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Abstract

The adaptation of Chikungunya virus (CHIKV) to a new vector, the Aedes albopictus mosquito, is a major factor contributing
to its ongoing re-emergence in a series of large-scale epidemics of arthritic disease in many parts of the world since 2004.
Although the initial step of CHIKV adaptation to A. albopictus was determined to involve an A226V amino acid substitution
in the E1 envelope glycoprotein that first arose in 2005, little attention has been paid to subsequent CHIKV evolution after
this adaptive mutation was convergently selected in several geographic locations. To determine whether selection of
second-step adaptive mutations in CHIKV or other arthropod-borne viruses occurs in nature, we tested the effect of an
additional envelope glycoprotein amino acid change identified in Kerala, India in 2009. This substitution, E2-L210Q, caused a
significant increase in the ability of CHIKV to develop a disseminated infection in A. albopictus, but had no effect on CHIKV
fitness in the alternative mosquito vector, A. aegypti, or in vertebrate cell lines. Using infectious viruses or virus-like replicon
particles expressing the E2-210Q and E2-210L residues, we determined that E2-L210Q acts primarily at the level of infection
of A. albopictus midgut epithelial cells. In addition, we observed that the initial adaptive substitution, E1-A226V, had a
significantly stronger effect on CHIKV fitness in A. albopictus than E2-L210Q, thus explaining the observed time differences
required for selective sweeps of these mutations in nature. These results indicate that the continuous CHIKV circulation in
an A. albopictus-human cycle since 2005 has resulted in the selection of an additional, second-step mutation that may
facilitate even more efficient virus circulation and persistence in endemic areas, further increasing the risk of more severe
and expanded CHIK epidemics.
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Introduction

The potential of RNA viruses to emerge into new environments

often depends on their ability to efficiently adapt to new hosts.

These adaptations sometimes comprise a stepwise process that

includes 1) initial viral introduction/establishment in the recipient

species, followed by 2) finite adjustment/optimization of the virus

replication and transmission strategies for specific environments

associated with a new host [1,2]. This process has been well

documented for several single-host viruses such as pandemic

influenza A virus, the SARS coronavirus and canine parvovirus

(reviewed in [3,4]) that do not rely on alternating infection of

disparate hosts for their maintenance in nature. However, much

less is known about the adaptive processes that mediate cross-

species jumps for double-host viruses such as arthropod-borne

viruses (arboviruses). Several recent studies documented that the

acquisition of a single mutation in an arbovirus genome can

mediate their cross-species transfer [step (1)] [5–8]. However, in

none of these cases have subsequent, additional adaptive

mutations been detected, posing the question of whether selection

of second-step adaptive mutations is possible or necessary for these

viruses to persist in nature. This information is critical for

understanding and predicting the long-term consequences of

pathogen emergence and maintenance in affected areas, which in

turn could influence the development and success of targeted

intervention strategies for managing outbreaks.

A new lineage of Chikungunya virus (CHIKV) [arbovirus in

family Alphavirus, genus Togaviridae] emerged in 2004 in Kenya and

subsequently spread into many countries in the Indian Ocean

basin [hence the name: Indian Ocean lineage (IOL)], causing

devastating outbreaks of arthritic disease [9]. In India, IOL strains

were first detected in December 2005 followed by extensive

geographic expansion during 2006–2011 into 19 Indian states with

a total number of human cases estimated in 2007 at between 1.4

and 6.5 million [10,11]. During 2006, the states most affected by

CHIKV were Karnataka and Maharashtra, with a subsequent

shift to Kerala, Coastal Karnataka and West Bengal [12,13].

Several hypothetical factors may have contributed to the CHIKV

emergence/spread on the Indian subcontinent [14], including: 1)

the use of immunologically naı̈ve human populations for

maintenance, amplification and virus dispersal among localities,

2) reliance on peridomestic and anthropophilic mosquitoes as
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vectors, and 3) the IOL-specific genetic predisposition for rapid

adaptation to Aedes (A.) albopictus, which was previously considered

only a secondary CHIKV vector [9].

The mode of CHIKV maintenance in nature is complex and

appears to be region-specific. In Africa, CHIKV is maintained in

enzootic cycles involving transmission between non-human

primates and canopy-dwelling, primatophilic Aedes mosquitoes,

primarily A. furcifer, A. taylori, A. africanus, A. luteocephalus and A.

neoafricanus [15–19]. In contrast, CHIKV transmission in Asia is

believed to rely on humans alone as reservoir/amplification hosts,

with the domestic A. aegypti and to lesser extent the peridomestic A.

albopictus serving as primary urban mosquito vectors [19,20].

