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Foraging typically involves two distinct phases, an exploration phase where an organism
explores its local environment in search of needed resources and an exploitation phase
where a discovered resource is consumed. The behavior and cognitive requirements
of exploration and exploitation are quite different and yet organisms can quickly and
efficiently switch between them many times during a foraging bout. The present study
investigated neural activity state dynamics in the anterior cingulate sub-region of the
rat medial prefrontal cortex (mPFC) when a reliable food source was introduced into
an environment. Distinct and largely independent states were detected using a Hidden
Markov Model (HMM) when food was present or absent in the environment. Measures of
neural entropy or complexity decreased when rats went from exploring the environment
to exploiting a reliable food source. Exploration in the absence of food was associated
with many weak activity states, while bouts of food consumption were characterized by
fewer stronger states. Widespread activity state changes in the mPFC may help to inform
foraging decisions and focus behavior on what is currently most prominent or valuable in
the environment.
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INTRODUCTION
When an organism forages in its environment to obtain food and
resources, it cycles between two distinct phases. First, it explores
the environment (the exploration phase) and then it uses the col-
lected information to exploit the resources that it has discovered
(the exploitation phase). This exploration/exploitation trade off
can occur many times in a foraging bout but, in each case, a dis-
tinct shift in behavior occurs when the valued resource suddenly
becomes readily available. At that point, exploration ceases and
the organism focuses on the stimuli or actions that produce the
desired outcome.

The medial prefrontal cortex (mPFC) may be a key site to
begin a search for neural mechanisms associated with forag-
ing decisions. Rats with anterior cingulate cortex (ACC) lesions
decreased the amount of food collected in a competitive or non-
competitive food foraging test (Li et al., 2012), while lesions
of the rat ACC impaired memory-based foraging on a radial
arm maze (Seamans et al., 1995). Lesions in monkeys have
also shown that the ACC has an important role in integrat-
ing information and sustaining rewarded responses in dynami-
cal foraging tasks (Kennerley et al., 2006). In addition, Kolling
et al. (2012) recently demonstrated that, in humans, the ACC
appears to contain information about the average value ver-
sus cost of foraging in an environment. Cost estimations may
in turn be related to the volatility of reward in an environ-
ment, which is also represented within the ACC (Behrens et al.,

2007; Hayden et al., 2011). While this work has highlighted
the role of the ACC in foraging decisions, less attention has
been paid to the changes in neural activity associated with the
actual act of exploration versus exploitation. Presumably, the
shift from exploration to exploitation marks an important psy-
chological boundary to the animal which may be tracked by
the mPFC.

Previous work in both humans and non-human primates has
provided evidence that neural activity in the ACC may differen-
tiate between these two modes of behavior. Procyk et al. (2000)
trained monkeys to touch targets in a sequence and, after sev-
eral repetitions, the required sequence changed. One group of
neurons in the anterior cingulate sulcus was more active during
the search period while another group was more active dur-
ing the repetition or “exploitation” period. In a different task,
that also required alternation between exploration and exploita-
tion, ACC neurons produced differential signals to reward at the
beginning of search periods versus the end (Quilodran et al.,
2008). In fMRI studies performed in humans (Daw et al., 2006),
increased activation was observed on exploratory trials compared
to exploitative trials in the frontopolar cortex in a 4-arm ban-
dit gambling task. Interestingly, activity in the frontopolar cortex
closely tracked their actual behavior, showing differential activity
when they adopted an exploratory versus an exploitative strategy.
These data suggests that the frontal cortex responds differently
during the act of exploration versus exploitation.
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It appears that mPFC neurons, including ACC neurons,
exhibit consistent action or outcome correlates when the envi-
ronment remains stable; however, a significant change in the
environment or behavior can induce dramatic and widespread
changes in activity. Recently, we trained rats on a cued-operant
response rule and, after many trials, switched the rule unex-
pectedly. The rat was required to search alternatives until it
arrived at the correct response-based rule that would produce
reward. At about the time the rats switched to the new rule, an
abrupt and significant shift in the activity state of the recorded
ensemble occurred (Durstewitz et al., 2010). On a different task,
(Karlsson et al., 2012) found abrupt and coordinated changes
in the activity of mPFC cells that occurred at the point when
a prior belief was abandoned in favor of exploration of alterna-
tive strategies. Although it is becoming increasingly evident that
abrupt shifts occur in mPFC neural activity under various cir-
cumstances, it is unclear whether such changes also involve a
change in total informational content. With regards to foraging,
is it the case that exploration and exploitation are fundamentally
represented by differing amounts of information? Intuitively, one
would expect that neural networks might exhibit higher entropy
(involve more neural states) when the animal is exploring versus
when it is exploiting a reliable resource because, in the former,
many possible contingencies must be considered whereas the later
involves a limited focus on a single contingency. The present
study compared two behavioral periods, one in which an environ-
ment is explored without food, and another when food becomes
available. No decisions were required about when to transition
between the two modes of behavior, as we were only interested
in the activity state changes when the animal was engaged in the
actual act of exploration versus exploitation (as defined by food
consumption from a reliable source). Ensemble states, transitions
and information were characterized during both periods.

