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X-Ray snapshots of a pyridoxal 
enzyme: a catalytic mechanism 
involving concerted [1,5]-hydrogen 
sigmatropy in methionine γ-lyase
Dan Sato1, Tomoo Shiba1, Tsuyoshi Karaki1, Wataru Yamagata1, Tomoyoshi Nozaki2, Takashi 
Nakazawa   3 & Shigeharu Harada1

Pyridoxal 5′-phosphate (PLP)-enzymes are essentially involved in amino acid and amine metabolism of 
a wide variety of organisms. Despite their extensive biochemical studies, there are little evidence and 
structural data to comprehensively elaborate the catalytic mechanism. We obtained X-ray snapshots of 
l-methionine γ-lyase from Entamoeba histolytica (EhMGL), a PLP-enzyme catalyzing the γ-elimination 
reaction of methionine. Here, we suggest a catalytic mechanism of EhMGL by using the X-ray snapshots 
covering all stages of this multistep catalysis reaction. Initial formation of a Michaelis complex is 
followed by the migration of double bond from the C4′=Nα–Cα moiety in an intermediate PLP-
methionine imine to C4′–Nα=Cα in pyridoxamine 5′-phosphate (PMP)-α,β-dehydromethionine imine 
without intervention of a putative quinonoid intermediate. The enzyme can facilitate the subsequent 
γ-elimination of methanethiol by the possible general acid-base catalysis of Tyr108 for the E1cB 
mechanism, enabling to form the ene-imine C4′–Nα=Cα–Cβ=Cγ structure with the s-cis conformation, 
which is prerequisite for the non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift to 
complete the catalytic cycle by releasing α-ketobutyrate. The mechanism based on the X-ray snapshots 
is consistent with the reactivity of MGL toward methionine analogues. The generality of such a 
mechanism involving non-enzymatic concerted reaction in other PLP enzymes is discussed.

Many enzymes involved in amino acid and amine metabolism bind pyridoxal 5′-phosphate (PLP) as a cofac-
tor and catalyze a wide range of biologically important reactions such as transamination, racemization, deam-
ination, decarboxylation, isomerization, and β- and γ-elimination/substitution1. l-Methionine γ-lyase (MGL: 
EC 4.4.1.11), a PLP-dependent enzyme involved in the transsulfuration pathway, catalyzes the conversion of 
l-methionine to α-ketobutyric acid through the elimination of methanethiol from l-methionine. The enzyme 
also accepts l-cysteine, homocysteine, and their analogues as substrates, and catalyzes γ- and β-elimination/
substitution2. In protozoan parasites and periodontal bacteria, MGL plays essential roles in energy metab-
olism, methionine homeostasis, isoleucine biosynthesis, and formation of a sulfide storage molecule, 
S-methylcysteine2–4. Moreover, MGL from the bacterium Micromonospora echinospora is involved in the biosyn-
thesis of antitumor antibiotics5. MGL is important to the survival of parasitic protozoa and periodontal bacteria, 
but is absent in mammals; consequently, MGL is a promising target for chemotherapeutics2, 6 and for treating 
cancers by the introduction of recombinant MGL protein to cause methionine depletion7.

The cofactor PLP plays a major role in catalysis by MGL, including transamination and γ-elimination8, 9, 
yet there is little crystallographic data to provide insights into the catalytic mechanism of the enzyme from the 
standpoint of organic chemistry. It is therefore essential to obtain a comprehensive set of intermediate structures 
to describe the reaction pathway catalyzed by MGL.

In this manuscript, we suggest a possible catalytic mechanism for MGL from the protozoan parasite 
Entamoeba histolytica (EhMGL1)10, 11 based on X-ray snapshots of enzyme-bound reaction intermediates. 
The main features of the mechanism are that it involves an E1cB mechanism in the γ-elimination step and a 
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non-enzymatic symmetry-allowed suprafacial [1,5]-hydrogen shift at the final stage of the reaction, and this 
hydrogen shift is supported by a sophisticated symbiosis between PLP and several catalytic residues.

Results
Structure determination.  The crystal structure of substrate-free EhMGL1 was solved by molecular 
replacement using the structure of the Psuedomonas putida MGL protein (PDB entry 2o7c) as a search model and 
refined at 1.97 Å resolution (PDB entry 3acz; Supplementary Table S1). Consistent with other MGL proteins of 
known structure (Supplementary Fig. S1)5, 12, 13, EhMGL1 is a homotetrameric enzyme composed of two catalytic 
dimers (an A–D chain dimer and a B–C chain dimer, Fig. 1a). Each chain comprises an N-terminal domain, a 
PLP-binding domain, and a C-terminal domain (Fig. 1b) and the active site binds a PLP cofactor that forms a 
Schiff base with the ε-amino group of Lys205 [PLP-enzyme (Lys205) imine; Fig. 1c]. Six crystal structures with 
various soaking times in a cryoprotectant solution containing methionine were determined at 2.0–2.6 Å resolu-
tion (PDB entries: 3aej, 3aem, 3aen, 3ael, 3aeo and 3aep; Supplementary Table S1). The 28 active sites in the seven 
structures could be classified into eight stages of catalysis: substrate-free, Michaelis complexes, and intermediates 
1a, 1b, 2, 3, 4a and 4b. These assignments are listed in Supplementary Table S2. The overall structure of EhMGL1 
is described in Supplementary Results.

