) and Dashuo Biotech Co., Ltd. (ONE-MAP). Linear
transformation was used to preserve the variance of the original
data in the lower dimensionality of the output data using
principal component analysis (PCA) score plots, and the
outliers were identified by Hotelling’s T-squared distribution
(23). Significantly differential metabolites were identified using
partial least squares-discriminant analysis (PLS-DA), and 200
random permutation tests were carried out to avoid overfitting of
TABLE 1 | Clinical characteristics of the subjects.

Group Control
(n = 40)

CG
(n = 32)

GC
(n = 51)

c2/F
value

p
valu

Male/female (n) 20/20 13/19 40/11* 13.797 0.0
Age (years ±
standard
deviation)

47.33 ± 15.47 49.91 ± 14.73 54.61 ± 10.33* 3.721 0.0

History
H. pylori
infection

0 7 0 NA NA

Gastritis (n) 0 32 NA NA NA
Chronic active
gastritis (n)

0 30 NA NA NA

Intestinal
metaplasia
and/or
atrophy (n)

0 2 NA NA NA

Endoscopic
diagnosis
Normal NA 2 NA NA NA
Hiatal hernia NA 0 NA NA NA
Esophagitis NA 0 NA NA NA
Antroduodenitis NA 0 NA NA NA
Duodenal ulcer NA 0 NA NA NA
Gastric ulcer NA 10 NA NA NA
Other NA 20 NA NA NA

Tumor
localization
Antrum NA NA 20 NA NA
Corpus NA NA 10 NA NA
Cardias NA NA 8 NA NA
Unknown NA NA 13 NA NA

Histologic
grade
Grade 1 NA NA 8 NA NA
Grade 2 NA NA 9 NA NA
Grade 3 NA NA 11 NA NA
Grade 4 NA NA 23 NA NA

TNM stage
I NA NA 9 NA NA
II NA NA 3 NA NA
III NA NA 7 NA NA
IV NA NA 11 NA NA
Unknown NA NA 21 NA NA
Compared with the control group, *p < 0.05.
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the PLS-DA models (24). The metabolites were considered
significantly altered based on the results of PLS-DA and heat
map based on the t-test threshold (p < 0.05), fold-change
threshold (FC >1.5 or FC< 2/3), and variable importance in
the projection (VIP > 1). Exact molecular weights of the
metabolites (molecular weight error < 20 ppm) were
confirmed, and they were matched and annotated in the
standard database, custom databases (Metlin, MassBank,
LipidMaps, Mzclound, and HMDB databases), and other
integrated databases to obtain accurate metabolite information.
The metabolic pathways possibly associated with GC were
identified by searches for pathways of metabolites in
commercial databases, including KEGG and MetaboAnalyst
(25). Finally, the diagnostic performance of differential
metabolites was analyzed by receiver operating characteristic
(ROC) curve and PLS-DA.

Fasting Lipid Profile Assays
The serum fasting lipid profile was determined at diagnosis
during routine preoperative examination. Blood was collected
into EDTA-coated tubes, and the serum levels of total cholesterol
(TC), triglycerides (TG), low-density lipoprotein cholesterol
(LDL-C), high-density lipoprotein cholesterol (HDL-C),
apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB)
were measured automatically by a Roche Cobas 8000
modular analyzer.

Statistical Analysis
All data were statistically analyzed using SPSS 25.0 software
(International Business Machines Corp., USA). Data with a
normal distribution are expressed as the mean ± standard
deviation. Multiple groups with equal variances were compared
by one-way ANOVA followed by LSD t-test; data with unequal
variances were compared by Welch’s approximate analysis of
variance followed by Dunnett’s T3 test. Bonferroni–Holm
method was used to counteract the problem of multiple
comparisons. A P value <0.05 indicated that the difference is
statistically significant.
RESULTS

