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Abstract
Purpose of Review Digital technology affords the opportunity to provide objective, frequent, and sensitive assessment of disease
outside of the clinic environment. This article reviews recent literature on the application of digital technology in movement
disorders, with a focus on Parkinson’s disease (PD) and Huntington’s disease.
Recent Findings Recent research has demonstrated the ability for digital technology to discriminate between individuals with and
without PD, identify those at high risk for PD, quantify specific motor features, predict clinical events in PD, inform clinical
management, and generate novel insights.
Summary Digital technology has enormous potential to transform clinical research and care in movement disorders. However,
more work is needed to better validate existing digital measures, including in new populations, and to develop new more holistic
digital measures that move beyond motor features.

Keywords Digital technology . Smartphones . Wearable devices . Parkinson’s disease . Huntington’s disease . Movement
disorders

Introduction

Movement disorders, such as Parkinson’s disease, essential
tremor, and Huntington’s disease, are inherently complex,
characterized by a wide array of motor and non-motor symp-
toms. This complexity, in combination with the lack of objec-
tive biomarkers of disease progression, creates a challenge in
the assessment of disability and progression. Traditional rat-
ing scales are subjective, episodic, and typically limited to in-
person visits. Traditional scales are thereby limited by rater
variability, inadequate for the capture of fluctuations in symp-
toms, and unable to provide a comprehensive assessment.
Additionally, the requirement for in-person visits is burden-
some for individuals with neurodegenerative disorders, who
are likely to have functional mobility impairments [1]. The

COVID-19 pandemic has disrupted clinical practice, forcing
a switch to telemedicine for the provision of clinical care [2].
The pandemic has also disrupted clinical research and raised
appropriate concerns regarding participant safety [3, 4]. At
least for the near term, clinical and research operations will
need to adapt to this new environment. One critical adaptation
will be the incorporation of alternative means of assessment
and treatment outside of the clinic environment.

Digital tools, such as smartphones and wearable sensors,
present an opportunity to objectively, frequently, and remote-
ly assess individuals with movement disorders across different
settings. In turn, this holds the promise of earlier identification
of individuals at risk for or with disease, improved disease
phenotyping, enhanced sensitivity for the detection of disease
progression that may speed the development of new therapeu-
tics, and improved clinical management. Emerging deep brain
stimulation (DBS) systems illustrate some of the clinical ap-
plications of wearable technology and can directly measure
electrophysiological activity, which can inform the develop-
ment of remote programming and adaptive DBS systems.

Smartphones, equipped with accelerometers, gyroscopes,
and global positioning (GPS) technology, are widely accessi-
ble and used by over 3 billion people worldwide on a daily
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basis [5]. Their increasing ubiquity makes them appealing
digital tools for clinical care and research. Wearable devices
may be equipped with a wider array of sensors, including
electromyography, electrocardiography, temperature sensors,
magnetometers, and more. Unlike smartphones, wearable de-
vices generally do not require active participant engagement
and can be worn in several different locations. This presents
additional advantages, such as the ability to detect rare events,
capture performance of daily activities, more extensively char-
acterize disease features, and more readily capture non-motor
features like sleep. Wearable sensor and smartphone studies
have proven to be feasible, even in large cohorts, and are well
accepted by patients and research participants [6–9]. Here we
review the recent literature on applications of smartphones
and wearable sensors in movement disorders as well as the
development of adaptive DBS systems. While important, this
review does not cover multiple relevant topics, including reg-
ulatory barriers [10, 11], fitness trackers [12, 13], alternative
forms of passive home monitoring [14], integration of digital
platforms [10], and analytical methods.