Active sites of substrate-free EhMGL1 and of the Michaelis complex.  PLP-enzyme (Lys205) imine 
bound to the active sites of the substrate-free chains is covered by a long α2*/α3* loop (Figs 1b,c and 2a; asterisk 
denotes the adjacent chain of the catalytic dimer) and accepts hydrogen bonds from amino acid residues con-
served across amino acid sequences of related PLP enzymes (Supplementary Fig. S1).

The PLP pyridine ring protonated at the N1 atom can form an ion pair with the COO− group of Asp180, and 
the average distance between the ion pair atoms is 2.72 Å (pertinent bond lengths, including standard deviations, 
are provided in Fig. 2a). There are potential hydrogen bonds between the PLP pyridine C3 position (O3) and 
Asn155 (3.01 Å), and between the PLP phosphate group and several residues in the PLP-binding domain (Gly83, 
Met84, Ser202 and Ser204) and the α2*/α3* loop (Tyr53* and Arg55*). These hydrogen bonds are observed in 
all structures determined in this study (Fig. 2a–h). A sulfate ion from the crystallization reagent interacts with 

Figure 1.  Structure of substrate-free EhMGL1. (a) Cartoon representation of the EhMGL1 homotetramer 
structure. A, B, C and D chains are colored in teal, deep green, yellow and pink, respectively. Two catalytic 
dimers are formed by A–D and B–C pairs. PLP-enzyme (Lys205) imine bound to each chain is shown as spheres 
with the color code C (white), N (blue), O (red) and P (orange). (b) Structure of the A chain. The N-terminal, 
PLP-binding and C-terminal domains are colored in light orange, teal and purple, respectively. The bound PLP-
enzyme (Lys205) imine is shown as in (a). The α2*/α3* loop from the D chain is represented as a pink cartoon 
and contributes to the formation of the active site of the A chain. (c) Stick representation of the active site of the 
A chain. The color code of PLP-enzyme (Lys205) imine is the same as in (a). Residues from the PLP-binding 
domain are colored in teal, and residues from the α2*/α3* loop of the D chain are colored in pink. Dashed lines 
indicate hydrogen bonds. Numbering of the nitrogen and carbon atoms of PLP is shown in the inset. The images 
were generated using PyMOL39.
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Figure 2.  Schematic drawings of the active sites with interatomic distances. (a) substrate-free form, (b) Michaelis 
complex, (c) intermediate 1a, (d) intermediate 1b, (e) intermediate 2, (f) intermediate 3, (g) intermediate 4a and 
an eliminated methanethiol, and (h) intermediate 4b. PLP and substrate moieties of the bound Schiff base are 
colored in blue and red, respectively. Double configurations about the Cβ–Cγ bond observed in intermediate 
4a are indicated as red solid (Z isomer) and dashed (E isomer) lines. All interactions in (a) and the important 
interactions in catalysis in (b–h) are indicated as black dotted lines. For intermediates with multiple determined 
structures, average interatomic distances (Å) are shown with their standard deviations in parentheses. The 
structure of each intermediate is shown in inset. The Hα atoms of intermediate 1a and 1b and the Hβ atom of 
intermediate 2 are shown as cyan-colored stick at their calculated positions. Electron densities contoured at 1.0σ 
and 2.0σ levels are shown as blue and purple cages, respectively. Dashed line indicates a hydrogen bond.
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Asn155, Lys205, Ser332 and Arg367, and probably promotes crystallization by stabilizing the active site structure 
of the substrate-free EhMGL1.

In the Michaelis complex (Fig. 2b) the α-carboxyl group of the bound methionine replaces the sulfate ion and 
accepts hydrogen bonds from the conserved Ser332 and Arg367, and these hydrogen bonds are probably impor-
tant for binding the methionine molecule to the active site. The methionine α-amino group is in close contact 
with the C4′=Nζ double bond of PLP-enzyme (Lys205) imine; the distance between the methionine α-amino 
group and the C4′ and Nζ atoms is 2.52 and 3.24 Å, respectively. The methionine α-amino group forms a hydro-
gen bond with the hydroxyl group of Tyr108. This hydroxyl group is involved in two hydrogen-bond networks, 
Tyr108 ··· Arg55*··· PLP PO4

2− and Tyr108 ··· Cys110 ··· Lys234*··· OH2, that respectively connect the methionine 
α-amino group to the PLP phosphate group and an outside water molecule. Note that the overlap of the p orbitals 
between the C4′=Nζ double bond and the pyridine ring of PLP-enzyme (Lys205) imine is poor, as shown by 
the C3–C4–C4′–Nζ dihedral angles calculated for the substrate-free enzyme (30.5°) and the Michaelis complex 
(52.4°) (Supplementary Table S3).