Multivariate Analysis of Metabolomic Data
of Serum Samples of the Control, CG and
GC Groups
Metabolic profiling performed in the present study included
sample preparation, metabolite extraction, and LC/MS analysis.
A total of 123 serum samples and 15 QC samples were used for
metabolomic analysis by UHPLC-Q-TOF/MS. Representative
total ion chromatograms (TIC) in positive and negative ion
modes were shown in Supplementary Figures S1A, B,
respectively. The response of clenbuterol in the positive ion
mode and chloramphenicol in the negative ion mode used as
IS were shown in Supplementary Figures S1C, D, respectively.
The score plot of the PCA model was used for the first three
principal component analyses of the data of the control, CG, and
Frontiers in Oncology | www.frontiersin.org 4
GC groups in the positive (ESI+) and negative (ESI−) modes
(Figure 1A). The results of the PCA score plot indicated that the
principal components were effectively separated. Furthermore,
the PCA score plot of the pooled QC samples (Supplementary
Figures S2A, B) and the relative standard deviation of IS
(Supplementary Figures S2C, D) in the ESI+ and ESI− modes
indicated that the analysis had satisfactory stability and
repeatability of metabolomic datasets. PLS-DA with a better
discriminative power than that of PCA was performed to
characterize the metabolic profiles based on class information.
All significant ions in the ESI+ and ESI−modes were merged and
imported into the SIMCA15.0.2 software package and ONE-
MAP. Comparison of all group pairs using the score plots for the
top three latent components of the PLS-DA model showed
significant clustering, which demonstrated a clear separation in
the ESI+ (Figure 1B) and ESI− (Figure 1C) modes. In particular,
the first three latent components of PLS-DA model in the
control, CG, and GC groups were mainly distributed from left
to right similar to a trend in the changes in the main principal
components and were associated with disease progression. To
avoid overfitting effect of PLS-DA models, 200 random
permutation tests were performed; the results indicated the
absence of overfitting with R2X0 (0.33–0.38), Q2X0 (−0.36 to
−0.43), R2Y (0.82–0.95), and Q2Y (0.74–0.94), demonstrating the
differences in metabolic profiles between the control, CG, and
GC groups (Figure 2). These results confirmed high goodness of
fit and predictive capability of the PLS-DA models. Therefore,
two models, PCA and PLS-DA were sufficient to characterize the
results of serum metabolite profiling.

Analysis of Differential Metabolites
and Pathways in the Control, CG,
and GC Groups
Peaks were aligned, and the missing values were removed (26) to
identify a total of 7,445 peaks in the ESI+ mode and 2,745 peaks in
the ESI− mode based on the MS/MS data. Then, qualitative
identification was performed using three strategies, namely,
standard compounds databases, publicly available databases, and
several integrated databases for molecular structure/fingerprint
prediction. A total of 1,884 metabolites in ESI+ mode and 556
metabolites in ESI−mode were identified and subjected to statistical
analysis. A total of 100 differentially accumulated metabolites were
identified based on variable importance in the projection (VIP) >1
in the loading plot, FC >1.5 or FC <2/3, and p < 0.05. Global
overview of metabolism features was shown in the heat map that
included 100 differential metabolites in the three groups (Figure 3).
Interestingly, lipids and lipid-like molecules were the most
predominating metabolites including N-Hydroxy arachidonoyl
amine, SQDG (29:3), hexadecasphinganine, hypoxanthine, 3-
benzoyloxy-11-oxo-12-ursen-28-oic acid, MGDG (28:8), 2-
methoxy-estradiol-17beta 3-glucuronide, PG [14:1(9Z)/14:1(9Z)],
MGDG (20:2), traumatic acid, stearic acid, stigmastentriol,
linoleamide, and other compounds. Then, we performed pathway
enrichment and topological analysis based on 100 differential
metabolites in serum. The number of differential metabolites
matching the signal pathway (Hits), -ln(P) value, and pathway
March 2021 | Volume 11 | Article 636917
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impact score (Impact) was used to demonstrate the enrichment of
different metabolites mainly in sphingolipid metabolism,
glycerophospholipid metabolism, arachidonic acid metabolism,
tryptophan metabolism, steroid hormone biosynthesis,
phenylalanine metabolism, linoleic acid metabolism, retinol
metabolism pathways, and other pathways. Most of the
significantly altered metabolic pathways were correlated with lipid
metabolism, and detailed information about the pathways is shown
in Table 2.