Hidden Markov Models (HMM) are well suited to iden-
tify the stable and consistent states of a system as well as the
transitions between them. In the present study, we used HMM
models to identify activity state patterns in ACC ensembles. An
additional advantage of HMMs is that they can provide a prob-
abilistic characterization of identified states through time. As a
result, it is possible to calculate the entropy of a system based
on the relative probabilities of each of the states (Downarowicz,
2011). In the present study, we defined entropy as the number of
states co-existing in ACC ensembles with a given probability at a
given time. Systems with higher entropy are considered as more
complex (Anand and Bianconi, 2009). We found that distinct
Markov states were associated with exploration versus exploita-
tion/consumption and that the switch between these states was
abrupt. Furthermore, based on measures of entropy and two
independent measures of complexity, activity during exploration
was more complex than during exploitation/consumption.

MATERIALS AND METHODS
SUBJECTS
Five male Long-Evans rats (Charles River Laboratories, Montreal)
weighing between 380 and 450 g were used for the in vivo elec-
trophysiological recording experiments. Upon arrival, they were
given one week to acclimatize to the colony room before training

began. They were housed in an inverted 12-h day/12-h night
cycle. Once training began, they were food restricted to 90%
of their free-feeding weight and were given ad libitum access to
water. During recovery from surgeries, they were free fed. Upon
full recovery, they were reinstated on a food restriction schedule
and were retrained on the task. All procedures were conducted
in accordance with the Canadian Council of Animal Care and
approved by the Animal Care Committee of the University of
British Columbia.

BEHAVIOR
Recording and training sessions took place inside a plexi-glass
operant chamber with dimensions of 60 cm in length, 36 cm in
width, and 40 cm in height. A pedestal mount pellet dispenser
(Med Associates) was placed in the middle of the 60 cm panel
and raised 45 cm above ground level. The pellet dispenser was
controlled by Med Associates (St. Albans, VT) USB control box,
connected to a PC workstation and controlled through Med-PC
(St. Albans, VT). It dispensed 45 mg sweet dustless precision pel-
lets (BioServ). After a pellet was dropped from the dispenser into
the chamber, it bounced on the floor and rolled to its final rest-
ing place which was unpredictable; the pellet distribution in the
chamber was essentially uniform with a slight bias to rest oppo-
site to the panel that had the pellet dispenser. When the pellet
dropped, it made a distinctive sound that typically caused the rat
to orient toward the sound and then search and consume the pel-
let (4.39 ± 0.65 s, average time to consume after the drop). Rats
were trained to do this prior to surgery and then retrained after
surgery until they were consuming each pellet in less than 5 s.

During recording days, the rat spent 5–10 min in the box, after
being tethered and prior to recording, while parameters were
adjusted in the Neuralynx system. Recordings started with no
overt cue. Rats were allowed to freely explore the operant chamber
for 15 min. Then, pellets began to drop from the dispenser above
at 10 s intervals for a total of 90 pellets in a 15 minute period.
After pellets had been consumed, an additional post-task period
of 5 min elapsed where rats could again freely explore their envi-
ronment before recordings stopped. Figure 1A shows a schematic
of the task.

SURGERY AND HISTOLOGY
Rats were surgically implanted with a custom made 16 tetrode
hyperdrive array as previously described in Hyman et al. (2012).
Rats were anesthetized under iso-flurane gas, the skull was sur-
gically exposed and a 4 mm by 3 mm hole was drilled and
dura removed to expose the brain around coordinates +3.0 mm
from Bregma and ±0.5 mm from the midline. The implant
was positioned over the area and fixed to the skull with 10
skull screws and dental acrylic. Two additional screws used as
ground wires for the implant were placed in the posterior skull.
Tetrodes were lowered ∼800 µm on the day of surgery; then
the rats were given 1–2 weeks of postsurgical recovery time.
Tetrodes were then advanced an additional 700–1400 µm to
their target location (Figure 2A) and recording sessions took
place. After recordings were completed and the experiments had
ended, rats were perfused and electrolytic lesions were used
to mark the final position of the tetrodes. Brains were then
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FIGURE 1 | Task and behavior. (A) Schematic of the experimental
procedure. Rats were allowed to freely explore the chamber for 15 min
(baseline period) after which pellets began to fall from a dispenser located
above the chamber at a rate of 1 pellet every 10 s (pellet drop period). After
15 min pellet drops ceased. (B) Sample paths traveled in 2 min portions of a
single session during the baseline (top, red dot), pellet drop period (green

dot, middle), and the post-pellet drop period (blue dot, bottom). (C) Mean
(and s.e.m.) distance traveled for animals across sessions during the first
5 min of the baseline (red bar), pellet drop (green bar), and post-pellet drop
period (blue bar). The rats tended to travel more during the pellet drop period
than the baseline period although this failed to reach statistical significance.
[p < 0.05(∗ ); not significant (n.s.)].