Intermediates 1a and 1b: conformers of PLP-methionine imine.  PLP-methionine imine, a 
Schiff base formed between PLP and methionine, is bound to the active sites of the 3aej-A, -B and -D chains 
(Supplementary Table S2) as either intermediate 1a (Fig. 2c) or 1b (Fig. 2d). The C3–C4–C4′=Nα dihedral angles 
of intermediates 1a (−101.8°) and 1b (−9.6°) (Supplementary Table S3) show that the pyridine ring and the plane 
described by the C4′, Nα and Cα atoms intersect approximately at right angles in intermediate 1a, whereas the 
three atoms lie almost on the same plane as the pyridine ring in intermediate 1b. The coplanar conformation of 
intermediate 1b results in the formation of an intramolecular hydrogen bond between the Nα and O3 atoms, and 
the p orbitals of the C4′=Nα double bond overlap with those of the pyridine ring. Both the hydrogen bond and 
the p orbital overlap make intermediate 1b more stable than intermediate 1a. Since the Nα atom of intermediate 
1a occupies approximately the same position as the methionine Nα atom of the Michaelis complex, intermediate 
1a would be produced first and then spontaneously converted into the energetically more favorable 1b by a rota-
tion of 92° about the C4–C4′ bond. Since this rotation is accompanied by a rotation of 90° about the Nα–Cα bond 
in the opposite direction (Supplementary Table S3), the hydrogen bonds of the methionine α-carboxyl group with 
Asn155, Ser332 and Arg367 observed in the Michaelis complex and intermediate 1a are preserved in intermediate 
1b and other intermediates (Fig. 2b–h).

Intermediates 2 and 3: PMP-α-ketomethionine imine and PMP-α,β-dehydromethionine imine.  
The C4–C4′ bond length of intermediate 2 (1.50 Å; Fig. 2e) agrees with a typical single bond length between 
aliphatic and aromatic carbon atoms (1.50 Å), and unlike intermediates 1a and 1b, the lengths of the C4′–Nα 
(1.31 Å) and Nα–Cα (1.38 Å) bonds are close to the average of a typical C–N single bond (1.47 Å) and a C=N 
double bond (1.26 Å). In addition, the planar disposition of the pyridine ring and the C4′, Nα and Cα atoms 
observed in intermediate 1b extends to the Cβ atom, as shown by the C3–C4–C4′–Nα (−11.6°), C4–C4′–Nα–Cα 
(−176.4°) and C4′–Nα–Cα–Cβ (3.9°) dihedral angles (Supplementary Table S3). These observations indicate that 
intermediate 2 corresponds to PMP-α-ketomethionine imine possessing a conjugated system extending from the 
pyridine ring to the p orbital of the Cα atom.

On the other hand, the C4′ atom of intermediate 3 (Fig. 2f ) is not involved in a conjugated system 
because of the single bond nature of the C4–C4′ (1.52 Å) and C4′–Nα (1.47 Å) bonds. In contrast, the partial 
double-bond nature of the Nα–Cα (1.36 Å) and Cα–Cβ (1.37 Å) bonds (Fig. 2f) suggests that the structure of 
intermediate 3 is represented by a resonance hybrid of the enamine form and the charge-separated ylide form 
of PMP-α,β-dehydromethionine imine resulting from the migration of the β-hydrogen atom of intermediate 
2 to the C4′ atom. Due to this proton migration, two conjugated systems of the pyridine ring and the enamine 
Nα–Cα–Cβ group are distinctly separated by a gap at the saturated C4′ atom, making the existence of a putative 
quinonoid structure for intermediate 3 unlikely. These resonance structures are illustrated in Supplementary 
Figure S2.

Intermediate 4: PLP-α,β-butenoic acid imine.  Intermediates 4a and 4b lack the γ-methylthio group, 
as shown by the |2Fo-Fc| electron density maps, and their structures are refined as PLP-α,β-butenoic acid imine 
with the s-cis geometry about the Cα=Cβ and C4′=Nα double bonds (Fig. 2g,h and Supplementary Table S3). In 
addition, the |2Fo-Fc| maps suggest that intermediate 4a adopts double E and Z configurations about the Cα=Cβ 
double bond, in contrast to the E configuration of intermediate 4b. It is noteworthy that residual electron density, 
probably representing the eliminated methanethiol molecule, is observed near the Cγ atom of the E isomer of 
intermediate 4a (Fig. 2g). The average B-factor of the methanethiol molecule (63 Å2) calculated for the refined 
model is about twice that of the cofactor and ligand (Supplementary Table S1).