Identification of Metabolites as Candidate
Biomarkers for CG and GC Diagnosis
Lipid metabolites, including linoleamide, N-Hydroxy arachidonoyl
amine, and hexadecasphinganine were significantly upregulated (FC
> 1.5) in both CG and GC patients compared with those in healthy
subjects. Comparison of the GC group with the CG group indicated
that the serum levels of 3-benzoyloxy-11-oxo-12-ursen-28-oic acid,
PG [14:1(9Z)/14:1(9Z)], 2-methoxy-estradiol-17beta 3-glucuronide,
MGDG (20 :2) , SQDG (29 :3) , MGDG (28 :8) , and
hexadecasphinganine were elevated; however, the serum level of
Frontiers in Oncology | www.frontiersin.org 6
N-Hydroxy arachidonoyl amine decreased. Then, we identified
candidate biomarkers for the discrimination of CG or GC from
healthy healthy subjects; the diagnostic potentials of 100 differential
metabolites were tested by receiver operating characteristic curve
(ROC) analysis. According to the basic principle for ROC analysis
(27), differential metabolites with AUC >0.70 were chosen as
candidate markers (Table 3). The data indicated that
hexadecasphinganine (Figures 4A, G), linoleamide (Figures 4B,
H), and N-Hydroxy arachidonoyl amine (Figures 4C, I) were able
to highly efficiently discriminate CG or GC between CG or GC
patients and healthy subjects (AUC > 0.90); discrimination of CG
from GC by the three metabolites was characterized by moderate
efficiency (AUC = 0.7047–0.8012, Figures 4D–F). So, sensitivity
and specificity of the three markers were optimized according to the
PLS-DA, and a combination of these markers improved sensitivity
and specificity (AUC = 0.9882, CG vs Control; AUC = 0.9111, GC
vs CG; AUC= 0.9858, GC vs Control) (Figure 5B). The peak areas
of hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl
amine in the control, CG, and GC groups were significantly different
(Figure 5A). These results suggested that hexadecasphinganine,
A

B

FIGURE 2 | Permutation tests of the PLS-DA model for CG vs Control, CG vs GC, and GC vs Control in the (A) ESI+ and (B) ESI− ion modes. Random
permutations (a total of 200) were used to evaluate whether a possibility of overfitting in the PLS-DA model. The statistical parameters R2X0, Q

2X0, R
2Y, and Q2Y

were used for the analysis of the multivariate models.
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linoleamide, and N-Hydroxy arachidonoyl amine can be used as
candidate biomarkers for the diagnosis of CG or GC.

Serum Level of Fasting Lipid Profile in
Patients With CG or GC When Compared
With Control
The fasting lipid profile was determined to verify the
relationships between lipid metabolism and GC (Table 4).
Interestingly, the levels of TC, HDL-C, LDL-C and Apo-A1
were statistically different between the groups (p < 0.05).
Subsequent statistical analysis showed that the serum levels of
TC, HDL-C and Apo-A1 in patients with GC were substantially
lower than those of patients with CG indicating a possible
association between decreased TC, HDL-C, and ApoA1 levels
Frontiers in Oncology | www.frontiersin.org 7
and the progression of CG to GC (p < 0.05). The serum
concentrations of TC, HDL-C and Apo-A1 in the GC group
were significantly decreased compared with those in CG group (p
< 0.05). However, there were no statistically significant
differences in the levels of TG and Apo-B between the three
groups (p > 0.05). In general, decreased TC, HDL, and Apo-A1
levels may be associated with the progression of GC.
DISCUSSION

Cancer cells frequently display fundamentally altered cellular
metabolism, which provides the biochemical basis and directly
contributes to tumorigenicity and malignancy. Therefore, cancer
FIGURE 3 | Heat map of the 100 significantly differential metabolites in the serum in the control (purple), CG (red), and GC (green) groups. Metabolites were
included based on VIP > 1, FC > 1.5 or FC < 2/3, and p < 0.05. The colors from blue to red indicate the relative contents of the metabolites in the three groups.
March 2021 | Volume 11 | Article 636917
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metabolism has recently become a subject of considerable
interest for the pharmaceutical industry and clinical research.
However, a systematic understanding of cancer metabolism
remains a challenge. The primary goal of this study was to
investigate the serum metabolic features and identify candidate
biomarkers for gastric disease.