Parkinson’s Disease

Studies evaluating smartphones and wearable sensors in PD
are the most abundant. Multiple studies have focused on the
ability to discriminate between individuals with PD and those
without PD. For example, data from the mPower application
(Sage Bionetworks, Seattle, Washington) walking task [15]
and tapping task [16] and the Roche PD Mobile application
(Roche, Basel, Switzerland) sustained phonation, rest tremor,
postural tremor, tapping, balance, and gait tasks [17••] can
accurately distinguish between individuals with PD and
healthy controls (Table 1). Several studies have shown that
wearable devices can distinguish between individuals with PD
(both untreated and treated) and healthy controls [18] as well
as different types of parkinsonism and dementia [19, 20].
Smartphones can be used to discriminate between essential
tremor and PD [21]. One wearable sensor study used wrist-
worn accelerometer devices to develop a tremor stability in-
dex, which can be used to distinguish between essential trem-
or and PD tremor with high specificity, sensitivity, and accu-
racy [22] (Table 2). While digital technology cannot and
should not replace clinical diagnosis, this type of diagnostic
aid could be useful, for example, in cases where tremor clas-
sification is difficult to determine by clinical observation.

Beyond their potential use in confirming the diagnosis of
PD, digital technologies offer the potential to enable identifi-
cation of prodromal PD and evaluate risk for phenoconversion
to manifest PD. Individuals at high risk for development of
PD—such as those with LRRK2 or other genetic mutations,
hyposmia, or idiopathic REM sleep behavior disorder (iRBD),
in particular—may benefit from earlier identification of PD

signs. Among those with iRBD, motor symptoms and subtle
changes in motor examination have been shown to occur sev-
eral years before phenoconversion [23]. Digital tools may be
able to detect subtle motor changes even earlier than clinical
examination. Relying on the performance of a series of active
tasks, smartphone applications can accurately distinguish be-
tween healthy controls, individuals with PD, and individuals
with iRBD with mean sensitivity and specificity ranging from
84.6 to 91.9% [24•]. In discriminating between healthy con-
trols and iRBD, voice was the most salient factor [24•].
Consistent with this finding, smartphone speech analysis
alone can accurately discriminate between individuals with
PD and healthy controls [25, 26] and may be a promising
feature for identifying those with iRBD who are at high risk
for a neurodegenerative disease [27].

Del Din et al. evaluated a wearable device in nearly 700
healthy controls aged 50 to 80 years and found that differences
in objective gait metrics between those who develop PD and
those who do not could be detected about 4 years prior to
diagnosis, suggesting that objective gait measures can help
identify individuals with prodromal PD [28•]. Another study
of older adults (n = 683) demonstrated that objective mobility
measures obtained from a wearable sensor positioned on the
back could predict development of parkinsonism [29].
However, not all features may be amenable to earlier detec-
tion; one study was unable to distinguish between individuals
with early motor changes and healthy controls using
smartphone finger tapping performance [30]. Appropriately
targeted wearable devices may serve as digital biomarkers in
PD, enhancing identification of those with prodromal PD who
may be eligible for participation in disease-modifying clinical
trials and enhancing measurement of disease progression
among those at high risk for PD.

Smartphones and wearable devices are commonly used to
measure specific motor constructs. They can detect or quantify
multiple motor symptoms in PD, including gait, falls, tremor,
bradykinesia, motor fluctuations, and dyskinesias. For exam-
ple, smartphone applications have been used to assess gait
variability [31], assess postural sway [32], detect freezing of
gait [33], identify postural instability [34], and assess sit-to-
stand transitions and turns in PD [17••]. Similarly, several
studies have evaluated the use of wearable devices for
assessing gait [35], detecting freezing of gait [36], and analyz-
ing turning [37]. Of particular benefit in PD is the detection of
falls and the evaluation of fall risk. Wearable devices can
provide an objective and accurate measure of falls. Silva de
Lima et al. evaluated falls using a wearable sensor in 2063
individuals with PD and 2063 matched controls and found
that the sensors could accurately detect falls, which were near-
ly twice as frequent in those with PD as controls [38]. While a
history of prior falls is a good predictor of future falls, fall
prediction among those who have never fallen is more diffi-
cult [39]. Lo et al. demonstrated that a single performance of a
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set of smartphone tasks could predict future development of
falls, freezing of gait, and postural instability with a high de-
gree of accuracy [40•]. Thus, digital tools have the potential to
aid in evaluation of multiple different gait parameters and in
clinical prognostication. Tremor has also been studied and
quantified with both smartphone applications and wrist-worn
devices, such as smartwatches [41–43]. Bradykinesia can sim-
ilarly be quantified using smartphone applications [44, 45].