Discussion
A series of crystal structures of EhMGL1, including the substrate-free form, Michaelis complex, and complexes 
with the reaction intermediates 1a, 1b, 2, 3, 4a and 4b, were determined. Based on the reasonable assumption 
that these intermediates were produced in the crystals by catalysis of crystalline EhMGL1 from the Michaelis 
complex, and thus represent snapshots of the γ-elimination reaction, we propose here the catalytic mechanism 
for this enzyme (Fig. 3).

Step 1: Conversion of the Michaelis complex to PLP-methionine imine.  It is conventionally 
assumed that at the initial stage of catalysis by MGL enzymes, the α-amino group of the methionine molecule 
in the Michaelis complex substitutes for the ε-amino group of PLP-enzyme (Lys205) imine via the tetrahedral 
diamine intermediate to give PLP-methionine imine1. Although the tetrahedral intermediate was not observed 
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in the obtained crystals, the structures of the Michaelis complex and intermediates 1a and 1b (Fig. 2b–d) clearly 
support the conventional mechanism.

When a methionine molecule binds to the active site of EhMGL1, the hydroxyl group of Tyr108 acts as a 
general base catalyst to remove a proton from the α-NH3

+ group of bound methionine molecule. In this 
reaction, it appears that the basicity of the Tyr108 hydroxyl group is enhanced by the hydrogen-bond net-
work Tyr108 ··· Arg55*··· PLP PO4

2−, and the removed proton is relayed to an outside water molecule via the 
hydrogen-bond network Tyr108 ··· Cys110 ··· Lys234*··· H2O. The hydrogen-bond networks Tyr108 ··· Arg55*··· PLP 
PO4

2− and Cys110 ··· Arg55*··· PLP PO4
2− appear to couple the acid-base equilibrium of the Tyr108 hydroxyl 

Figure 3.  Proposed catalytic reaction mechanism of MGL. Intermediates in parentheses are transient and 
intermediates in brackets are resonance hybrids. The hydrogen atom involved in suprafacial [1,5]-sigmatropy is 
shown as red. PLP and PMP denote pyridoxal 5′-phosphate and pyridoxamine 5′-phosphate, respectively.
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group with that of the Cys110 thiol group to promote the proton relay. The importance of the thiol group is 
demonstrated by the finding that the specific activities of the C110S and C110G mutant enzymes are 77% and 
40%, respectively, that of the wild type enzyme10.

Next, nucleophilic attack of the α-amino group of the methionine on the C4′ carbon of PLP-enzyme (Lys205) 
imine produces intermediate 1a via the transient tetrahedral diamine intermediate, and this intermediate spon-
taneously changes conformation to yield a more stable intermediate 1b. This nucleophilic attack appears to be 
promoted by the enhanced basicity of the α-amino group of the methionine and the positive charge on the 
C4′=Nζ double bond of PLP-enzyme (Lys205) imine. The former is achieved by the hydrogen-bond network Met 
α-NH2 ··· Tyr108 ··· Arg55*··· PLP PO4

2−, and the latter, as indicated by the C3–C4–C4′=Nζ dihedral angle (52.4°, 
Supplementary Table S3), by the lack of the overlap between p-orbitals of the C4′=Nζ double bond and the PLP 
pyridine ring. This lack of p orbital overlap prevents the positive charge on the C4′=Nζ bond from delocalizing 
into the PLP pyridine ring.

Step 2: Formation of PMP-α-ketomethionine imine.  Intermediate 2 is a resonance hybrid of two 
ylide forms, PLP-methionine imine carbanion and PMP-α-ketomethionine imine carbanion (Figs 2e and S2), 
and is generated by the removal of a proton from the allylic Cα atom of intermediate 1b. This reaction appears to 
be catalyzed by the ε-amino group of Lys205 released from PLP-enzyme (Lys205) imine in Step 1: it is essentially 
the sole functional group located close to the calculated position of the α-hydrogen atom in intermediate 1b 
(with a distance of 2.36 Å), and its basicity is enhanced by the hydrogen-bond network Lys205 ··· Tyr53*··· PLP 
PO4

2− (Fig. 2d). In addition, the Cα–H bond of intermediate 1b is approximately perpendicular to the plane 
containing the pyridine ring and the C4′, Nα and Cα atoms (Fig. 2d). This orientation is ideal for the removal of 
the Cα proton as a consequence of the overlap between the Cα–H bond and the p-orbitals of the C4′=Nα bond.