FIGURE 2 | Recording sites and normalized firing rates. (A)

Diagram of recording sites. Tetrodes were lowered 1.5–2.5 mm
at a 15 degree angle into the ACC. (B) Carpet plot of 160

recorded neurons pooled across sessions during the baseline
(red bar), pellet drop period (green bar), and the post-pellet drop
period (blue bar).
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sliced in a cryostat and mounted on slides to confirm anatom-
ical location of tetrode tracts. Exact locations could not be
precisely identified because tetrodes were continuously lowered.
However, based on tetrode advancement records, the positions
were estimated to have been mostly toward the medial wall
of the ACC with few crossing into the prelimbic cortex (PL)
and none in the medial agranular area (AGm) or infralimbic
cortex.

ELECTROPHYSIOLOGICAL RECORDINGS
Recordings were obtained using a Neuralynx System. Tetrodes
were attached to EIB-36TT boards, plugged into two HS-36
headstages and electrical signals were sent via tether cables to
a Digital Lynx 64-channel system and then to a PC work-
station. Electrophysiological data and behavioral events were
captured using Cheetah 5.0 software. Files were exported into
Offline Sorter (Plexon, Inc.) and were manually sorted based on
three-dimensional projections of wave form peaks and valleys
(Figures 3A,B). Once cells had been sorted, they were exported

to Neuroexpler 3.266 (Nex Technologies) and then to Matlab for
further analysis.

When rats had recovered from surgery, they were plugged into
the system and tetrodes were slowly advanced into the mPFC over
an approximately one month period until a stable ensemble was
found. Once all tetrodes were placed into the mPFC and were
showing stable neural activity, data collection commenced.

DATA ANALYSIS
Spike timestamps were converted to instantaneous firing rate
(iFR) vectors as described previously in Lapish et al. (2008) and
Durstewitz et al. (2010). To obtain an estimate of the neural firing
rate for each isolated cell i as a function of time bin t, ri(t), all spike
trains were convolved with Gaussian kernels (SD = 500/4 ms)
and binned at 500 ms (approximately the inverse of the aver-
age firing rate of ≈1.8 Hz). Neurons with average firing rates
below 0.1 Hz were excluded from further analysis. A low fre-
quency cut was made for two technical reasons. First, it eliminated
cells that were not active during the recording session. Second,

FIGURE 3 | Recordings from a pellet drop session. (A) Waveforms
recorded from a single tetrode (tetrode #13). (B) Plot of peak waveforms
from two electrodes of tetrode 13 showing clustering indicative of putative
individual units. Tetrode 13 was chosen because it had the largest number of
putative individual units. (C) Normalized firing rates for unit recordings in one

session (N = 28), during the baseline (red bar), pellet drop period (green bar),
and the post-pellet drop period (blue bar). Note that many units exhibited a
robust and almost all-or-none increase (TT14c, TT13g, TT6a) or decrease
(TT13e, TT13f, TT10e, TT6b, TT13b) in firing at the point when pellets began
to fall at 900s. Bin size = 1 s.
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when running the HMM scripts, cells that had many “zeros” in
the firing rate matrix produced errors. For population analysis,
population vectors r(t) = [r1(t) . . . rN(t)] were formed, with N
number of single units isolated from a given recording session.

HIDDEN MARKOV MODELS
A Markov chain is a dynamic probabilistic system that transitions
between Q states through time. The transition from one state to
the next is given by a transition probability measure and all pos-
sible transitions are contained in the transition matrix. A HMM
follows the same properties, with the added component that the
Q states are not directly observed and instead must be inferred
from the observed variables. The observed variables determine
which state the system is in at any given time. In neural data, the
observed variable is the firing rate and the hidden states and their
underlying dynamics are assumed to correspond to the neural
processes that are being computed.

To compute the parameters of the HMM model, we used the
HMM Matlab Tool Box provided by Murphy (1998, available on-
line). In this toolbox, the transition matrix is calculated using the
Baum–Welch Expectation Maximization (EM) algorithm using
a random transition matrix and random prior probabilities as
a starting point. The emission probabilities for a given state are
assumed to be drawn from an N-dimensional normal distribu-
tion (for a system of N neurons) where both the mean and
the covariance matrix are determined during the EM step. We
assumed a diagonal covariance matrix for each state. Parameters
are updated on each iteration until the log-likelihood converges.
At that point, a forward–backward algorithm is applied to the
transition matrix in order to calculate the posterior probabili-
ties. The posterior probabilities are given by P[Q(t) = i|y(1 : T)],
where y(1 : T) is the observed data over the entire time period, T.
It is important to note that the most likely path (calculated by
the viterbi algorithm) gives one state as the most likely, while
the posterior probabilities give the probability that each state is
present at each time point. For further explication of how HMM
can be applied to neural or other kinds of data refer to Rabiner
(1989) for the classical tutorial and Murphy (2012) for a modern
perspective.

BAYESIAN INFORMATION CRITERIA
One hurdle that has limited the applicability of HMMs to neu-
ral data is the decision of the number of states the model should
use. It is important to find the optimal number of states without
over-fitting. Various heuristics have been employed (see Visser
et al., 2002) to address this issue. Typically, one would look at the
likelihood at all states and choose the state at which it asymp-
totes. However, more states will typically lead to continuously
increasing likelihoods. Two goodness of fit analysis that have been
successfully performed on neural data (Xydas et al., 2011) are the
Akaike Information Criteria (AIC) and the Bayesian Information
Criteria (BIC). In the present study, the BIC was used to find the
best trade off. BIC places a cost on the number of parameters
in the model (number of states given the number of neurons,
number of observations, covariance and elements of transition
matrix). The BIC attains either an asymptote or a minimum for
the model that best explains the data. We calculated this goodness

of fit model by applying the following formula:

BIC = −2 × L + log
(
length (iFR)

) × (Q × (N) + Q × (N)

+ Q × (Q − 1))

Where Q is the number of states, N is the number of neurons, and
L is the maximized log-likelihood found from the EM algorithm.
The second term represents the number of fit parameters in the
model.

