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Biosensing technology helps prevent, diagnose, and treat diseases and has attracted
more and more researchers in recent years. Artificial intelligence-based triboelectric
nanogenerators (AI-TENG) are promising for applications in biosensors due to their
myriad of merits, including high efficiency and precision, low cost, light weight, and
self-powered. This article aims to show how artificial intelligence and triboelectric
nanogenerators have been combined to develop biosensors. We first focus on the
working principle of triboelectric nanogenerators and the method of combining them
with artificial intelligence. Secondly, we highlight the representative research work of AI-
TENG in biomolecules sensing, organic compounds, and complex mixture of cells. Finally,
this paper concludes with a summary and prospect on the existing challenges and
possible solutions in the application of AI-TENG to the field of biosensors.
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INTRODUCTION

The health status of a person is reflected by different physiological signals and monitoring health
conditions in real-time can help prevent, diagnose and treat diseases. As a result, biosensors have
been given more and more attention in recent years. Current biosensing systems rely on
rechargeable batteries, which has largely limited the development of miniaturized and portable
medical devices. Considering the increasing number of biosensors, providing sustainable energy
sources will be an issue to be addressed (Wang X et al., 2021). Wang developed the first
nanogenerator based on concentrating charge on the side and toward the bend, which initiates
the current generation once released in a back-and-forth motion (Wang et al., 2007). Depending
on the principle of operation, nanogenerators can be classified into two types: piezoelectric
nanogenerators (PENG) and triboelectric nanogenerators (TENG), enabling self-powered
biosensors to harness different forms of energy, including solar, thermal, mechanical, and
biological energy. With their high sensing resolution, fast response, and flexibility,
nanogenerators can be used in several applications, including biomedical devices (Feng
et al., 2018; Sun et al., 2019; Khandelwal, 2020; Zhang et al., 2021), ocean wave energy
harvesting (Jiang et al., 2015; Saadatnia et al., 2017; Wu et al., 2019), wind farms (Wang Y
et al., 2021), and vehicle systems (Askari et al., 2019).

Apart from the advantages of nanogenerators for energy harvesting, they have shown great
potential in facilitating interactions between humans and machines (Li et al., 2016; Ding et al.,
2019; Xie et al., 2021) as combined with AI technologies. The application of AI in TENG can be
divided into data collection and representation, algorithm determination, and model
development (Salehi and Burgueno, 2018; Shi et al., 2020). In terms of data collection and
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representation, AI techniques need to be trained from existing
data, so it is vital to maintain the accuracy and validity of the
dataset (Mounet et al., 2018). Specific algorithms need to be
identified to train the dataset after data collection and
representation (Kalidindi et al., 2016). AI prediction models
in TENG can either be rigid and simple [e.g., classic statistical
linear regression models (Khorsand et al., 2020)] or complex
and flexible [e.g., deep neural network models (Jiang et al.,
2022)]. In TENG, classification algorithms can be used for
analytical problems in design and manufacturing,
and regression algorithms can solve probabilistic problems

in application challenges (Jordan and Mitchell, 2015; Jiao,
2021).

This paper will report on the biosensor’s application of
triboelectric nanogenerators combined with artificial
intelligence (AI-TENG). Firstly, research work related to AI-
TENG in low abundance biosensing is summarized, focusing on
applying AI-TENG in biomolecules sensing (nano enzymes
and nucleic acids), volatile organic compounds, and the
regulation of complex mixed cells. Secondly, the existing
challenges and possible solutions in the application of AI-
TENG are discussed.