Recent evidence, however, suggests the possibility of additional

sylvatic, zoonotic transmission cycles [21,22].

In India, both urban CHIKV vectors are present, although

their distributions differ, and their epidemiologic significance for

CHIKV transmission probably varies locally. A. aegypti was

considered to be the most important during the early phase of

the CHIK epidemic in 2006 [23]. However, in subsequent years

(2007–2009), the involvement of A. albopictus as the principal vector

was documented at least in the states of Kerala and Coastal

Karnataka [24–27]. Interestingly, CHIKV transmission by A.

albopictus was shown to be associated with the acquisition of the

A226V amino acid substitution in the E1 envelope glycoprotein

[24,28–32] (Figure S1) that is responsible for alphavirus virion

assembly and virus fusion in endosomes of target cells [33–35].

The role of the E1-A226V substitution on CHIKV adaptation to

A. albopictus was directly demonstrated in laboratory studies,

including those using reverse genetics, showing that this mutation

is directly responsible for increased CHIKV infection, dissemina-

tion and transmission by this vector species [6,36]. In India,

evidence that CHIKV was undergoing genetic adaptation to A.

albopictus via the E1-A226V substitution first came from Kerala

State. During 2006, only the E1-226A variant was recovered

there; however, during subsequent years (2007–2008), all isolates

sequenced possessed the E1-226V residue [24] (Figure S1). In

2008 the E1-A226V substitution was also found among the

majority of CHIKV isolates from Coastal Karnataka, adjacent to

Kerala [37], suggesting introduction from the latter state.

In a follow-up study conducted in the state of Kerala, a novel

substitution in the E2 envelope glycoprotein, L210Q, was

discovered in all human and mosquito CHIKV isolates collected

during 2009 [27] (Figure S1). The E2 protein is located on the tips

of alphavirus spikes and interacts with host cell receptors as well as

with neutralizing antibodies [38,39]. The L210Q substitution has

not been reported in any other CHIKV strains, including those

isolated in Kerala State during 2006–2008. This suggests that E2-

L210Q substitution was selected as a result of CHIKV adaptation

to specific ecological conditions present in Kerala State. Position

E2-210 is located in the domain B of the E2 glycoprotein [39], and

several earlier studies demonstrated that mutations in this domain

mediate host specificity of several alphaviruses [5,7,40–42] as well

as the selection of escape mutants by neutralizing antibodies [43–

45]. Moreover, we recently demonstrated that epistatic interac-

tions between mutations at positions E1-226 and E2-211 of

CHIKV influence the penetrance of the E1-226V substitution for

fitness in A. albopictus [46]. The E2-I211T substitution was

probably acquired by IOL CHIKV strains around 2004–2005

[47], and provides a suitable background to allow CHIKV

adaptation to A. albopictus via the subsequent E1-A226V

substitution.

Considering that A. albopictus was a principal CHIKV vector in

the state of Kerala in 2009, it was hypothesized that the novel

substitution E2-L210Q provided an additional selective advantage

for CHIKV transmission by this mosquito [27]. To test this

hypothesis we undertook a comprehensive reverse genetic analysis

of the effects of E2-L210Q in various CHIKV hosts. Our

observations demonstrate that the E2-L210Q substitution medi-

ates a significant increase in CHIKV dissemination in A. albopictus

by increasing initial infectivity for midgut epithelial cells. In

addition, we show that the E1-A226V substitution has a

significantly stronger effect on CHIKV fitness in A. albopictus than

E2-L210Q, probably explaining the observed time differences

required for selective sweeps of these mutations in nature.

Results

The E2-L210Q substitution is responsible for increased
CHIKV dissemination in A. albopictus

To investigate the effect of the E2-L210Q substitution on

CHIKV fitness in A. albopictus mosquitoes, we employed a reverse

genetics approach based on the SL-CK1 strain of CHIKV

(hereafter abbreviated SL07), isolated in 2007 in Sri Lanka [9].