For the base-induced abstraction of the Cα proton from intermediate 1b, the formation of a pyridoxal 
p-quinoid, often referred to as a quinonoid, has been assumed to represent intermediate 2 in which a conjugated 
system could stabilize the negative charge on the Cα atom by a resonance effect14, 15. However, the single-bond 
nature of the C4′–C4 bond and the partial double-bond nature of the Cα–Nα and Nα–C4′ bonds of interme-
diate 2 (Fig. 2e) are not consistent with the structure of a quinonoid. In addition, it is difficult to obtain crucial 
evidence about the existence of a quinonoid by the measurement of UV/visible spectra, because the absorption 
of a quinonoid appears at various wavelengths such as 480 nm (threonine synthase)15, 500 nm (tyrosine phenol 
lyase)16, and 550 nm (MGL)17, which can also vary as the overlap of absorptions arising from a complex mixture 
of intermediates depicted by a resonance hybrid and in equilibrium between two or more isomers. Even without 
a resonance effect due to the quinonoid structure, positive charge of the pyridinium group may help stabilize the 
negative charge through its inductive electron-withdrawing property, as well as the share of a negative charge 
with the Cα and C4′ atoms. This view is consistent with the report that some PLP dependent enzymes require the 
electrophilicity of a protonated pyridine ring18.

Step 3: Proton migration to PMP-α,β-dehydromethionine imine and elimination of methanethiol.  
The PMP-α-keto imine structure of intermediate 2 is a resonance hybrid of two ylide forms (Fig. 3). Because the 
CH3S- group is a poor leaving group, the subsequent γ-elimination should occur by an E1cB mechanism that 
requires the formation of a carbanion at the Cβ position to expel the CH3S- group. However, a strong base appears 
to be unnecessary to remove the Cβ-H of intermediate 2: the Nα+=Cα–Cβ–H moiety in intermediate 2 is the 
conjugate acid of the base Nα+=Cα–Cβ− in intermediate 3, and the resulting carbanion form of intermediate 3 is 
stabilized by resonance. If necessary, a proton can transfer from the ε-amino group of Lys205 located close to the 
Cβ carbon atom (Fig. 2e), as illustrated in Supplementary Figure S2.

Once the conditions required for the E1cB mechanism are satisfied, the reaction can proceed almost regard-
less of the geometry of intermediate 3. In fact, the Hβ–Cβ–Cγ–Sδ dihedral angles of six chains of intermediate 2 
range from 111° to 165°, and this range significantly deviates from the anti periplanar geometry (180°) required 
for the reaction to proceed by an E2 mechanism. In the E1cB mechanism, the rate-determining step should be 
the breakage of the Xδ–Cγ bond, and the relative rate should follow the increasing order of leaving group ability: 
CH3O− < CH3S− < CH3Se− 19. The kcat values measured for the wild type enzyme significantly depend on the 
variation of the leaving Cε–Xδ groups, such that 0.55 s−1 (CH3Se−) < 1.19 s−1 (CH3O−) < 1.82 s−1 (CH3S−), as 
shown in Table 1. It is notable that the CH3Se group, which has the highest leaving group ability, was removed 
most slowly among these three groups. Such inconsistency between leaving-group ability and reactivity suggests 
that cleavage of the Xδ–Cγ bond requires the X-atom to be protonated. Because a poor leaving group can be a 
strong base, the CH3O oxygen atom is protonated preferentially amongst O, S and Se atoms, thus enhancing the 
ability of the group to depart from the Cγ carbon atom. In addition, substituting the S-CH3 group with the S-CF3 
group resulted in lowering the kcat value by about 50% (Table 1), probably due to the reduced basicity of the S 
atom caused by the strong electron-withdrawing effect of the CF3 group. The OH group of Tyr108 most likely acts 
as an acid to protonate the leaving group at the closest distance of 3.18 Å to the Sγ atom (Fig. 2f). The importance 
of the OH group of Tyr108 is supported by the finding that the Y108F mutant of EhMGL1 is about 15-times less 
active than the wild type enzyme in terms of the kcat value toward methionine (Table 1). Note that the OH group 
of Tyr108 could act as an acid to protonate the X atom (X=O, S, or Se) of intermediate 3 in Step 3 and that its con-
jugate base (phenolate O−) is capable of deprotonating the ε-NH3

