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Background. Nearly half of patients with prostate cancer will develop metastasis. Immunotherapy is currently a promising
strategy for treating metastatic prostate cancer. -is study aimed to construct an immune subtyping system and provide a
more comprehensive understanding of tumor microenvironment. Methods. Data were downloaded from TCGA database
and cBioPortal database. Consensus clustering was used to identify immune subtypes. Immune features were scored by
ESTIMATE and CIBERSORT. Efficacy of different subtypes in immunotherapy was predicted by TIDE tool. Immune
landscape was delineated through “monocle.” Coexpressed gene modules were identified by weighted correlation network
analysis. Univariate Cox regression analysis and LASSO analysis were applied to construct a prognostic model. Results. Four
immune subtypes (IS1 to IS4) were identified. Prognosis, mutation patterns, expression of immune genes, immune
biomarkers, immunohistochemical biomarkers, and prediction efficacy of immunotherapy were significantly different
among four immune subtypes. Five coexpressed gene modules were identified and an 11-gene prognostic model was
constructed based on the modules. Conclusions. -e study developed a novel immune subtyping system and an 11-gene
prognostic model of prostate cancer, which could guide personalized treatment and immunotherapy for patients with
prostate cancer.

1. Introduction

Prostate cancer (PCa) is a commonly diagnosed male ma-
lignancy, which accounted for 10% of cancer-caused deaths
[1]. Traditional therapies such as androgen depravation
therapy (ADT), radiotherapy, and radical prostatectomy are
usually applied treatment options for PCa patients, but not
all patients will develop a positive prognosis. Over 40% of
PCa patients with prostatectomy will experience disease

recurrence [2]. ADT is the mainstay of managing metastatic
PCa, despite an initial active response during the treatment,
metastatic castration resistant prostate cancer (mCRPC) still
occurs to a majority of patients [3].

Immunotherapy has been greatly improved in treating
various cancers in the last decades, especially in the man-
agement of renal cell carcinoma, melanoma, and lung cancer
[4–6]. Particularly, immune checkpoint inhibitors have been
reported to possess impressive efficacy. However, only a
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small number of PCa show positive response to immuno-
therapy. Evidence proved that tumor microenvironment
(TME) plays an essential role in each process of tumori-
genesis, driving the outcome of prognosis [7]. -e different
components of TME can result in differential efficacy of
immunotherapy. Although biomarkers have been widely
explored to predict PCa prognosis [8–10], a guide tool for
predicting the response of immunotherapy has not been
developed.

In the present study, we aimed to comprehensively
characterize an immune signature for PCa. We proposed a
novel molecular subtyping system based on immune genes
to predict the efficacy of immunotherapy. An immune
landscape was delineated to complementary the immune
subtyping system, and a prognostic model was constructed
to predict the overall survival (OS) of PCa patients. Analysis
was performed according to workflow diagram (Supple-
mentary Figure S1).

2. Materials and Methods

2.1. Data Acquisition. TCGA-PRAD dataset including
RNA-Seq and CNV data was downloaded from TCGA
database (https://portal.gdc.cancer.gov/). MSKCC-PRAD
dataset (MSKCC, Cancer Cell 2010) was downloaded from
cBioPortal database (https://www.cbioportal.org/). TCGA-
PRAD and MSKCC-PRAD were defined as training dataset
and validation dataset, respectively. A total of 1989 immune-
related genes including immune cell-specific genes, genes of
costimulatory and coinhibitory molecules, genes of cyto-
kines and cytokine receptors, genes for antigen processing
and presentation, and other immune-related genes (Sup-
plementary Table S1) were collected by extensively reviewing
previous studies. In the below strategies, we followed the
methods of Xia et al. [11].

2.2. Data Preprocessing. In TCGA-PRAD dataset, samples
without survival data were excluded, while those whose
transcripts per million (TPM)� 0 were in more than 50%
samples were excluded. Ensembl gene ID was transferred to
gene symbol. 495 samples and 20088 genes in TCGA-PRAD
dataset were retained (Supplementary Table S2). InMSKCC-
PRAD dataset, samples without survival data and probes
without value were also excluded. Probes were matched to
gene symbol, but one probe mapped to multiple genes was
excluded. Median value of expression data was calculated if
multiple probes mapped to one gene. Finally, 63 samples and
22486 genes were included in this study (Supplementary
Table S3).