Most candidate biomarkers identified in the present study were
lipid-related molecules (Figure 3). Most metabolic pathways were
involved in lipid metabolism, including sphingolipid metabolism,
glycerophospholipid metabolism, and arachidonic acid
metabolism (Table 2). To further study the relationship of lipid
metabolism with the development of GC, fasting lipid profile was
prospectively assessed. The serum TC, HDL-C, and ApoA1 levels
decreased in patients with GC compared with those in healthy
subjects or CG patients (Table 4). The serum levels of these
metabolites in patients with GC were considerably lower than
those in patients with CG indicating a possible association
between decreased TC, HDL-C, and ApoA1 levels with the
progression of CG to GC. A decrease in the lipid profile in
cancer patients may be due to increased utilization of lipids by
neoplastic cells in membrane biogenesis, which is consistent with
the findings of other studies (28, 29). The results of untargeted
metabolomic analysis and fasting lipid profile indicated that lipid
metabolism may be associated with the development of CG to GC.
The development of gastric cancer is a multistep process, and CG
Frontiers in Oncology | www.frontiersin.org 8
is the initial step of the precancerous cascade (30, 31). However,
how gastritis is initiated and transformed to GC remains unclear.
Many types of cancer are caused by infection, chronic irritation,
and inflammation (32). Therefore, it is important to understand
how inflammation contributes to the physiological and
pathological processes of cancer.

Many studies have investigated the relationships of lipid
metabolism with inflammation and tumorigenesis (33, 34). The
engagement of specialized pro-resolving lipid mediators (SPMs)
has been reported to be involved in the inflammatory response;
these lipid mediators and their signaling pathways are the key
components of an important endogenous anti-inflammatory and
immunoregulatory pathway that promotes the resolution of
inflammation. Recently, a novel signaling pathway, ALOXs-
GPR32-STAT3, was shown to control gastric cancer
angiogenesis through the production of specialized SPMs (35).
Arachidonic acid is the precursor of diverse inflammatory
molecules (36), and stearic acid has been shown to be
positively correlated with proinflammatory IL-8 (37).
Moreover, lipid metabolites are important components of the
human body that have biological and functional roles, such as
sources of energy via b-oxidation and dominant components of
the cellular membranes (38, 39). Because rapidly proliferating
cancer cells can survive by enhancing exogenous lipid uptake and
activating endogenous lipid synthesis to supply energy,
upregulated levels of lipid metabolites were detected in the
serum of CG or GC patients. In addition, lipid metabolism,
such as sphingolipid metabolism, glycerophospholipid
metabolism, and linoleic acid metabolism, can influence cancer
metastasis, therapeutic effects, and prognosis (40–42).

Altered metabolism of lipids is currently considered a hallmark
characteristic of many malignancies, and lipids have raised growing
interest as potential biomarkers in many clinical conditions.
Therefore, we investigated the serum diagnostic potentials of these
significantly different metabolites. The results indicated that
linoleamide and N-Hydroxy arachidonoyl amine can be used as
candidate biomarkers for CG, and hexadecasphinganine and
linoleamide can be used as candidate biomarkers for GC. The
TABLE 2 | Significantly altered metabolic pathways in the control, CG and
GC groups.