ENTROPY
Entropy is a measure that was originally formulated for ther-
modynamic systems, but later was shown to be equivalent to
information as defined by Shannon (1948). The information in
a system is a measure of how many states it represents in bits or
nats and is defined, with the latter units, as:

Entropy = −
Q∑

i = 1

Pi × lnPi

In the above equation, the Pi represents the probability that the
system of neurons is in a particular state i. We use the HMM
model described above to determine the probabilities of the
neurons being in a particular state at a given time t. These prob-
abilities correspond to the posteriors. The entropy is an indicator
of the number of states with non-zero posterior probabilities at
any given time; the maximum entropy is achieved when all states
are equiprobable, while the minimum entropy is attained when
only one state is probable. We smooth the posterior probabilities
with a sliding centered average of 3 bins (500 ms each) before cal-
culating entropy and, in order to improve visualization for full
time series plots, we smooth at 61 bins (500 ms each).

COMBINING iFR SESSIONS
We combined all recorded sessions into one single session by
aligning all iFRs to the starting time of the task when the first
pellet drops. This leads to a combined iFR trace that consists of
an approximately 15 min pre-task period, followed by 15 min of
pellet drops and then a post-task period. Combining all record-
ings led to a system of 160 neurons (Figure 2B). This merged
dataset was used in evaluating the Kolmogorov Complexity (KC)
and PCA complexity.

KOLMOGOROV COMPLEXITY
An alternative measure to entropy is KC that, in the appropri-
ate limit, indeed converges to the entropy. It measures the size of
the minimal computer program needed to represent a piece of
data. In other words, it measures how big does a program need
to be to generate the observed data—the larger the program the
more complex the original data source. Although it is not pos-
sible to compute the minimal program directly, it is possible to
estimate an upper bound on the KC using standard compres-
sion algorithms. In this paper, we use the compression program
bzip2, though other compression algorithms have been shown to
yield similar results. For each iFR trace, we compute the KC of a
sliding time window. For each time window, we output the corre-
sponding iFR trace to a file, compress the file and then output the
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compressed size of the file in bytes. This size is our estimate of KC
at each time point.

PCA COMPLEXITY
Principal component analysis (PCA) is a standard technique for
doing dimensionality reduction on high-dimensional data sets.
Indeed, it forms the basis of several compression algorithms. It
is based on diagonalizing the covariance matrix of the dataset,
yielding the dominant directions in the high-dimensional space
along which the data varies most. Here, we use PCA to calcu-
late the effective number of components that exist within an iFR
signal at a given time point as another measure of data com-
plexity/entropy. We performed PCA on the iFR matrix and then
for each iFR time bin, determined the loadings on each princi-
pal component (PC). We counted the number of PCs needed to
capture 90% of the observed signal at each time point; this was
done by sorting the loadings in descending order and then sum-
ming until the sum was greater than 90% of the total sum. Where
the sum starts is a measure of how many components exist in the
data at each time. In order to more clearly see how the number of
components changes throughout the experimental trial, we apply
a simple smoothing procedure to compute a sliding average of
components with time.

RESULTS
The database used for analysis was composed of 160 neurons with
a mean firing rate of 1.84 ± 0.95 Hz, recorded from 5 rats over 8
sessions, with an average neural ensemble size of 20 units. During
each session, rats were allowed to explore the enclosure without
food for 15 min. Thereafter, food pellets fell from a dispenser
above at a rate of one/10 s. Each pellet would fall, hit the plexi-
glass floor and bounce until it settled at a random location within
the enclosure. The rat would then search, retrieve, and consume
each pellet. The rats would continue until the 90 pellets that were
available to them in a session were depleted (Figure 1A). Hence
the task involved exploration of an enclosed chamber followed by
exploitation/consumption of a food source. Figure 1B shows the
paths a rat took during the baseline, pellet drop and post pellet
drop period of a single session. The average distance traveled dur-
ing the first 5 min of the baseline, pellet drop and post pellet drop
period for three rats across four sessions is shown in Figure 1C.
Although rats tended to travel further in the pellet-drop than the
baseline period, this effect just missed significance [t(3) = 3.08,
p = 0.054].

Rats had experience with the 90 pellet task before the recording
sessions commenced. Figure 3 shows neural recordings obtained
during a single pellet drop session. There were a multitude of dif-
ferent responses (Figures 2B, 3C), as one would expect from the
mPFC; however, there were notable cases of neurons that abruptly
turned on or off as soon as the food pellets started dropping from
above. This was suggestive of a transition in activity state patterns
at the point when food became available.