2.3. Identification of Immune Subtypes.
ConsensusClusterPlus R package was performed to
cluster immune-related genes from TCGA-PRAD dataset
[12]. Partitioning around medoids (PAM) algorithm and
Canberra distance was employed in consensus clustering.
80% of the total samples in TCGA-PRAD dataset were
included in each time of bootstrap, which was imple-
mented for 500 times. Groups (k) were set from 2 to 10,

and the most optimized clusters were determined by
cumulative distribution function (CDF) curve and con-
sensus CDF. Kaplan–Meier survival curve and log-rank
test were used to evaluate the performance of the immune
subtyping system.

2.4. Immune Landscape of PCa. Monocle is an unsupervised
algorithm and has been previously used to reduce dimen-
sionality and construct a two-dimensional landscape [13].
-e algorithm ofMonocle represented the expression data of
each sample as a point in a high-dimensional Euclidean
space, allowing each sample to be casted as a point in the
two-dimensional graph. Finally, a tree structure manifesting
the immune features of each sample was established by
Monocle.

2.5. Identification of Coexpressed Gene Modules. Weighted
correlation network analysis (WGCNA) R package was
performed to identify immune-related gene modules [14].
-e most optimized cluster was defined with a condition of
the negative relation between log(k) and log(p(k)), R2> 0.85,
and soft threshold (power)� 12. Topological overlap matrix
(TOM) was established based on adjacency matrix. We
applied average-linkage hierarchical clustering and dynamic
branch cutting to identify co-expression modules that
contained at least 30 genes.

2.6. Gene Enrichment Analysis. Single sample gene set en-
richment analysis (ssGSEA) in the GSVA R package was
implemented to score immune cells [15]. ANOVA was
performed to assess the relation between immune subtypes
and 56 types of immune-related biomarkers [16]. Enriched
biological processes in gene ontology (GO) terms of six
immune-related gene modules were annotated by David
(v6.8) [17].

2.7. Identification of Prognostic Model. Univariate Cox re-
gression analysis was conducted to identify gene modules
and prognostic genes significantly correlated with OS in
TCGA-PRAD dataset. Least absolute shrinkage and selec-
tion operator (LASSO) regression in the glmnet R package
and stepAIC in the MASS R package were applied to reduce
the quantity of prognostic genes and optimize the prognostic
model [18, 19]. Risk score was defined as coefficient 1∗ gene
1 expression + coefficient 2∗ gene 2 expression + · · ·+ co-
efficient n∗ gene n expression. Kaplan–Meier survival curve
and log-rank test were used to evaluate the model
performance.

3. Results

3.1. Construction and Validation of Immune Subtypes of
Prostate Cancer. Gene expression profiles of 1909 immune-
related genes in TCGA-PRAD dataset were extracted ini-
tially. After conducting univariate Cox regression analysis, a
total of 534 immune-related genes were found to be sig-
nificantly associated with OS. Gene expression profiles of
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these 534 genes were then used to determine molecular
subtypes. According to the algorithm of consensus clus-
tering, the optimal cluster was defined by cluster numbers
(k) from 2 to 10. -e most stable cluster when k� 4
(Figures 1(a) and 1(b)) was delineated by CDF and CDF
delta area curves, and four immune subtypes (IS, IS1 to IS4)
were constructed (Figure 1(c)). Survival analysis revealed
that the four immune subtypes varied in OS; specifically, IS4
group had the favorable prognosis, while IS1 group had the
worst prognosis (p< 0.0001, Figure 1(d)). Moreover, we also
described the distribution of four immune subtypes in the
conventional TNM staging system within TCGA-PRAD
dataset. -e analysis showed that the proportion of IS4
group decreased from T1 to T4, N0 to N1, and M0 to M1,
while the proportion of IS1 group increased oppositely,
which was consistent with the tendency of disease pro-
gression (Figures 1(e)–1(g)). In addition, a significant dif-
ference of distribution of immune subtypes was also
observed between age <60 and age ≥60 groups (Figure 1(h)).
To further verify the robustness of this immune subtyping
system, another independent dataset, MKSCC-PRAD
dataset, was classified into four groups. Similarly, significant
difference was shown within four immune subtypes, and IS4
group still showed the best OS (Figure 1(i)).