Pathway name KEGG.id Hits1 -ln(P) Impact2

Sphingolipid metabolism hsa04071 5 7.75 0.28
Glycerophospholipid metabolism hsa00564 5 5.40 0.26
Arachidonic acid metabolism hsa00590 5 3.90 0.23
Tryptophan metabolism hsa00380 4 1.67 0.16
Steroid hormone biosynthesis hsa00140 4 1.39 0.11
Phenylalanine metabolism hsa00360 3 4.55 0.28
Linoleic acid metabolism hsa00591 2 2.90 0.66
1Hits, the number of differential metabolites matching the pathway; 2Impact, impact value
of metabolic pathway determined by topology analysis.
TABLE 3 | Differential metabolites identified by t-test and ROC curve analysis in two groups.

Group Compounds FC1 log2(FC) VIP AUC CI P-value Adjusted P2

CG vs Control Linoleamide 8.63 3.11 3.02 0.9771 0.92-0.99 9.31E-10 1.75E-06
N-Hydroxy arachidonoyl amine 13.75 3.78 3.10 0.9742 0.90-0.98 3.89E-10 7.29E-07
Hexadecasphinganine 3.85 1.95 2.69 0.9187 0.84-0.97 6.24E-08 1.17E-04
Hypoxanthine 4.70 2.23 2.10 0.8331 0.74-0.94 1.47E-05 8.76E-03

GC vs CG N-Hydroxy arachidonoyl amine 0.43 -1.23 1.69 0.8012 0.70-0.89 1.57E-05 2.94E-02
SQDG (29:3) 3.10 1.63 1.68 0.7867 0.69-0.87 3.74E-06 2.23E-03
Hexadecasphinganine 1.83 0.87 1.53 0.7748 0.66-0.86 7.33E-06 1.37E-02
3-Benzoyloxy-11-oxo-12-ursen-28-oic acid 3.74 1.90 1.69 0.7416 0.63-0.84 5.44E-06 1.02E-02
MGDG (28:8) 2.09 1.07 1.59 0.7403 0.63-0.84 3.52E-05 2.10E-02
2-Methoxy-estradiol-17beta 3-glucuronide 3.52 1.82 1.71 0.7396 0.63-0.84 3.13E-06 1.87E-03
PG (14:1(9Z)/14:1(9Z)) 3.58 1.84 1.67 0.7311 0.62-0.83 1.11E-05 6.62E-03
MGDG (20:2) 3.11 1.64 1.69 0.7147 0.60-0.81 7.39E-06 4.40E-03

GC vs Control Hexadecasphinganine 7.03 2.81 2.42 0.9898 0.95-0.99 1.19E-15 2.23E-12
Linoleamide 5.35 2.42 2.16 0.9321 0.87-0.97 5.04E-12 9.44E-09
Stigmastentriol 4.04 2.01 2.04 0.9015 0.82-0.96 1.61E-10 3.02E-07
N-Hydroxy arachidonoyl amine 5.87 2.55 1.74 0.8215 0.72-0.90 6.80E-07 1.27E-03
March 2021 |
 Volume 11 | A
1FC, FC > 1.5 indicates the upregulated serum level, FC < 2/3 indicates the downregulated serum level. 2Adjusted P, Adjusted P indicates the Bonferroni–Holm adjusted P values.
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combination of these biomarkers can increase the diagnostic
accuracy for the discrimination of CG versus GC. Thus, single
biomarkers have high sensitivity and specificity for diagnosis of CG
or GC versus healthy subjects. However, the results obtained using a
combination of the three biomarkers enhanced the discrimination
provided by diagnostic tests based on single markers for differential
diagnosis of CG versusGC. This study is the first to report that three
lipid compounds (hexadecasphinganine, linoleamide, and N-
Frontiers in Oncology | www.frontiersin.org 9
Hydroxy arachidonoyl amine) have high potential diagnostic
value and may be used as candidate biomarkers for CG or GC
diagnosis. However, the pathophysiological role of these three
metabolites in the development of GC has not been reported,
although these compounds have been investigated in other
diseases. For example, linoleamide, a representative of fatty acids,
has anti-inflammatory effects (43). Hexadecasphinganine, a
potential biomarker for Alzheimer’s disease (44), plays major
A D G