ENSEMBLES EXHIBIT DISCRETE STATES DURING EXPLORATION
VERSUS EXPLOITATION
In order to get a better understanding of overall ensemble activ-
ity states and transitions between them, an HMM analysis was

employed. With HMMs, the goodness of fit can be strongly
affected by the number of model parameters. Therefore, a cri-
teria is used that imposes a cost on the number of parameters,
such as the BIC. Using this criteria, the log likelihood constrained
by the BIC was variable across sessions but always showed an
asymptote or minima (Figure 4). BIC was normalized in order
to facilitate comparison between ensembles. The model with the
optimal number of states as given by the asymptote or minima of
the BIC was used in the analysis described below.

The HMM analysis showed that states were usually present
either during the baseline period or the pellet drop period
(Figure 5A). States were placed into one of two categories, “base-
line dominant” or “pellet-drop dominant,” respectively, based on
whether or not their average posterior probabilities were larger
for the baseline periods than an equivalent interval from the
pellet drop period. Virtually all of the states in every session
were much more dominant either during the baseline or pel-
let drop periods. In order to show that these categories were
robust across sessions, we did the following: the average poste-
rior probabilities for all states in each category were calculated
separately for the baseline period and for the pellet drop period.
As shown in Figure 5B, states placed in the “baseline dominant”
category had approximately four times larger average posterior
probabilities during the baseline period (0.0574 ± 0.0037) than
during the pellet drop period (0.0140 ± 0.0023); t(117) = 9.13,
p < 0.005. States that were present in the baseline period were
also present in the post period and the magnitude of their prob-
abilities were not significantly different; 0.0574 ± 0.0037 and
0.0437 ± 0.0071 respectively, t(117) = 1.88, p > 0.05 (Figure 5C).
Conversely, states placed in the “pellet drop dominant” category
had approximately five times larger average posterior probabili-
ties during the pellet drop period (0.0775 ± 0.0063) than during
the baseline period (0.0150 ± 0.0027); t(81) = 8.07, p < 0.005.
An all-or-none collective shift from one group of neural states
to another is striking and suggests a fundamental change in the
operation of the medial PFC at the point when the animal moves
from exploration to exploitation of a food source.

FIGURE 4 | The criteria used to select the number of states in the

HMM. A Bayesian Information Criteria (BIC) was used to estimate the
optimal number of states (Q) to be used in the HMM for each session. BICs
are normalized.
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FIGURE 5 | State probabilities present throughout pellet drop sessions.

(A and B) Posterior probabilities for two sample sessions. For each session,
the states derived from the HMM were divided into one of two groups
(“baseline dominant” or “pellet drop period dominant”), based on whether
their posterior probabilities were larger (top panel A,B) for the baseline period
(denoted by a BL) versus the pellet drop period (denoted by a PD) or vice

versa (bottom panel A,B). (C) Group means (and s.e.m.) comparing the
posterior probabilities for “baseline dominant” (BL > PD) versus “pellet drop
period dominant” (PD > BL) states during the baseline and pellet drop period
across all sessions. States either had significantly strong probabilities
during the baseline period or the pellet drop period. [p < 0.005(∗∗ ); not
significant (n.s.)].

ENTROPY AND COMPLEXITY IS LOWER DURING
CONSUMPTION/EXPLOITATION THAN EXPLORATION
As shown in Figure 6A, entropy calculated for a single session
from a 7 state model abruptly decreased at the point when the
pellets started to fall from above. In order to detect the moment
at which this transition occurred, a time series analysis was per-
formed (Figure 6B), with the cumulative sum showing a peak
at the time the pellet begins to drop. In this session, the system
transitioned through more states during exploration relative to
consumption/exploitation. In terms of group statistics, one prob-
lem with calculating entropy based on Markov state probabilities

across sessions is that such calculations are quite sensitive to
the number of states in the model. In order to control for this,
entropy was calculated for each session using different numbers
of HMM states. As shown in Figure 6C, entropy was usually sig-
nificantly lower during exploitation than exploration for models
with different numbers of states.

Given the potential issues associated with calculating entropy
from HMM states, other approaches were also employed. A
related quantity to entropy is KC that measures the size of the
minimal program or procedure needed to generate the observed
pattern or activity (Kolmogorov, 1968). One advantage of KC

www.frontiersin.org May 2013 | Volume 7 | Article 74 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Decision_Neuroscience/archive


Caracheo et al. Changes in ACC activity with food

FIGURE 6 | Changes in entropy throughout pellet drop sessions.

(A) Entropy calculated from the posterior probabilities derived from a 7
state HMM for a single session. (B) Time series analysis indicating the
moment at which entropy shifts, which corresponds to the moment of
pellet drop onset. (C) Data from all sessions showing the average number
of states with non-zero posterior probabilities (q) during the baseline period
(red bars) and pellet drop period (green bars) as derived from HMMs with
differing numbers of states (Q). The number of states was usually smaller
for the pellet drop period than the baseline period. [p < 0.05(∗ );
p < 0.005(∗∗ ); not significant (n.s.)].