Lipsmeier et al. demonstrated the feasibility of incor-
porating smartphone-based active and passive assessments
into PD clinical trials and the superior sensitivity of such
assessments, which were able to detect motor abnormali-
ties not captured on traditional motor scales [17••].
However, a 2018 review determined that fewer than 3%
of on-going clinical trials in neurodegenerative diseases
included a technology-based outcome measure [46]. To
develop clinically meaningful outcome measures, we need
to move beyond the assessment of isolated constructs to-
wards more holistic and global assessments [10].
Performance on a number of smartphone active motor
tasks can be used to construct a mobile PD score that
demonstrates strong correlation with standard clinical
measurements, captures intra-day fluctuations, and is re-
sponsive to medication intake [47]. This study demon-
strates the potential for generating more global measures;
however, more work is needed to move beyond assess-
ment of motor features.

Wearable sensors offer clear advantages over
smartphones with regard to passive data collection. For
example, physical activity and sleep can be objectively
assessed. Objective measurements of activity may differ
from patient reports, as shown in the Mantri et al. study of
veterans with PD, which found that moderate-vigorous
physical activity as measured by an Actigraph was infre-
quent in the cohort and did not correlate with self-report
[48]. Another study found that traditional measures of PD
do not reflect daily activity and that wearable devices can
provide a more objective and complete assessment [49].
Mirelman et al. demonstrated the ability of wearable ac-
celerometers to detect sleep interruptions and sleep turns
and identified differences between individuals with ad-
vanced PD, early PD, and without PD [50•]. This type
of measure could be helpful in identifying individuals
with early PD, serve as an objective measure of disease
severity, and help with medication management.
Smartphones can be used for some forms of passive data
collection. For example, analysis of smartphone
touchscreen typing can discriminate between individuals
with early PD and controls [51–53]. GPS-enabled
smartphone passive data collection can facilitate mapping
of lifespace [54], which is one’s geographic area of move-
ment, and quantification of the frequency and duration of
trips outside of the home. Such an approach has been used

to demonstrate post-deep brain stimulation (DBS) im-
provements [55] and is appealing as a potentially clinical-
ly meaningful outcome measure.

Smartphones and wearable sensors can also inform clinical
management, providing frequent, in-home data on a granular
scale. Such an approach may be of particular benefit in the
management of motor fluctuations. Integrated systems, such
as PD_Manager [56], which enables passive and active data
collection through a combination of a smartphone application,
a smartwatch, and sensor insoles, are feasible for short-term
use in individuals with moderate PD with motor fluctuations
[43]. Another study demonstrated that an algorithm developed
from a wrist and ankle sensor can objectively and accurately
detect medication ON and OFF states [57]. These types of
measures could serve as substitutes for cumbersome and sub-
jective patient diaries, and efforts are underway by the
Movement Disorders Society to create an e-Diary [58].
Smartphones can be used to monitor medication response
[59] and assess diurnal variation [60]. Similarly, wearable
sensors allow for remote titration of medications. For exam-
ple, one study found that rotigotine dose changes and in-
creases were higher in the group monitored by wearable de-
vices compared to the group that was not monitored by wear-
able devices [61].

However, the incorporation of digital tools into clinical
practice poses some challenges. Digital data must be pre-
sented in a manner that is informative and useful to clini-
cians. In one study, a wrist-worn device was used by 63
individuals with PD and provided useful information to
guide treatment plans for 50 (79%) of these individuals
[62]. In another study, a smartwatch was paired with a
smartphone application, and clinicians were involved in
the iterative development of a clinician dashboard that
could be used to inform changes in management [63].
Clinicians rated medication adherence and patient-
reported outcomes as the most informative and sensor-
derived measures as the least informative. This suggests
that there is much progress to be made in the development
of clinician-friendly data displays.