3.2. Tumor Mutation Burden and Mutation Patterns of Four
Immune Subtypes. In TCGA-PRAD dataset, mutect2 soft-
ware was employed to calculate tumor mutation burden
(TMB). IS4 group showed the lowest TMB and number of
mutated genes when compared with other groups (p< 0.001,
Figures 2(a) and 2(b)). We further assessed the mutation
patterns of each group. Copy number alternations, especially
deletions, were the majority mutations in all groups
(Figure 2(c)). Reasonably, IS1 group comprised the largest
amount of mutations, and IS4 group had the least mutations.
-e top 10 mutated genes were TP53, ACAP1, AP3B1,
NXPE4, CHRNA6, APC, AP1G1, ALX4, NCOR2, and
TIAM2. -e mutation frequencies of TP53, NXPE4, and
CHRNA6 were the highest in IS1 group, while ACAP1,
AP3B1, APC, AP1G, 1NCOR2, and ADPRM genes showed
themostmutations in IS2 group (p< 0.001). Interestingly, the
frequencies of copy number variations of BTNL2, AGPAT1,
APOM, ATP6V1G2-DDX39B, C6orf136, CCDC154, and
CFB genes were greatly higher than other groups (p< 0.001).

3.3. Differential Expression of Chemokines, Chemokine Re-
ceptors, and Immune Checkpoints among Four Immune
Subtypes. Chemokines together with cytokines play a crit-
ical role in TME. Chemokine receptors secreted by tumor
cells are involved in tumor proliferation and metastasis and
can serve as biomarkers of immunotherapy. -erefore, we
evaluated the expression of chemokines and chemokine
receptors and compared in the four immune subtypes. In
TCGA-PRAD dataset, a total of 39 types of chemokines were
expressed; noticeably, the expression level of each gene
varied significantly among four immune subtypes (p< 0.01,
Figure 3(a)), and the expression of chemokine receptors was
also differential among the four groups (p< 0.01,

Figure 3(b)). In MKSCC-PRAD dataset, 38 out of 41 che-
mokines expressed differentially, and the expression of
chemokine receptors was differential among the four groups
(p< 0.05, Figures 3(c) and 3(d)). Furthermore, the expres-
sion level of immune checkpoints was calculated. Among 47
immune checkpoints, 46 genes expressed differentially in
TCGA-PRAD dataset, and 40 genes expressed differentially
in MKSCC-PRAD dataset (p< 0.05, Figures 3(e) and 3(f )).
-ese results supported the fact that the expression of
chemokines, chemokine receptors, and immune checkpoints
was different among IS1, IS2, IS3, and IS4 groups.

3.4. Differential Expression of PCa Immunohistochemical
Biomarkers. Immunohistochemistry is commonly used in
biopsy, and prostate-specific antigen (PSA) is one of the
most popularly performed tests in PCa. To examine
whether there was a correlation between immune sub-
types and PCa immunohistochemical biomarkers, we
incorporated a series of biomarkers currently used from
Abcam website (https://www.abcam.cn/cancer/). In both
TCGA-PRAD and MKSCC-PRAD datasets, significant
expression difference of biomarkers among IS1, IS2, IS3,
and IS4 groups was detected. -ere was no difference of
FOLH1 and ERG in MKSCC-PRAD dataset, but the
remaining biomarkers were all differentially expressed
among the four groups (Figure 4).