is that it does not require an explicit evaluation of the proba-
bilities of the states that exist within the system. It has found
a variety of applications in biology such as to compare com-
plexities between different genomic sequences (Li et al., 2001;
Vinga and Almeida, 2003; Penner et al., 2011) and molecular
structure comparisons (Krasnogor and Pelta, 2004). Figure 7A
plots the KC for all neurons combined across all sessions (Total
units = 160) and shows that at the point the pellets started
dropping, neural complexity decreased. In order to test for sig-
nificance between behavioral epochs, a Kolmogorov–Smirnov
(KS) test was applied between corresponding complexity time

FIGURE 7 | Changes in neural complexity throughout pellet drop

sessions. (A) All neurons from all sessions were pooled and Kolmogorov
complexity (KC) was calculated over time using a sliding window of size =
150 s. The KC decreased at the point the pellets began to fall (first red line)
and increased when they stopped falling (second red line). (B) A principle
component analysis (PCA) was calculated on all neurons pooled from all
sessions. The average number of principle components (PCs) needed to
reconstruct 90% of the iFR decreased as soon as pellets started to fall (first
red line) and increased again after they stopped falling (second red line).
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series. The exploitation/consumption period was significantly
lower (p ≈ 1e-33) than the baseline period. However, the post
consumption period was also significantly lower than the baseline
period (p ≈ 1e-13).

A principle component analysis (PCA) based approach was
also employed to quantify neural complexity for the combined
160 neuron group. PCA was performed on the iFR matrix and
the number of PCs that were needed to reconstruct 90% of the
firing rate were calculated through time. As shown in Figure 7B,
fewer PCs were required to reconstruct the firing rate activity
when the rat transitioned from exploration to exploitation. A
KS test (p ≈ 1e-20) verified that the exploitation period was
indeed lower than the baseline period. No significant differ-
ence was found between baseline and post pellet drop period.
Therefore, both entropy and PCA-based analysis showed that
the baseline and post periods were similar. Even though the
KS analysis of KC showed that the post period was different
than the baseline, it should be emphasized that the post period
was still significantly higher than the exploitation/consumption
period.

It is important to note that the decrease in neural entropy or
complexity measured using these approaches was not due to a
decrease in overall movement, since distances traveled actually
were greater during the exploitation phase when the rats searched
for pellets in the chamber than during the exploration phase
(Figure 1C).

LOCAL CHANGES IN NEURAL ENTROPY FOR THE PERIOD
SURROUNDING EACH PELLET DROP
The analysis above provided a description of the neural state
changes across entire sessions. During the pellet drop period, the
important event was of course the pellet drop and its imminent
consumption. Figure 8 focuses on the state dynamics surround-
ing each pellet drop. As shown in Figure 8A for a single session,
multiple low probability states were present during the baseline
exploration period while a few states tended to emerge more
strongly during different parts of the peri-pellet drop interval.
When entropy was calculated in this interval, there was an abrupt
and significant drop at the point when the pellet hit the floor
(Figure 8B). In order to quantify the drop in entropy across ses-
sions, the area under the entropy curves (AUC) was calculated
for repeated 10 s intervals during the baseline period and for
10 s periods surrounding each pellet drop. The average AUC for
repeated 10 s intervals from the baseline period was significantly
higher at 49.98 ± 1.21 compared to 47.25 ± 2.04 for the 10 s
intervals surrounding the pellet drops [t(7) = 2.63, p < 0.05],
(Figure 8C).

Finally, Figure 8D plots the means of the three states with
the largest posterior probabilities in the peri-pellet drop inter-
vals across all sessions. One state was relatively flat with a peak
roughly aligned to the time when the pellet hit the floor; a second
state emerged strongly when the pellet was found and consumed
while a third state was less likely around the actual time of the
pellet drop, but emerged during the inter-pellet drop interval.
Since this is group data from all 8 sessions, these states were highly
reproducible and consistent. Thus, the decrease in entropy during
exploitation occurred because of the emergence of a few clear and

highly probable exploitation-related states in all sessions. To get
an idea of how individual neurons mapped onto the three states
shown in Figure 8, a linear regression with three factors corre-
sponding to intertrial, pellet drop and consumption periods was
applied to individual iFR vectors. Example neurons from differ-
ent sessions that attained the highest significance (as determined
by p-values of the t-statistic) are plotted in Figure 9. The top 4
rows correspond to cells that had positive coefficients (B) while
the bottom row represents cells with negative ones (–B).

DISCUSSION
The present study investigated the ensemble activity state patterns
in the mPFC as rats were exploring an open chamber or exploit-
ing a reliable food source. A HMM was used to parse ensemble
activity into discrete states over time. Distinct and largely inde-
pendent states emerged when the rat was in an environment that
contained food versus when it did not. Overall, entropy or com-
plexity decreased as rats went from exploring the environment to
exploiting the reliable food source. This decrease occurred largely
because of the emergence of strong and stable activity states that
were associated with key motivation events.