Digital tools also show promise for self-management and
greater precision in treatment. Smartphone-based applications
can provide access to educational resources, be used for self-
tracking and medication adjustments [64], and may improve
short-term medication adherence [65]. Yet, in a randomized
controlled trial, PD participants randomized to use a
smartphone exercise application did not demonstrate any im-
provements in gait, speech, or dexterity compared with the
control group [66], suggesting that simply providing access
to such applications is insufficient. A biofeedback system
combining a smartphone application and sensor-equipped belt
for balance training in PD has been shown to be feasible [67].
More work is needed to determine whether such devices im-
prove outcomes.
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Other Movement Disorders

Beyond PD, smartphone applications have been used to
characterize orthostatic tremor [68], characterize ortho-
static tremor-associated gait and balance impairment
[69], assess gait impairment in drug-induced parkinson-
ism [70], and quantify Huntington’s disease (HD) chorea
[71, 72]. Wearable sensors have been used even more
broadly.

Wearable sensors are gaining traction in the evaluation
of HD. Several studies have evaluated gait, posture, ac-
tivity, balance, and falls in individuals with HD. One
study measured postural sway in clinic and showed that
individuals with HD have worse postural control during
manipulated stance, vision, proprioception, and/or cogni-
tive demand as compared with controls [73]. Another
study showed that wearable iPod sensors equipped with
a biofeedback app were able to measure and monitor
trunk stability in individuals with HD and use this infor-
mation for rehabilitative purposes [74]. Dinesh et al. de-
veloped a chorea algorithm and showed that chorea had
substantial intra-day variability but minimal long-term
change over the course of 12 months. This same study
found that individuals with HD spent over half their day
lying down, which was significantly different from indi-
viduals with PD, prodromal HD, or control participants
[75].

Not surprisingly, wearable sensor studies in ataxia have
focused on gait, balance, and fall risk. One study success-
fully used wearable sensors to objectively assess postural
instability in patients with cerebellar ataxia; the authors
noted that while clinical assessments could provide gen-
eral trends, more quantitative assessment of balance dys-
function in this population was needed [76]. Another
study found that step length variation as detected by sen-
sors correlated with number of falls and disease severity
[77]. Detection of increased fall risk with wearable sen-
sors presents an opportunity to intervene earlier with as-
sistive walking devices and physical therapy.

Wearable devices, mainly wrist-worn sensors, have al-
so been used in essential tremor (ET). Smartwatches are
able to quantify tremor, have shown good correlation be-
tween clinical scales, and are well-accepted by patients
[78]. One study showed that prolonged and continuous
monitoring in patients with ET with a smartwatch was
feasible and revealed significant intra-day variability in
tremor severity [79]. This variability has the potential to
affect clinical trial outcomes, which are often based on
brief snapshots of an individual’s disease. Wearable de-
vices can help overcome this challenge by enabling con-
tinuous and remote monitoring. Moreover, many people
now personally own a smartwatch, which may allow for
broad use of such devices in tremor research.

Deep Brain Stimulation and Digital
Technology

Deep brain stimulation (DBS) is effective for the management
of essential tremor (ET), dystonia, motor complications, and
medication refractory tremor in PD [80–83]. Candidate selec-
tion can be difficult, and outcomes are variable and limited by
both surgical placement and non-standardized programming
techniques. Digital tools, including smartphones and wearable
devices, may aid in the appropriate identification of DBS can-
didates [84]; pre-, intra-, and post-operative assessment of
response to DBS adjustments [85–87]; and remote DBS pro-
gramming. For instance, assessments of tremor, rigidity, and
bradykinesia could be informed by the use of wearable sen-
sors during awake DBS surgeries for PD or ET [88].

Recent innovations in DBS technology include novel leads
that allow for directional and multi-target stimulation, as well
as implantable pulse generators (IPG) and leads able to pro-
vide electrophysiological data that inform conventional DBS
programming. The latter are able to record long-term electro-
physiological information from the corresponding anatomical
target, which can be correlated with symptoms and medica-
tions to optimize DBS programming during in-person visits.
Such innovations will also permit adaptive DBS and remote
programming to further improve outcomes in the near future.
As opposed to data obtained from smartphones, sensors, and
other wearable technology, directly measured pathophysio-
logical brain activity could be used as surrogate biomarker
of disease activity, progression, and response to treatment.