FIGURE 1 | Biosensing applications of AI-TENG in previous reports. (A) The schematic diagram of the human self-powered catalysis-promoting system (Yao et al.,
2022). (B) The schematic diagram of the triboelectric sensor for direct quantification of exosomes (Miao et al., 2022). (C) The schematic diagram of the Machine-learning-
assisted and plasma enhancement mid-IR methodology for VOC healthcare diagnosis (Zhu et al., 2020). (D) The schematic diagram of the smart facemask for wireless
CO2 real-time determination (Escobedo et al., 2022). (E) The schematic diagram of the developed smart clothing applied in a closed-loop system (Zhao et al.,
2022).
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AI-TENG SENSORS FOR LOW
ABUNDANCE BIOSENSING

TENG-based AI devices are useful in advancing biosensing
systems, enabling continuous and accurate acquisition of
biosignals (Jiang et al., 2021). Analyzing this collected data
through AI technology is expected to enhance diagnostic
capabilities significantly, thus aiding the development of the
next generation of digital biomedicine (Stuart et al., 2021).

Detecting Biomolecules
Combining AI-TENGwith biotechnology has received increasing
attention in recent years, and this technology has a wide range of
applications in the medical field. Yao et al. developed a human
self-powered catalysis-promoting system, TENG-CatSystem, to
improve catalytic cancer therapy Yao et al. (2022). TENG-
CatSystem is composed of a self-powered TENG and a one-
dimensional ferriporphyrin covalent organic framework coated
on a carbon nanotube (COF-CNT). The peroxidase-like activity
of COF-CNT was increased approximately four-fold under the
electric field provided by the wearable TENG (Figure 1A). In
addition, the treatment process and results can be displayed at the
computer terminal using AI technology, which greatly enhances
the treatment cycle and treatment results. In order to achieve a
simple and accurate determination of exosomes, Miao et al. have
developed a novel triboelectric sensor based on tetrahedral DNA
modifications Miao et al. (2022). Upon interaction with
exosomes, the contact area of the top and bottom portions of
the TENG device increases significantly, enabling direct
quantification of exosomes and ultrahigh sensitivity of the
sensor. By combining with AI techniques, exosomes can be
monitored in real-time and intuitively after changing the DNA
sequence, and this AI-TENG sensing strategy can analyze most
types of targets (Figure 1B).

The AI-TENG biomolecular detection method enables self-
powered and real-time monitoring in biotechnology, greatly
simplifying the external equipment of biosensors and
improving detection efficiency. Therefore, AI-TENG has a
wide range of promising applications in the field of
biomolecules biosensor systems.

Detecting Organic Compounds
As a biological monitoring tool for human health, volatile
organic compounds (VOCs) can be used as important
biomarkers for healthcare monitoring and early diagnosis of
diseases. Zhu et al. reported a plasma-enhanced infrared
absorption spectrum with fast response, accurate
quantification, and good selectivity using a plasma-induced
ultra-high electric field to enhance the vibration of molecules
and improve light-matter interactions Zhu et al. (2020). The
types of VOCs and their concentrations can be well quantified
from the wavelength and intensity of the plasma-enhanced
spectral signals (Figure 1C). In addition, ML algorithms
visualized the relationship between different VOCs in the
mixture, demonstrating the feasibility of VOC identification
for simulated patients. A machine learning enhanced ion
mobility analyzer with a triboelectric-based ion generator is

also reported by Zhu et al., which provides good ion mobility
selectivity and VOC identification in small devices and non-
strict operating environments Zhu et al. (2021). By extracting
specific features automatically from ion mobility spectroscopy
data with an ML algorithm that significantly improves the
detection capability of the TENG VOC-based analyzer.

In order to mitigate the rapid global spread of severe acute
respiratory syndrome coronavirus 2, the design and evaluation of
a battery-free, wearable mask is an effective solution. Escobedo
et al. report a sensing platform for real-time measurement of
gaseous CO2 in the FFP2 mask Escobedo et al. (2022). Moreover,
AI technology has developed a bespoke smartphone application
for wireless power supply, data processing, alarm management,
results display, and sharing (Figure 1D). Daily activity and
monitoring performance tests demonstrate their utility in non-
invasive, wearable health assessment and potential applicability in
pre-clinical studies and diagnostics.