THE STRENGTHS AND LIMITATIONS OF HMMs APPLIED TO NEURAL
DATA
HMMs have been previously used to detect stable and recurrent
states in neural networks. They are well suited for this application
because neural activity is thought to evolve through a sequence
of states. The underlying assumption is that the states detected
by HMMs are functionally meaningful in that they are each
associated with the representation of a particular type of infor-
mation. As a result, if one can detect the sequence of states and
characterize how they transition through time, it reveals some-
thing about the local neural code. With this in mind, Radons
et al. (1994) used HMMs to characterize neural activity from the
visual cortex and were able to predict with high levels of accu-
racy which visual stimuli were being presented to an anesthetized
monkey. Abeles et al. (1995) applied HMMs to a working mem-
ory task and in so doing identified several quasi stationary states
in monkey frontal cortex that corresponded to behavioral and
sensorial events. Subsequently, Seidemann et al. (1996) showed
that the unique states detected by an HMM were specific to a
monkey’s response in a delayed localization task and that they
could be used to predict the monkey’s response correctly on
∼90% of trials. HMMs have also been applied to elucidate the
functioning of other brain areas; Jones et al. (2007) showed that
rodent gustatory cortical ensembles progress through a sequence
of stimulus-specific sequences and Camproux et al. (1996) used
it to classify bursting activity of locus coeruleus neurons under
different pharmacological conditions. Finally, another interesting
approach of HMMs can be found in Kemere et al. (2008), where
they were used to interpret neural activity in the motor cortex
related to planning and movement to enable control of external
devices by the brain. This last finding raises the possibility that
HMMs can be used, not only to acquire theoretical knowledge
of brain processes, but also to translate it into practical terms in
order to improve the quality of life of patients with spinal cord
injury or neurodegenerative diseases.
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FIGURE 8 | State dynamics in the 10 s period surrounding each pellet

drop. (A) For a single session, the posterior probabilities of all states
(Q = 25) were individually averaged across repeated 10 s intervals during
the baseline period (left) and during repeated 10 s intervals centered on the
pellet drop during the pellet drop period (right). (B) Entropy calculated
based on the average posterior probabilities shown in (A). Note that local
entropy decreased just prior to the pellet drop and reached a minimum
just after it. (C) Group data from all sessions showing that the area under

the entropy curves was significantly smaller for the peri-pellet drop period
than for an equal number of 10 s intervals during the baseline period.
(D) The three largest probability states for the peri-pellet drop period were
extracted from each session and averaged. In every session, there was a
consistent state that decreased during the peri-pellet drop interval (red
line), a state that peaked just around the time a pellet hit the floor (blue
line), and a state that peaked somewhat later around the time when the
rats consumed the pellet (green). ∗p < 0.05.

Yet in spite of the potential of HMMs, they have not been
widely used as a means to quantify cortical activity. One reason
is likely because of the difficultly in knowing how many states
should be used in the model (Rainer and Miller, 2000). Previous
studies of frontal activity have used models with less than 10 states
successfully (Abeles et al., 1995; Seidemann et al., 1996; Rainer
and Miller, 2000; Xydas et al., 2011). The present study used the
BIC that places a cost on excessive model parameters. While in

some data sets, <10 states appeared optimal, >20 states were opti-
mal in others. A larger number of states may have been required
here because previous studies were performed in well-trained
chair-restrained monkeys whereas in the present study, rats were
free to move around the enclosure. Such free flowing, poorly con-
strained naturalistic behavior may necessitate the monitoring of
many more information sources and hence involve more states
detectable with the HMM.
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FIGURE 9 | Peri-event histograms of individual neurons selective for

intertrial interval, pellet drop, and consumption states. Neurons selected
based on beta coefficient significance are shown in (A) for the inter-trial interval

factor (red), (B), for pellet drop factor (blue), and (C) for the consumption
factor (green). Top four rows correspond to neurons with positive beta
coefficients while the last row corresponds to neurons with negative ones.
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HMM-based entropy calculations are also strongly dependent
on the number of model states. While HMMs with different num-
bers of states tended to show that the transition to exploitation
was associated with a drop in entropy, this was not always the case
(Figure 5B). This could have been because activity may not have
been optimally parsed in different sessions. Therefore, two com-
pletely independent means of calculating neural complexity were
used. One was based on PCA where the number of PCs required
to 90% of neural firing rate was calculated through time. The
second, termed KC, was borrowed from computer science and
can be estimated using compression algorithms commonly used
to compress computer files. The idea is that a less complex file
can be compressed to a smaller size than a more complex file.
In the present case, the algorithm was able to compress neural
iFR data to a smaller size during exploitation than during explo-
ration. Hence the three independent measures converged on a
similar result.

IMPLICATIONS OF CHANGES IN NEURAL COMPLEXITY DURING
EXPLORATION AND EXPLOITATION
In spite of its shortcomings, the calculation of entropy based
on the posterior probabilities of the HMM is perhaps most
intuitive of the three measures. Posterior probabilities give an
estimation of the likelihood that a given state is present at a
given time. If the posterior probability is 1 for a given state,
it would be 0 for all of the other states and in this case
entropy across all states at that time would be 0. Alternatively,
if 2 or more states have non-zero posterior probabilities, then
entropy would increase. A decrease in entropy during con-
sumption/exploitation implies that fewer states are estimated as
likely during this period. This can be appreciated by examining
Figure 8A where many states, each with low posterior probabil-
ities, were present during the baseline period, but fewer states
emerged with larger posterior probabilities in the peri-pellet drop
period. The states emerging in the peri-pellet drop period had
clear associations with behaviorally significant events such as
the pellet drop, pellet consumption and the inter-pellet drop
interval. Thus, the present results suggest that in mPFC ensem-
bles, exploration is associated with many weak representations
while consumption/exploitation is characterized by a few strong
representations.