Previous phylogenetic studies indicated that SL07 evolved from

the Indian subgroup of IOL and represents one of the most closely

related isolates to strains responsible for CHIKV outbreaks in

India (including the Kerala state) [9,48]. The SL07 isolate was

passed only twice on Vero cells since its isolation from a febrile

patient, thus limiting the potential for cell culture-adaptive

mutations that can artificially influence alphavirus fitness in

vertebrate and/or mosquito hosts. The SL-07 strain has an alanine

residue at E1 position 226 and a leucine residue at E2-210,

corresponding to prototype IOL strain introduced into India in

late 2005. Since the E2-L210Q substitution was only detected in

CHIKV strains form Kerala that had previously acquired the A.

albopictus-adaptive E1-A226V substitution [24], single E1-A226V

and double (E1-A226V and E2-L210Q) substitutions were

introduced into an infectious clone (i.c.), generated from the

SL07 strain using site-directed mutagenesis. In addition, a clone

with the single E1-A226V substitution (SL07-226V) was geneti-

cally marked by introducing a synonymous mutation 6454ARC

that creates an ApaI restrictase site (SL07-226V-Apa). Previously

we demonstrated that the 6454ARC substitution does not

Author Summary

Since 2004, chikungunya virus (CHIKV) has caused a series
of devastating outbreaks in Asia, Africa and Europe that
resulted in up to 6.5 million cases of arthritic disease and
have been associated with several thousand human
deaths. Although the initial step of CHIKV adaptation to
A. albopictus mosquitoes, which promoted re-emergence
of the virus, was determined to involve an E1-A226V amino
acid substitution, little attention has been paid to
subsequent CHIKV evolution after this adaptive mutation
was convergently selected in several geographic locations.
Here we showed that novel substitution, E2-L210Q
identified in Kerala, India in 2009, caused a significant
increase in the ability of CHIKV to infect and develop a
disseminated infection in A. albopictus. This may facilitate
even more efficient virus circulation and persistence in
endemic areas, further increasing the risk of more severe
and expanded CHIK epidemics. Our findings represent
some of the first evidence supporting the hypothesis that
adaptation of CHIKV (and possible other arboviruses) to
new niches is a sequential multistep process that involves
selections of at least two adaptive mutations.

Chikungunya Virus Adapts via Sequential Mutations
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influence CHIKV fitness in vitro or in vivo [6]. The infectious viruses

SL07-226V-Apa and SL07-226V-210Q were rescued by electro-

poration of in vitro-transcribed RNA into Vero cells. The specific

infectivity and viral titers in cell culture supernatants were almost

identical for all constructs (Table S1), indicating that the

introduced mutations did not attenuate CHIKV in Vero cells.

Although a variety of mechanisms may be involved, adaptation

of arboviruses for enhanced transmission by mosquitoes is typically

expected to result in an increased ability to develop a disseminated

infection leading to salivary gland infection. To investigate the

effect of the E2-L210Q substitution on CHIKV fitness in A.

albopictus mosquitoes, direct competition experiments were per-

formed using SL07-226V-Apa and SL07-226V-210Q viruses

(Figure 1). For these experiments, A. albopictus (Thailand strain)

was presented with blood meals containing a mix of 5x105 plaque

forming units (pfu)/mL of SL07-226V-Apa and 5x105 pfu/mL of

SL07-226V-210Q viruses (combined titer 106 pfu/mL) and 10

days post-infection (dpi), the presence of disseminated viral

infection as sampled from individual mosquito legs and heads

was analyzed as described in the Materials and Methods. The

dissemination of the SL07-226V-210Q in the Thailand colony of

A. albopictus was 4.3 times more efficient compared to SL07-226V-

Apa (Figure 1A)(p = 0.021), supporting the hypothesis that

glutamine at E2-210 was selected in CHIKV population in

Kerala State due to its positive effect on CHIKV transmission. To

corroborate these findings, the ApaI site was introduced into the

backbone of SL07-226V-210Q, and the resultant virus (SL07-

226V-210Q-Apa) was tested in direct competition in A. albopictus

(Thailand colony) against SL07-226V that was produced by

reverting the ApaI site in SL07-226V-Apa to the wild-type (w.t.)

nucleotide sequence (Figure 1B). The dissemination of SL07-

226V-210Q-Apa was 3.4 times higher than that of SL07-226V

(p = 0.017), indicating that the genetic marker was not responsible

for the competition outcome, and supporting the role of the E2-

L210Q substitution in increased CHIKV dissemination in A.

albopictus. To demonstrate that the outcome of competition

experiments was not affected by CHIKV propagation in Vero

cells (which were used to identify mosquitoes with disseminated

infection, prior to CHIKV genotype analysis), these cells were

infected at a multiplicity of infection of 0.1 pfu/cell in triplicate

with 1:1 mixtures of viruses that were used in mosquito

competition experiments. At 2 dpi, cell culture supernatants were

collected for viral RNA extraction and processed as described in

the Materials and Methods. No detectable differences in viral

fitness (changes in the ratios of the 2 viruses) were observed after

Vero cell passage, indicating that E2-L210Q substitution does not

affect CHIKV fitness in these cells (Figure S2).