The artificial intelligence algorithm provides a large amount of
information on parameters for detecting VOCs and the TENG
provides a self-powered supply for the monitoring system. Thus,
AI-TENG provides an effective solution for building a complete
organic compound monitoring system.

Detecting Complex Mixture Cells
The detection of complex mixtures in the body’s cells or tissues
provides a timely indication of the body’s health status (Teng
et al., 2022). Zhao prepared stretchable fiber TENG (F-TENG)
by sequentially coating multi-walled carbon nanotubes and
polyaniline onto Ecoflex fibers (Figure 1E). They detected
glucose, lactate, and creatinine concentrations (Setiyorini
et al., 2022) in sweat through enzyme modifications
(glucose oxidase, lactate oxidase, creatinine oxidase).
Moreover, by connecting the F-TENG to a wireless
communication device, the detected information can be
transmitted to the cloud in real-time, and AI algorithms
can process the data to build a self-powered closed-loop
health monitoring system (Zhao et al., 2022). Li has
developed a bio-nanogenerator consisting of highly discrete
piezoelectric (Luo et al., 2022) fibers to achieve precise
electronic modulation of single regional cells. The sensor
can mimic the complex structure highly. The self-generated
electronic function of natural collagen extracellular matrix
(ECM) nanofibers in terms of three-dimensional structure
and electrical properties (Li et al., 2021) enables in situ
simulated electrophysiological stimulation of cells and
tissues and the construction of complex microenvironments,
significantly promoting the activity and functional expression
of a wide range of cells (neuronal cells, hepatocytes, bone
marrow mesenchymal stem cells, etc.) and tissues (liver,
peripheral nerves).

AI-TENG uses a large amount of statistical real-time
feedback data to train a mathematical model with a specific
structure containing unknown parameters to generate a
detector for complex biological cells containing the
statistical features inherent in the training data. This
approach greatly reduces the cost of testing equipment and
increases testing efficiency.
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DISCUSSION

As illustrated by the three examples, AI-TENG is promising for
applications in low abundance biosensing due to its myriad of
merits, including high efficiency and precision, low cost, light
weight, and self-powered. However, there are many challenges in
these applications. Firstly, it is necessary to develop effective
sensing systems that are cheap, reliable, and fully functional in the
long term. As data from different sources may be fused for
biosensors, fully fault-tolerant self-powered sensing systems
are needed to reduce the influence of faulty measurements on
the entire output of the sensing system. This can be achieved by
using embedded software that can provide a remedy in the event
of a faulty measurement. Secondly, most of the works related to
the integration of AI-TENG technologies are still at the proof-of-
concept stage and have yet to be enhanced for real-world
applications. Scaling these applications to larger data sets will
present unique challenges. Finally, the use of AI tools and the
increased flow of data from continuously operating sensing
systems requires specific hardware for data processing, model
training, and evaluation. Therefore, combining 5G networks,
cloud computing, AIoT devices, and the development of tiny
machine learning could help address challenges.

There is exciting potential for low abundance biosensing to
harness the powerful products provided by AI-TENG. It plays an
important role in the detection of biomolecules, organic
compounds, and complex mixture cells. On the one hand, due
to the unique sensing and energy harvesting capabilities, TENG
can facilitate the development of intelligence devices focused on
intelligent self-powered sensing systems. On the other hand, the

AI algorithm automatically extracts the intrinsic features of the
target through the internal network structure. It builds a stable
combination of features through a low-level to high-level
abstraction process, weakening the subjectivity of manual
feature selection and saving a lot of time and workload.
Combining triboelectric nanogenerators with artificial
intelligence in biosensing will result in the detection systems
having the ability to learn, think, and make decisions in real-time
without the need for an external power source. Therefore, AI-
TENG has transformed many sensing systems in different
applications, such as providing the intelligent electronics
needed for biosensing devices. Under such conditions, the title
question to ask “what can AI-TENG do for low abundance
biosensing?”, these answers have exciting prospects for the
coming years.
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