The conclusion is conceptually similar to the predicted effects
of dopamine on network activity in the PFC (Durstewitz et al.,
2000; Durstewitz and Seamans, 2004, 2008). Specifically, our
“dual state” model predicted that low levels of dopamine alter
activity such that multiple weak representations co-exist in PFC
nearly simultaneously while moderate elevations in dopamine
levels decrease the number of representations present at any
one time, but those that remain would be strongly enhanced.
Although this theory was developed as a way to understand PFC
activity on working memory tasks, the computational models
on which it was based were derived from the known biophysical
properties of cortical circuits and their modulation by dopamine
and therefore are equally applicable to any situation where PFC
dopamine levels vary. With relevance to the present study, moder-
ate elevations in PFC dopamine levels occur at the time when food
is introduced (Feenstra and Botterblom, 1996; Taber and Fibiger,

1997; St. Onge et al., 2012) and in this sense, the present results
are in good agreement with model predictions.

THE ABRUPT NATURE OF COHERENT TRANSITIONS IN mPFC
ENSEMBLES
One important realization that came out of the early applications
of HMMs to frontal cortex activity was that activity states could
switch very abruptly (Abeles et al., 1995; Seidemann et al., 1996).
The present study provided another demonstration of this phe-
nomenon. The detection of abrupt transitions was not an artifact
of HMMs, however, similar types of abrupt transitions have been
detected in the mPFC using a number of different techniques.
Using a foraging-based decision-making task on a radial arm
maze, we observed that statistically unique and distinct activity
states emerged during different task epochs (Lapish et al., 2008).
For instance, a unique activity state pattern consistently emerged
at arm decision points yet abruptly transitioned to a different
pattern within ∼1 s when the rat reached the food cup at the
end of the arms. A widespread and abrupt transition in mPFC
activity state patterns was also observed to occur near the point
when rats seized upon a new operant action rule after a trial and
error search period (Durstewitz et al., 2010) as well as when a
prior belief was abandoned in favor of exploration of alternative
strategies (Karlsson et al., 2012). Abrupt and coordinated activity
state transitions were also observed when rats switched from one
unique context to another (Hyman et al., 2012). The magnitude
of the shift observed in the present study was larger than the shifts
associated with different task rules or task epochs, but of compa-
rable magnitude to those associated with changing contexts. The
appearance of food for a hungry rat can reasonably be assumed
to reflect a fairly substantial event and perhaps the magnitude
of the shift may be related to the significance of the associated
behavioral event.

THE ROLE OF THE mPFC IN FORAGING
In humans, the ACC appears to contain information about the
average value versus cost of foraging in an environment (Kolling
et al., 2012). This is consistent with the neural correlates observed
in the primate ACC as ACC neurons might weigh the relative
value of leaving a depleting resource for a new one (Hayden
et al., 2011). ACC neurons were found to reach a fixed threshold
at the time when it is optimal for patch-leaving. In addition, it
has been previously shown that exploration/exploitation modes
of behavior can recruit differential forms of neural activity and
ensembles (Procyk et al., 2000; Averbeck et al., 2006; Daw et al.,
2006; Brown et al., 2007; Quilodran et al., 2008; Kolling et al.,
2012). In this paper, we present similar results. However, one fun-
damental difference is the lack of a decision component. In terms
of optimal foraging theory, there is a trade-off between explo-
ration and exploitation while in the present study, there is really
no trade off because, even if the animal decided to stop eating
and explore, there is no cost associated with that decision. The
value of the approach applied in this paper lies in the attempt to
characterize information. We not only show that there are dif-
ferent neural states for exploratory and exploitative/consumptive
behaviors, but also that a differential information load exists. The
next step would be to apply the methods employed in this paper
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to a trial an error task and quantify how information changes as
cost/benefit evaluations take place.

The findings in this paper provide insight into how the ACC
may inform foraging decisions. While foraging decisions are
related to a number of variables such as cost and value, these vari-
ables are in turn determined by the prevailing internal state. Food
cues only have value if they signal food and if the animal is hun-
gry. The present study speaks more to the relevance of the ACC to
the monitoring of internal states than to the neural mechanisms
involved in deciding when to explore or exploit. Specifically, it was
the appearance of food to a hungry rat that appeared to evoke a
widespread and coherent shift in ACC activity states. Such shifts
likely change the processing mode of ACC networks in a broad
manner. Aside from the food itself, the same sensory information
was available to the rat before and after pellets started dropping,
yet their presence profoundly changed the way that information

was represented in the ACC. If food is unlikely or uncertain, mul-
tiple stimuli or actions must be considered. This may be reflected
as an increase in entropy or complexity. Conversely, if a food
source suddenly becomes reliable, most of these candidate stimuli
or actions can be ignored and all neural resources can be directed
to those that are reliably related to reward. This appears to be
reflected as a decrease in entropy or complexity. Thus, widespread
changes in activity states in the mPFC may help to imbue oth-
erwise arbitrary stimuli or actions with increased prominence
or value.
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