Early studies of CHIKV competence to infect A. albopictus

demonstrated significant variation in susceptibility among different

geographic strains of this mosquito [49]. To demonstrate that the

effect of the E2-L210Q substitution on CHIKV dissemination in

A. albopictus was not limited to a particular geographic strain, we

also compared dissemination efficiency of the SL07-226V-Apa

versus SL07-226V-210Q viruses in mosquitoes derived from

Galveston, USA. Similar to the results with Thailand mosquitoes,

the E2-L210Q substitution provided a mean 4.5-fold increase in

dissemination efficiency of CHIKV (p = 0.003) (Figure 1A). These

data suggest that the E2-L210Q substitution would likely have a

similar effect on CHIKV fitness in A. albopictus from Kerala State,

India, and from other parts of the world.

To investigate if the fitness advantage associated with the E2-

L210Q substitution is sufficient for selection of mutant viruses in a

w.t. CHIKV population, the SL07-226V-210Q was serially

passaged in the presence of a 100-fold excess of SL07-226V-Apa

(surrogate ‘‘wild-type’’ virus) in an alternating cycle between A.

albopictus mosquitoes and Vero cells. To initiate the cycle, A.

albopictus (Galveston colony) were presented with blood meals

containing 5x105 pfu/mL SL07-226V-Apa and 56103 pfu/mL

SL07-226V-210Q viruses (100-fold excess of SL07-226V-Apa).

After three consecutive passages, heads and legs of individual

mosquitoes were processed as described above to determine if

selection of virus with E2-L210Q substitution had occurred

(Figure 2A). Despite being present in 100-fold lower quantity in

the initial virus population, the SL07-226V-210Q virus alone was

detected in 31.6% of mosquitoes after 3 alternating mosquito-Vero

passages, whereas SL07-226V-Apa (w.t.) alone was found in

52.6% of mosquitoes, while 15.8% of mosquitoes had both

competitors in their heads and legs (Figure 2B) (p = 0.227 one-

tailed McNemar test). These data indicate that the E2-L210Q

substitution has the potential to be selected in CHIKV populations

in locations where A. albopictus serves as the primary vector. The

31-fold increase over 3 artificial transmission cycles in the relative

frequency of SL07-226V-210Q over its initial ratio in blood meals

corresponds to a ca. 3-fold increase per cycle, which is in

agreement with fitness advantage of the E2-L210Q substitution

observed earlier in direct competition experiments (Figure 1).

The E2-L210Q substitution does not alter CHIKV fitness in
A. aegypti or human cells

Historically, A. aegypti mosquitoes were the primary vector of

CHIKV in Asia [19,20], and this species still plays a significant

role in CHIKV transmission in India [23,50–52]. To investigate if

the E2-L210Q substitution also affects CHIKV fitness in A. aegypti,

we analyzed the effect of E2-L210Q on CHIKV dissemination in

this vector using competition experiments as described above.

Since CHIKV transmission by A. aegypti has never been associated

with the E1-A226V substitution, we first used the w.t. genetic

background of the SL07 strain (E1-226A and E2-210L) to

introduce the E2-L210Q substitution. Also, because A. aegypti is

less susceptible to CHIKV than A. albopictus for strains with E1-

226V, we used higher total oral doses up to 2.46107 pfu/mL

(Figure 3A, 3B). The dissemination efficiency of SL07 and SL07-

210Q-Apa viruses in A. aegypti (Thailand strain) were almost

identical (p = 0.395) (Figure 3A). Similarly, no difference in the

dissemination efficiency between SL07 and SL07-210Q-Apa

viruses was detected in Galveston A. aegypti mosquitoes (Figure

S3). Additionally, competition between SL07-226V-210Q-Apa

and SL07-226V viruses, which express E2-210Q and E2-210L

residues in the background of E1-226V, respectively, was also

analyzed in Thailand A. aegypti, again revealing no statistically

significant differences in dissemination efficiency [p = 0.402]

(Figure 3B). These data indicate that it is unlikely that the

polymorphism at E2-210 affects CHIKV transmission by A. aegypti.