+ group of Lys205, which is bound to abstract 
the Cα-proton of methionine in Step 2 and to facilitate the release of 2-iminobutanoate from intermediate 4b 
in Step 5 (Fig. 3). It is therefore difficult to interpret the rate-enhancing effect of Tyr108 without allowing for the 
basicity of its anionic form. That is, the kcat value of EhMGL1 catalysis consisting of multiple chemical processes 
may not be determined solely by the rate at a certain stage of the reaction. The more impressive reduction of kcat by 
910 fold has been found for the Y114F mutant of P. putida MGL20. Since methanethiolate is a potent nucleophile, 
protonation of its S atom could prevent backward Michael addition.
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Step 4: Suprafacial [1,5]-hydrogen sigmatropy leading to PLP-α,β-butenoic acid imine.  The 
elimination of methanethiol from intermediate 3 gives PMP-α-keto-β,γ-butenoic acid imine, contain-
ing the conjugated C4′–Nα=Cα–Cβ=Cγ structure (Fig. 3). However, the relevant intermediate contained 
C4′=Nα–Cα=Cβ–Cγ, corresponding to PLP-α,β-butenoic acid imine (Fig. 2g and h). This suggests that 
PMP-α-keto-β,γ-butenoic acid imine rapidly undergoes migration of a hydrogen atom from the C4′ atom to 
the Cγ atom, accompanied by the oxidation of PMP-imine to PLP-imine. The refined crystal structures suggest 
the existence of the E and Z isomers in intermediate 4a and the E isomer in intermediate 4b with respect to the 
configuration about the Cα=Cβ double bond, as described in the Results section. Note that residual electron 
density of methanethiol eliminated from intermediate 3 appeared very close to that of the γ-methyl group of 
intermediate 4a (E configuration), implying that the γ-methyl group of intermediate 4a is oriented away from 
methanethiol to avoid steric hindrance (Fig. 2g). Assuming that the conformation of the precursor is similar to 
that of intermediate 4a in the Z configuration, the C4′–Nα=Cα–Cβ=Cγ portion of the precursor would adopt 
the s-cis conformation, in which the distance between the Cγ and C4′ atoms is 2.69 Å (Fig. 2g). This distance is 
short enough for the direct migration of a hydrogen atom.

On these grounds, we propose that this reaction results from suprafacial [1,5]-hydrogen sigmatropy repre-
sented by a [σ2 s + π4 s] process in a non-enzymatic pericyclic reaction (Fig. 4a), which is a pericyclic reaction 
involving a cyclic transition state. In this reaction, scission of the C4′–H bond occurs in concert with formation 
of the Cγ–H bond according to the strict rules of conservation of orbital symmetry21. After the hydrogen transfer, 
intermediate 4a with the Z configuration isomerizes to the more stable intermediate 4b with the E configuration 
because of steric hindrance between the C4′ and Cγ atoms, which makes the backward [1,5]-hydrogen shift less 
probable. This mechanism can also eliminate a difficulty arising when considering a prototropy process because 

Substrate  
l-X-CH2CH(NH3

+)CO2
−  

X=
KM  

(mM)
kcat  

(s−1)
kcat/KM 

(mM−1s−1)

Wild type

CH3S* 0.61 ± 0.06 1.82 ± 0.11 2.99 ± 0.34

CF3S* 0.10 ± 0.004 0.81 ± 0.08 8.02 ± 0.83

CH3O 2.50 ± 0.24 1.04 ± 0.35 0.42 ± 0.15

CH3Se 0.41 ± 0.07 0.55 ± 0.10 1.33 ± 0.34

Y108F mutant

CH3S* 1.46 ± 0.12 0.12 ± 0.01 0.08 ± 0.01

CF3S* 0.57 ± 0.02 2.22 ± 0.08 3.88 ± 0.18

CH3O 4.60 ± 0.37 0.10 ± 0.01 0.02 ± 0.002

CH3Se 0.74 ± 0.10 0.06 ± 0.004 0.08 ± 0.01

Table 1.  Kinetic parameters toward methionine and methionine analogues. Values are means ± S.D. (n = 5 or 
6). *These values are referred from our previous study10.

Figure 4.  The suprafacial [1,5]-hydrogen shift in a conjugated ene-imine system of PMP-bound butenoate.  
(a) The migration of a hydrogen atom at C4′ to Nα and Cγ is indicated by dashed lines. (b) Schematic diagram 
of the migration of a hydrogen atom. The [1,3]-hydrogen shift from C4′ to Cα is symmetry forbidden.
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the Cγ carbon of the ene-imine Nα=Cα–Cβ=Cγ system in cystathionine γ-synthase (CGS) does not react with 
a proton but with a nucleophile during Michael addition9, 22.