Self-adapting, closed-loop DBS technologies informed by
real-time electrophysiological signals are currently under de-
velopment. Most experimental adaptive DBS systems have
used sub-thalamic nucleus (STN) local field potentials
(LFP), particularly beta band signals, as the primary feedback
mechanism in PD. Other electrophysiological techniques such
as electrocorticography are also being explored [89, 90]. Early
clinical studies of adaptive DBS had relatively short duration
and used externalized equipment in specialized laboratories.
The initial adaptive approach to STN-DBS consisted of stop-
ping DBS after achieving pathological STN beta signal sup-
pression and resulted in similar or improved symptom control
with less battery consumption when compared with conven-
tional DBS [91–93]. Additionally, fewer stimulation-induced
side effects may be associated with selective short beta burst
suppression by adaptive DBS compared with conventional
DBS [94]. In one study comparing 2-h periods of convention-
al and adaptive STN-DBS in 10 patients with PD, adaptive
DBS was associated with significantly reduced DBS energy
delivered and improved dyskinesia control [95]. Case series in
dystonia [96] and case reports in Tourette syndrome [97] pro-
vide evidence that electrophysiological signals recorded at
single or multiple targets may be useful for adaptive DBS
systems in other movement disorders.
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Challenges and Future Directions

Need for Appropriate Validation of the Best Measures

Despite the many advantages and opportunities for digital
tools, there remain challenges in the use of these devices for
clinical research and care in movement disorders. The amount
of data that can be gathered by digital devices is immense and
can be difficult to meaningfully condense or interpret. In par-
ticular, data collected in unsupervised settings can be difficult
to validate [98, 99]. Many initial validation studies are con-
ducted in artificial clinic settings, bringing into question the
value of data collected in the unsupervised, home setting.
Comparison to “gold standard” traditional assessments is of-
ten sought, but given the subjective nature of these scales and
the potential for digital measures to capture novel information,
the meaning and value of these comparisons is unclear.
Although non-motor symptoms, such as anxiety, depression,
fatigue, and cognitive impairment, are important drivers of
functional impairment and health-related quality of life in
PD [100–102], most studies have focused on the measurement
of motor symptoms [46]. Digital outcomes that provide more
global assessments of function are needed.

Limitations of Smartphones

Part of the appeal of smartphones is their increasing ubiquity,
but smartphone ownership varies substantially between and
within countries, and younger, wealthier individuals with
higher levels of education are more likely to own one [103,
104]. Relying on patients or research participants to provide
their own smartphone will exacerbate the existing “digital
divide” [105]. Most smartphone studies have focused on the
performance of active tasks, such as finger tapping, which can
be conducted frequently and in natural environments but may
not be meaningful to patients. Moreover, smartphones are less
well equipped to capture performance of more natural, day-to-
day activities that may be more meaningful to patients.

Challenges to Long-term, Consistent Use of
Smartphone Applications

Studies have consistently demonstrated that compliance with
smartphone applications diminishes over time. Nearly 10,000
participants participated in the original mPower application
study and consented to broad sharing of their data; however,
fewer than 10% contributed data on a minimum of 5 days over
a 6-month period [9]. Similarly, in a study pairing a
smartphone with a smartwatch, use declined steadily over
the 6-month study period, and nearly a quarter of participants
failed to complete the study [63]. Specifically, medication
reporting declined by 34%, symptom reporting by 44%, and
smartwatch streaming by 53% [106]. In a 100-day study

examining a different app, only a third of participants com-
pleted a health-rated quality of life questionnaire at baseline
and end of study [107]. Our own experience has been consis-
tent with these reports. In an ongoing long-term remote
follow-up study of phase 3 clinical trial participants, partici-
pants are asked to complete active smartphone tasks daily for
2 weeks every quarter [108]. The first 2-week period saw a
compliance rate of 61% that dropped to 14% in the second
quarter and has averaged out to 22% across all quarters com-
pleted thus far. More work is needed to improve the “sticki-
ness” of smartphone applications. Approaches may include
sophisticated tracking and display of individual performance
in the short- and long-term, improved notification systems,
creation of a digital community of users, incorporation of
educational materials, and the ability to readily share personal
data with your clinician.