3.5. Immune Features of Four Immune Subtypes. To inves-
tigate whether there was immune heterogeneity among the
four immune subtypes, ESTIMATE and CIBERSORT tools
were applied to score the samples in TCGA-PRAD and
MKSCC-PRAD datasets. -e enrichment score of the two
datasets significantly varied among the four immune sub-
types (Figures 5(a)–5(d)). In TCGA-PRAD dataset, IS1
group had the highest ESTIMATE score, but IS2 group had
the lowest ESTIMATE score (p< 0.0001, Figure 5(a)). In
MKSCC-PRAD dataset, IS2 group had the highest ESTI-
MATE score, but IS3 group had the lowest ESTIMATE score
(p< 0.0001, Figure 5(c)). 22 types of immune cells were
scored by CIBERSORT tool. In the two datasets, IS4 group
exhibited a high enrichment score in plasma cells, macro-
phages M0, and resting mast cells, while IS1 group showed a
high score in CD8+ Tcells and regulatory Tcells (p< 0.0001,
Figures 5(b) and 5(d)).

A pan-cancer research classified cancers into six immune
subtypes C1 to C6 based on IFN-c, TGF-β,
macrophage, lymphocyte, and wound healing, and PCa was
stratified into C1 to C4 four groups [16]. Reasoning that the
same TCGA-PRAD dataset was used, a comparison between
C1 to C4 groups and IS1 to IS4 groups was conducted in this
study. A significant difference of C1 to C4 distribution was
observed from IS1 to IS4 groups. C2 group mostly accu-
mulated in IS1 group, and a majority of C1 and C4 groups
were in IS2 group (p< 0.05, Figure 5(e)). Moreover, we
evaluated the correlation between IS1 to IS4 groups and
immune biomarkers from the literature [16]. A total of 56
immune biomarkers were included, and 38 of them had
differential enrichment score among the four immune
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Figure 1: Continued.
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Figure 1: Four immune subtypes of PCa and its relation with clinical features. (a) CDF curve containing cluster numbers k from 2 to 10.
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subtypes (FDR< 0.01, p< 0.05, Figure 5(f)). A majority of
immune biomarkers were enriched in IS1 group, especially
leukocyte fraction, macrophage regulation, lymphocyte in-
filtration, IFN-c response, TCR Shannon, TCR richness,
dendritic cells and lymphocytes; however, these biomarker
were less enriched in IS2 group (p< 0.01, Figure 5(f )).

3.6. /e Differential Performance of Immunotherapy within
Four Immune Subtypes. We then analyzed the immuno-
therapeutic performance of IS1 to IS4 using TIDE software
(http://tide.dfci.harvard.edu/). A higher TIDE score repre-
sents higher possibility of immune escape, indicating less
benefit from immunotherapy. IS1 and IS3 groups showed
higher TIDE score than IS2 and IS4 groups, indicating lower

effectiveness of immunotherapy of IS1 and IS3 groups
(p � 6.5e − 12, Figure 6(a)). In addition, we also calculated
the scores of Tcell dysfunction and Tcell exclusion, as shown
in Figures 6(b) and 6(c), respectively. T cell dysfunction was
the strongest in IS1 group, and this was correlated with
unfavorable survival, although its T cell exclusion score was
the lowest. Immune response was significantly different
among these immune subtypes, showing the worst immu-
notherapeutic efficacy in IS3 group and the optimal immune
response in IS2 group (Figure 6(d)).

3.7. An Immune Landscape of PCa and an Extension for
Immune Subtyping System. To further examine the immune
features and subtypes of PCa, we applied a reduced
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Figure 3: -e differential expression of chemokines, chemokine receptors, and immune checkpoints among four immune subtypes. (a-b)
-e expression of chemokines (a) and chemokine receptors (b) in TCGA-PRAD dataset. (c-d) -e expression of chemokines (c) and
chemokine receptors (d) in MKSCC-PRAD dataset. (e-f ) -e expression of total 47 immune checkpoints in TCGA-PRAD dataset (e) and
MKSCC-PRAD dataset (f ). ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, and ∗∗∗p< 0.001. ns: no significance.
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Figure 4:-e differential expression of PCa immunohistochemical biomarkers in TCGA-PRAD dataset (a) andMKSCC-PRAD dataset (b).
ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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Figure 5: Differential immune features of immune subtypes. (a-b) Immune features of four immune subtypes scored by ESTIMATE (a) and
CIBERSORT (b) tools in TCGA-PRAD dataset. (c-d) Immune features of four immune subtypes scored by ESTIMATE (c) and CIBERSORT
(d) tools in MKSCC-PRAD dataset. (e) -e distribution of C1 to C4 groups in IS1 to IS4 groups. (f ) 38 immune biomarkers significantly
varied in IS1 to IS4 groups. ANOVA was performed. ∗p< 0.05, ∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance. ?Low
expression cannot be calculated.
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dimensional method where each sample was casted as a point
in a two-dimensional space in a latent tree structure. Com-
ponent 1 and component 2 were two independent immune-
related gene sets generated by principle component analysis.
An immune landscape of PCa was constructed, and four
immune subtypes were labeled with different colors
(Figure 7(a)). Next, we assessed the correlation between two
components and immune biomarkers. Component 1 was
found to be negatively related to leukocyte fraction, mac-
rophage regulation, lymphocyte infiltration signature score,
TGF-β response, TCR Shannon, and TCR richness, which