Concerning the stereochemistry of intermediate 4, we note that 2-amino-(Z)-3-pentenoate acts as an irre-
versible inhibitor but that the E isomer is converted to 2-ketopentanoic acid17. This critical difference between 
the Z and E isomers can be rationalized by a pericyclic reaction involving a [1,5]-hydrogen shift, which requires 
the formation of the cyclic transition state, similar to the structure adopted by the E isomer in the enzyme. 
Consequently, the corresponding cyclic intermediate is less likely to arise from the Z isomer due to steric inter-
ference caused by the δ-methyl group. Unlike an acid- or base-catalyzed proton transfer, such as the exchange of 
a proton between the C4′ and the Cα positions in Step 1 and Step 2, the corresponding [1,3]-hydrogen shift by 
way of a suprafacial transition state is strictly forbidden (Fig. 4b). Therefore, the irreversible inhibition of MGL 
caused specifically by the 3-(Z)-isomer of 2-amino-3-pentenoate represents one of the most crucial phenomena 
supporting the preference of the symmetry-allowed [1,5]-hydrogen shift over views based on acid-base catalysis. 
Note that α-vinylglycine has been shown to be converted to α-ketobutyric acid by MGL23, CGS24, threonine syn-
thase15, and even in a non-enzymatic model compound25, probably through intermediates similar to the conju-
gated ene-imine Nα=Cα–Cβ=Cγ system arising from intermediate 3 by elimination. All of these PLP-enzymes 
could have common features with EhMGL1, and these features provide the substrate with an environment ena-
bling the conjugate system of an intermediate to adopt a cyclic conformation as a transition state during the 
concerted reaction.

Hydrogen/deuterium (H/D) exchange experiments are often employed to elucidate the reaction mechanism 
accompanying a shift of proton, hydride, or hydrogen atom. In MGL, a deuterium atom was found incorporated 
into the γ-position of 2-oxobutanoate from solvent D2O, implying an ionic process involving protonation of the 
γ-carbon atom of PMP-α-keto-β,γ-butenoic acid imine (see Fig. 3 between intermediate 3 and intermediate 4) 
might occur26. However, this result does not seem to exclude the possibility of [1,5]-hydrogen shift, because at 
least one of the two hydrogen atoms at the C4′ position of PMP in intermediate 3 has been exchanged with deu-
terium originated from D2O. Obviously, the more elaborated experimental studies are necessary to confirm the 
present reaction mechanism.

Several possible pericyclic enzymatic reactions include the [3,3]-sigmatropy (the Claisen rearrangement) in 
chorismate mutase (CM)27, the [1,5]-hydrogen shift in isochorismate pyruvate lyase28, 29, and the [1,5]-sigmatropic 
shift of the methyl group in precorrin-8x methyl mutase (CobH)30. The reaction mechanisms of CM and CobH 
have been elucidated on the basis of X-ray crystallographic studies27, 30. The most distinguishing feature of a 
concerted pericyclic reaction is that it does not require catalytic groups to promote the reaction. In agreement 
with this feature, there were no functional groups such as an acid or a base in the active site of CM. However, the 
[1,5]-sigmatropy in CobH is enhanced by protonation of the nitrogen atom in the diene moiety30. We therefore 
expect that similar protonation at the Nα-imino nitrogen in the possible precursor of intermediate 4 could facil-
itate the [1,5]-hydrogen shift.

Step 5: Regeneration of PLP-bound enzyme with the release of α-ketobutyric acid.  This step 
is essentially the reversal of Step 1 concerning the conversion of the Michaelis complex to intermediate 1b. The 
ε-amino group of Lys205 attacks the imino C4′ carbon atom, replacing the Nα atom of PLP-2-aminobut-2-enoate 
imine. 2-Aminobut-2-enoate released from the enzyme can isomerize spontaneously to 2-iminobutanoate, which 
is highly unstable in aqueous solution, followed by its hydrolysis to generate α-ketobutyrate and ammonia19.

Concluding Remarks.  In this study, we followed the multi-step reactions of a PLP-dependent enzyme, 
methionine γ-lyase, by matching the steps with the relevant snapshots of intermediate structures elucidated by 
X-ray crystallography. The proposed reaction mechanism is summarized in Fig. 3. This mechanism is less com-
plex than anticipated from the multiplicity of reactions involved and assuming only acid-base catalysis by Lys205 
and Tyr108. These catalytic residues are responsible for the consecutive migration of a proton associated with 
the conversion of PLP-methionine imine to the corresponding α,β-ene-imine, which is a direct precursor to the 
γ-elimination reaction (Fig. 3). The commitment of the enzyme is much less pronounced in Step 4; the enzyme 
serves only to provide the reactant with a space allowing the ene-imine C4′–Nα=Cα–Cβ=Cγ structure to adopt 
the s-cis conformation, which is prerequisite for the symmetry-allowed [1,5]-hydrogen shift. Elucidating the 
reaction mechanism of an enzyme using conventional methods in enzymology is very difficult, especially when 
the reaction requires virtually no catalytic group in the case of a concerted reaction. Such a difficulty should be 
alleviated by careful examination of the stereochemistry associated with progressive changes in the protein-ligand 
structure. The present catalytic mechanism of MGL can be corroborated by the analysis of X-ray crystallographic 
snapshots of many other PLP-dependent γ-lyases and γ-synthases. The structures of intermediates, along with 
the reaction mechanism, could possibly be regarded as seeds for rational design of medicines targeting MGL.