B E H

C F I

FIGURE 4 | ROC curve analysis of the candidate biomarkers for CG or GC. Individual ROC curves and peak areas for hexadecasphinganine (A, D, G), linoleamide
(B, E, H) and N-Hydroxy arachidonoyl amine (C, F, I). AUC (0.5−0.7), low accuracy; AUC (0.7−0.9), moderate accuracy; AUC (> 0.9), high accuracy. From the
panel, hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine displayed high efficiency for distinguishing patients with CG or GC from healthy control,
but moderate efficiency when used to distinguish CG group from GC group.
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roles in sphingolipid signaling to regulate important cellular
processes, including cell proliferation, metabolism, differentiation,
and protein synthesis (45). However, the pathophysiological role of
N-Hydroxy arachidonoyl amine has not been reported. Thus, some
of the differential metabolites and metabolic pathways identified in
Frontiers in Oncology | www.frontiersin.org 10
our study were consistent with the data of previous studies with
some limitations because of the differences among individual
participants and the limited number of patients. In the follow-up
study, we hope to verify the accuracy of the diagnostic values of our
identified panels and explore the detailed molecular mechanism of
lipid metabolism promoting the transition from CG to GC.
CONCLUSIONS

This study provides new insights into the changes in serum
metabolites during the development of gastric diseases. We
demonstrated that the serum levels of metabolites in patients
with chronic gastritis or gastric cancer were enriched in lipid
metabolism and significantly different from those in the healthy
A

B

FIGURE 5 | Validation of the combination of the three lipid metabolites (AUC > 0.90, ***p < 0.005) as potential biomarkers by ROC curve analysis. (A) The
comparison of normalized intensity peak areas of three candidate biomarkers (hexadecasphinganine, linoleamide, and N-Hydroxy arachidonoyl amine) in the control
(orange), CG (green), and GC (blue) groups. (B) Potential diagnostic performance of the three identified metabolites (AUC > 0.90, ***p < 0.005). The sensitivity and
specificity values were optimized by PLS-DA. As shown in the panels, the area under the ROC curve of the combination of the three candidate biomarkers is
significantly increased, suggesting that the combination of the three parameters has the highest diagnostic accuracy, especially for distinguishing GC patients from
CG patients.
TABLE 4 | Serum lipids and apolipoproteins profile for samples.

Group Control (n = 40) CG (n = 32) GC (n = 51) p value

TC (mmol/L) 4.66 ± 0.57 4.6 7± 0.86 3.98 ± 0.96*# <0.001
TG (mmol/L) 1.1 8 ± 0.36 1.36 ± 0.58 1.39 ± 0.60 0.087
HDL-C (mmol/L) 1.42 ± 0.23 1.59 ± 0.43 1.16 ± 0.50*# <0.001
LDL-C (mmol/L) 2.71 ± 0.50 2.59 ± 0.70 2.27 ± 0.80* 0.009
Apo-A1 (g/L) 1.54 ± 0.14 1.63 ± 0.30 1.16 ± 0.40*# <0.001
Apo-B (g/L) 0.91 ± 0.12 0.90 ± 0.22 0.91 ± 0.26 0.983
Compared with the control group, *p < 0.05. Compared with the CG group, #p < 0.05.
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subjects. The levels of lipid metabolism were different in the CG
and GC groups, which enhanced the understanding of the
pathogenesis of gastric disease. Additionally, differential lipid
metabolites validated in this study may be as diagnostic
biomarkers for the diagnosis and classification of this disease.
Follow-up investigations are expected to define the diagnostic
parameters of these candidate biomarkers via targeted
metabolomic analysis of additional clinical samples.
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Supplementary Figure 2 | The PCA model with QC and the relative standard
deviation of IS for all samples. (A), (B) are the PCA model for all samples with QC in
the ESI+ and ESI− modes, respectively. (C), (D) are the relative standard deviation
of IS for all samples in the ESI+ and ESI− modes, respectively.

Supplementary Figure 3 | The intensity of peak areas for hexadecasphinganine
(A, D and G), linoleamide (B, E, H) and N-Hydroxy arachidonoyl amine (C, F, I)

when compared to each two groups, ***p < 0.005.
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