was consistent with the previous result (|R|> 0.5, p< 0.001,
Figures 7(b) and 5(f)). Component 2 was significantly as-
sociated with wound healing, T cells follicular helper, IFN-
gamma response, and Tcells CD4memory resting (p< 0.001,
Figure 7(c)). According to the immune landscape, IS1 and IS3
groups could be further subdivided into IS1A and IS1B, IS3A
and IS3B. -e immune features of subgroups showed subtle
difference between two groups scored by CIBERSORT, and
differential enrichment score was calculated by ESTIMATE
(Figure 7(d)). Additionally, survival analysis revealed that
three branches of the tree structure showed differences in OS
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Figure 6: Prediction of immunotherapeutic efficacy among four immune subtypes. (a) Immune response scored by TIDE. (b-c) -e
performance of T cell dysfunction (b) and T cell exclusion (c) in four groups. (d) Prediction of immunotherapeutic efficacy in four groups.
True and false represents the positive and negative immune response to immunotherapy, respectively. ANOVA was performed. ∗p< 0.05,
∗∗p< 0.01, ∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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Figure 7: Construction of immune landscape within TCGA-PRAD dataset. (a) -e distribution of four immune subtypes in the immune
landscape. (b) -e relation between component 1 (PCA1), component 2 (PCA2), and immune biomarkers. (c) Subdivision of IS1 and IS3
groups. (d) Immune features of IS1A and IS1B, IS3A, and IS3B scored by ESTIMATE and CIBERSORT tools. (e) Immune landscape
grouped by branches 1, 3, and 5. (f ) Kaplan–Meier survival curve of groups 1, 3, and 5. Log-rank test was performed. ∗p< 0.05, ∗∗p< 0.01,
∗∗∗p< 0.001, and ∗∗∗∗p< 0.0001. ns: no significance.
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(p � 0.036), indicating that this immune landscape was re-
liable and effective in further supplementary the immune
subtypes (Figures 7(e) and 7(f)).

3.8. Identification of Coexpressed Gene Modules Based on
Immune-RelatedGenes. We also identified coexpressed gene
modules to further explore immune-related genes by
WGCNA. Under the condition of the negative relation
between log(k) and log(p(k)), R2> 0.85 and soft threshold
(power)� 12 were defined to meet a scale-free network
(Figures 8(a) and 8(b)). Using average-linkage hierarchical
clustering and dynamic branch cutting, co-expression
modules containing at least 30 genes in each module were
identified. Modules with close distance were then merged,
and five modules were identified when height� 0.3, deep-
Split� 4, and minModuleSize� 30 (Figure 8(c)). Finally,
1905 immune-related genes were classified into five modules
colored as turquoise, grey, green-yellow, blue, and black
(Figure 8(d), Supplementary Table S4). In each module, all
eigengenes varied significantly within four immune sub-
types, which supported the effectiveness of the immune
subtyping system (p< 0.0001, Figure 8(e)). Furthermore,
close relation between modules and immune subtypes was
demonstrated. IS1 and IS3 groups were positively related to
modules, especially to the black and blue modules, while IS2
and IS4 were negatively correlated with the modules
(Figure 8(f)). However, clinical features including age, T, N,
and M stages were not tightly associated with modules. -e

scatter diagram demonstrated close association of black
module with IS3 group (coefficient� 0.82, p< 0.0001) and
blue module with IS1 group (coefficient� 0.58, p< 0.0001)
(Figures 8(g) and 8(h)).