Methods
Expression, purification and crystallization of EhMGL1.  The recombinant E. histolytica MGL 
(EhMGL1), with several silent mutations to prevent fortuitous internal translation, was expressed and purified 
as described previously10. EhMGL1 was crystallized at 277 K using the hanging-drop vapor diffusion method11 
with minor modifications. A 0.5 μl protein droplet [20 mg/ml in 10 mM HEPES buffer (pH 7.4)] mixed with an 
equal volume of the reservoir solution [1.8 M ammonium sulfate, 0.1 M cacodylate buffer (pH 6.6), 0.1 M lith-
ium citrate, 100 μM PLP] was equilibrated against 100 μl of the reservoir solution. For data collection at 100 K, 
a crystal mounted in a nylon loop was briefly soaked in cryo-protectant solution [2.2 M ammonium sulfate, 
0.1 M cacodylate buffer (pH 6.2), 0.1 M lithium citrate, 100 μM PLP and 20% (w/v) glycerol] and frozen in liquid 
nitrogen. Crystals of EhMGL1 complexed with reaction intermediates were prepared by soaking crystals in the 
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cryo-protectant solution supplemented with 50 mM l-methionine for 30–120 s at 293 K, then freezing in liquid 
nitrogen. Soaked methionine molecules were converted into reaction intermediates by catalysis by crystalline 
EhMGL1.

X-ray diffraction data collection and structure determination.  X-ray diffraction experiments were 
carried out at liquid nitrogen temperature on the following five beamlines: AR-NW12A (ADSC Quantum 210 
CCD detector, 3acz and 3aej), BL5A (ADSC Quantum 315 CCD detector, 3ael) and BL17A (ADSC Quantum 270 
CCD detector, 3aem and 3aen) at Photon Factory (Tsukuba, Japan); BL41XU (MAR 225 CCD detector, 3aeo) and 
BL44XU (Bruker DIP-6040 image-plate detector, 3aep) at SPring-8 (Harima, Japan). The applied detector and 
PDB entries are noted in parentheses. All datasets were integrated and scaled using HKL200031. Statistics of the 
data collection and processing are shown in Supplementary Table S1. The structure of substrate-free EhMGL1 
was determined by molecular replacement using the structure of P. putida MGL12 as a search model using the 
Molrep program32, as implemented within the CCP4 package33. Structures of methionine-soaked crystals were 
solved by molecular replacement using the structure of substrate-free EhMGL1 (3acz). For each crystal form, the 
initial stage of refinement was carried out using the Refmac5 program34 for a model without the Lys205 side chain, 
PLP cofactor, or methionine molecule. After convergence, the Lys205 side chain, PLP cofactor, and methionine 
or PLP-methionine imine were modeled into the residual electron densities observed in |2Fo-Fc| and |Fo-Fc| maps. 
Further refinement using Refmac5 and manual model correction using Coot35 based on the |2Fo-Fc| map were 
repeated, and six crystal structures of EhMGL1 tetramer were finally determined using the TLS-refinement pro-
tocol in Refmac536. Refinement statistics for all models are summarized in Supplementary Table S1.

All crystal structures reported in this study are similar to each other, as indicated by the root-mean-square 
(r.m.s.) deviations of the Cα positions: 0.08–0.34 Å calculated between protomers in each tetramer, and 0.09–
0.24 Å between tetramers. The favored regions, allowed regions, and outliers on the Ramachandran plot (%) 
calculated by RAMPAGE37 are respectively as follows: 98.4, 1.2, 0.3 (3acz); 98.2, 1.5, 0.3, (3aej); 98.1, 1.4, 0.5 (3ael); 
97.8, 1.7, 0.5, (3aem); 98.0, 1.4, 0.6 (3aen); 97.5, 1.8, 0.7 (3aeo), 97.8, 1.6, 0.6 (3aep).

Measurement of enzymological kinetic parameters of MGL.  The enzymatic activity of EhMGL1 was 
measured for the production of α-keto acid10. The reaction mixture containing 100 mM phosphate buffer (pH 
7.0), 1 mM DTT, 20 μM PLP, and the enzyme (6.25 or 12.5 μg/ml of wild type, or 100 μg/ml of Y108F mutant) 
was incubated with various concentrations of substrates for 10 min at 37 °C. After terminating the reaction by 
adding trichloroacetic acid (5%), the released α-ketobutyrate was reacted with 3-methyl-2-benzothiazolinone 
hydrazone. The amount of the azine derivatives generated was measured by absorbance at 320 nm, which was 
calibrated with the standard solution of sodium 2-oxobutyrate38. The kinetic parameters were estimated using 
Hanes–Woolf plots.

Data availability.  The crystallographic data collection and refinement statistics, assignment of the interme-
diates in each chain, dihedral angles, alignment of protein sequences, and resonance structures in intermediate 2 
and 3 are available in the online supplementary information.
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