Limitations of Wearable Sensors

There are numerous consumer- and research-grade wearable
devices on the market with variable sampling rates and algo-
rithms, making comparisons difficult and limiting generaliz-
ability of results. Furthermore, the refinement of simple and
reliable algorithms that can monitor more complex move-
ments like dyskinesias or chorea is needed. While most de-
vices have proven to be well-accepted and feasible to use in
patients with neurodegenerative disease, application and use
of devices becomes more challenging, particularly in the
home setting and over longer periods of time. In our own
experience, most participants are enthusiastic about engaging
with wearable sensors, but many have little to no previous
experience with such technology. As such, they face a steep
learning curve and are often heavily reliant on research coor-
dinators for technology setup and troubleshooting. A care
partner can be particularly helpful in managing these barriers,
but prolonged difficulty can lead to discouragement and frus-
tration. Internet access and speed are other potential obstacles
to effective technology use, and streaming compliance may be
an additional issue with some devices. In a feasibility study
evaluating a smartwatch-smartphone system in two different
cohorts, data streaming declined by 23% in the 13-week co-
hort and 27% in the 6-week cohort [7]. Additionally, research-
grade wearable devices may be prohibitively expensive, and
the safety of some wearable devices with implantable systems
(including DBS) has not been fully evaluated, limiting their
utility.

Challenges with Fully Adaptive DBS Systems

Preliminary observations with fully adaptive DBS systems
have reported issues with limited battery life, relatively low
storage capacity, and obscuration of low-amplitude LFPs by
significant artifact. Furthermore, electrophysiological data
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recorded from the same DBS contact that delivers electricity
would pose additional technical problems such as low-quality
signals [91, 95, 109]. A rechargeable IPG would address bat-
tery life, but other problems need to be solved before adaptive
systems are ready for clinical use [110, 111]. Additional elec-
trocorticography might be safe and would have several advan-
tages in terms of signal-to-noise ratio and independent data
obtained from different parts of the motor circuitry [111, 112].
The ideal adaptive DBS system would simultaneously differ-
entiate symptom specific from normal physiological signals
and use this information in real-time to dynamically modify
DBS settings.

Conclusions

Digital technology provides a means to objectively, fre-
quently, and remotely assess multiple different facets of
movement d isorders in a na tura l envi ronment .
Smartphones and wearable devices may enable the earlier
identification of individuals at risk for or with disease and
may be more sensitive to disease progression, both of
which may facilitate the identification of disease-
modifying treatments. Devices can provide new insights
into disability and progression that complement standard
clinical assessments and enable deep clinical phenotyping
of neurodegenerative diseases [113]. It is likely that some
combination of clinical scales, imaging, biosamples, and
digital tools will be the best and most comprehensive way
to characterize and monitor disease. Smartphone and
wearable devices may enable more personalized treatment
and improved clinical management. Directly measuring
neurophysiological brain activity with implanted DBS
systems could provide additional pathophysiological in-
formation to be used as surrogate biomarker of disease
activity, progression, and response to treatment. Remote
DBS programming and adaptive, closed-loop DBS sys-
tems that enable real-time modifications in settings based
on this information are being explored.

However, better validation of new digital outcomes and
tools is needed. Future research should prioritize (1) larg-
er sample sizes with longer remote monitoring periods
and longer follow-up; (2) assessment of new populations,
including those with prodromal disease and more ad-
vanced disease; (3) comparison with patient-reported out-
comes, (4) digital device data standardization and the de-
velopment of data sharing platforms to enable cross-study
comparisons; and (5) the assessment of more non-motor
features towards the development of more holistic disease
characterization. Nonetheless, we believe that digital tools
hold enormous potential for improving care, research, and
outcomes in movement disorders.
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