3.9. Function of Coexpressed Gene Modules and Screening of
Prognostic Genes. Gene set enrichment analysis was con-
ducted to determine enriched biological processes of blue
and black modules.-e results showed that blue module was
largely enriched to biological processes such as T cell acti-
vation, regulation of lymphocyte activation, and leukocyte
proliferation, and it was negatively correlated with com-
ponent 1 (R� −0.816, p< 0.0001, Figures 9(a) and 9(b)). For
black module, biological processes of extracellular structure
organization and extracellular matrix organization were
enriched, and the module was also negatively correlated with
component 1 (R� −0.736, p< 0.0001, Figures 9(c) and 9(d)).

Genes closely related to prognosis were screened, and a
total of 243 genes with R> 0.85 were detected from the blue
and black modules. LASSO regression analysis was applied
to construct a prognostic model. When lambda� 016636511,
the model was optimal, and 17 genes were identified. To
further simply the model, we conducted Akaike information
criterion to reach a high fitting degree through including the
minimum amount of genes. Finally, based on FGD2, IL2RG,
LRMP, NCF1, VAV1, ZNF831, COL5A1, EBF1, PCDH18,
PLXND1, and PTGIS, an 11-gene prognostic model was
defined as follows.

Risk Score � 0.4463861∗ FGD2 − 0.3572187∗ IL2RG − 0.5703754

∗ LRMP∗ 0.5567643∗NCF1 + 0.5364159∗VAV1 − 0.3522158∗

ZNF831 + 0.6454266∗COLA1 − 0.4826737∗EBF1 − 0.5881331∗

PCDH18 + 0.4988597∗ PLXNDI − 0.4001723∗PTGIS.

(1)

-e risk score of each sample in TCGA-PRAD and
MKSCC-PRAD datasets was calculated and converted to z-
score, which was then used to divide the samples that were
divided into high-risk or low-risk group. -e result showed
that OS in low-risk group was higher than high-risk group in
both datasets (p< 0.001, Figures 9(e) and 9(f )). In addition,
we compared the expression differences of these 11 genes in
cancer and adjacent samples and observed that FGD2,
LRMP, VAV1, EBF1, PCDH18, and PTGIS were signifi-
cantly underexpressed in tumor samples (Supplementary
Figure S2A). Further, we analyzed the relationship between
these 11 genes and immune infiltration and observed that
these genes were significantly related to multiple immune
infiltrating cells, especially with T_ cells_ CD4_ memory_
Resting and dendritic_ cells_ Resting showed a significant
positive correlation (Supplementary Figure S2B). -e cor-
relation analysis of immune checkpoint genes showed that
ZNF831, VAV1, NCF1, LRMP, IL2RG, and FGD2 showed a
significant positive correlation with a variety of immune
checkpoint genes (Supplementary Figure S2C). Further, we

mapped these 11 genes to the string database to analyze the
interaction between these genes. It can be observed that
there is little direct interaction between these genes, but
more indirect interaction, suggesting that these genes may
play different roles in different time and space (Supple-
mentary Figure S2D).

4. Discussion

For mCRPC patients, immunotherapy is now the only
available treatment. Sipuleucel-T, which is the only cancer
vaccine approved by Food and Drug Administration (FDA)
in treating mCRPC, was a significant improvement in
mCRPC treatment [20, 21]. Extended OS was observed in
the sipuleucel-T trials with tolerated adverse effects [21, 22].
According to a large-scale research onmCRPC patients, only
approximately 10% could benefit from sipuleucel-T, indi-
cating the limitation of the cancer vaccine in wide appli-
cation [23]. Immune checkpoint inhibitors against PD-1,
PD-L1, and CTLA-4 have found to be able to prolong the OS
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of mCRPC patients. However, the efficacy of current
monoclonal antibodies is not satisfactory, and new clinical
trials of updated strategies are still ongoing [24]. To some
extent, immunotherapy of PCa is still far from mature.
Evidence revealed that TME is of great importance for tumor
progression and can suppress or stimulate the efficacy of
immunotherapy [25]. -erefore, a comprehensive under-
standing of the TME of Pca plays a critical role in guiding
immunotherapy.

In the current study, we explored an immune subtyping
system that has not been reported before. Based on immune-
related gene expression profiles of TCGA-PRAD dataset, a
unique molecular subtyping system was generated through
substantial informatics analysis. All patients could be clas-
sified into four immune subtypes (IS1 to IS4). -e OS was

different among the groups, with the optimal prognosis in
IS4 group and the worst prognosis in IS1 group. -e pro-
portion of IS1 group in the TNM staging system was
consistent with the progressing stages. In addition, IS1 group
had the highest mutation frequency, especially increased
copy numbers. -e different mutation patterns may explain
the differential component of TME.

Immune infiltration is a pivotal component of TME
and represents the immune signatures of cancers. Che-
mokines are a family of chemotactic cytokines that can
regulate the positioning and expression of immune cells
[26, 27]. As chemokines and chemokine receptors are
responsible for cancer metastasis, they have also been
considered to be the possible targets of cancer immu-
notherapy [28]. -e expression of chemokines and
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Figure 8: Identification of coexpressed genemodules. (a-b) Analysis of the scale-free fit index (a) andmean connectivity (b) for various soft-
thresholding powers. (c) Cluster dendrogram and merged modules when soft-thresholding powers� 12. (d) Five modules colored with
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chemokine receptors in PCa was evaluated in our study.
Differential expression was observed among the four
immune subtypes, indicating that expression patterns of
chemokines and chemokine receptors may result in dif-
ferent outcomes of PCa development.

According to the previous researches, tumors can be
divided into three infiltration patterns (immune-inflamed or
immune-active (‘hot’), immune-excluded, and immune-
deserted (‘cold’)) in terms of the components of TME
[29, 30]. PCa has been stratified into immune-desert pattern
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Figure 9: Functional analysis of blue and black modules, and survival analysis of two datasets. (a) Top 10 enriched biological processes in
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and is inactively responsive to immunotherapy [31];
therefore, only a small number of patients can benefit from
the immunotherapy. To ascertain whether the infiltration
pattern would be different among the four immune sub-
types, we assessed 56 immune biomarkers and scored their
enrichment.-e expression of immune biomarkers varied in
four immune subtypes. -e results showed that according to
the enrichment level of leukocyte fraction, stromal fraction,
TIL regional fraction proliferation, macrophage regulation,
IFN-c response, TCR richness, CD8+ T cells, and TGF-β
response, IS1 group was classified into immune-excluded
pattern and IS2 group was immune-desert pattern. Fur-
thermore, TIDE analysis also revealed that patients in IS2
and IS4 groups were more suitable to receive immuno-
therapy than those in IS1 and IS3 groups. -e specific
stratification of infiltration patterns and efficacy prediction
of immunotherapy can provide a guidance for personalized
immunotherapy.

By introducing a graph-learning landscape, IS1 and IS3
groups were further subdivided. -e enrichment of immune
biomarkers was significantly different in the subdivisions.
-e immune landscape of PCa supplemented the immune
subtyping system and visualized the immune signatures,
providing a better understanding of the tumor microenvi-
ronment. In addition, co-expression gene modules were
constructed, and 11 prognostic genes were identified from
the models. -e 11-gene prognostic model can predict the
prognosis and further facilitate personalized treatment of
PCa.

5. Conclusion

In conclusion, we defined a new molecular subtyping system
based on immune-related genes. PCa patients were classified
into four immune subtypes and showed significant differ-
ence in prognosis, immune signatures, response of immu-
notherapy, and infiltration patterns. An immune landscape
of PCa was generated and helps further understand the
TME. -is novel immune subtyping system can be a
guidance in the development of immunotherapy and per-
sonalized treatment of PCa patients.
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