Alternatively, E2-L210Q could have been selected as a result of

CHIKV adaptation to a vertebrate host in India, probably

humans. Although we did not observe any fitness change

associated with this mutation during propagation of CHIKV in

Vero cells (derived from African green monkey kidneys), to extend

our analysis we repeated competition experiments using the

human-derived cell line 293 (embryonic human kidney) because

earlier studies showed that CHIKV can infect and replicate in

various primary human cell lines including epithelial, endothelial,

fibroblast, muscle satellite and macrophages (reviewed in [11]). No

detectable difference in fitness resulting from the E2-L210Q

substitution was observed in this cell culture model (Figure 3B,

3C). Although cell lines are not ideal surrogates for in vivo

infections, our data further support the conclusion that the E2-

L210Q substitution was most likely selected only by A. albopictus.

Chikungunya Virus Adapts via Sequential Mutations

PLoS Pathogens | www.plospathogens.org 3 December 2011 | Volume 7 | Issue 12 | e1002412



Figure 1. Effect of the E2-L210Q substitution on dissemination of CHIKV in A. albopictus mosquitoes (Galveston and Thailand
colonies). Above each figure is a schematic representation of the viruses used in the competition assay. Asterisks indicate authentic (w.t.) residues
for the SL07 strain at the indicated positions. A 1:1 mixture of viruses [SL07-226V-Apa and SL07-226V-210Q] (A) and [SL07-226V and SL07-226V-210Q-
Apa] (B) was orally presented to A. albopictus and at 10 dpi, the presence of disseminated E2-210L and E2-210Q CHIKV infection was assayed as
described in the Materials and Methods. Graphs show numbers and proportions of mosquitoes containing virus populations expressing leucine
(210L), glutamine (210Q) or containing both residues (210L/210Q) in mosquitoes heads and legs (representing disseminated infections). The
difference in number of mosquitoes with E2-210L versus E2-210Q residues was tested for significance with a one-tailed McNemar test. BM indicates
combined titers of competitors in blood meals used for mosquito infection.
doi:10.1371/journal.ppat.1002412.g001
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The E2-L210Q substitution acts by increasing CHIKV
infectivity for midgut cells of A. albopictus

Previous studies determined that the A. albopictus-adaptive E1-

A226V substitution acts primarily at the level of midgut infectivity.

It was suggested that efficient CHIKV infection of and replication

in midgut cells promotes more active CHIKV dissemination and

transmission by this vector [6,36,46], thus allowing the selection of

A. albopictus-adapted CHIKV strains in nature. To explore which

step during CHIKV infection of A. albopictus mosquitoes is affected

by the E2-L210Q mutation, we first compared the relative ratios

of SL07-226V-Apa and SL07-226V-210Q RNAs in whole

mosquitoes, mosquito midguts and mosquito carcasses (bodies

without midguts) after oral infection (Figure 4A). We observed a

marked increase in the relative amount of E2-210Q RNA in all

samples analyzed, including midguts at 7 dpi. Furthermore,

similar increases in the relative amount of E2-210Q RNA in

mosquito midguts were observed as early as day 1 post infection,

regardless of which of the two competitors was marked by the ApaI

site (Figure 4B, 4C). In contrast, no difference in the relative

amounts of E2-210Q versus E2-210L RNAs were observed 2 days

after intrathoracic infection of A. albopictus, when CHIKV titers

peak (Figure 4D). When injected intrathoracically, CHIKV does

not require infection of and replication within mosquito midguts to

disseminate to other organs and tissues, suggesting that the initial

infection/replication of the midgut epithelium is a major site of

selection of the E2-L210Q substitution in A. albopictus.

To further test the hypothesis that the E2-L210Q substitution

affects CHIKV fitness only during initial infection of the A.

albopictus midgut, we first compared infection rates of mosquitoes

presented orally with serial dilutions of the viruses expressing

either E2-210L or E2-210Q residues in the backbone of the SL07

strain that has the E1-A226V substitution. The E2-210Q residue

was associated with significantly higher infectivity (p = 0.006 and

p = 0.034, Fisher̀s exact test) for A. albopictus (Thailand) at the

blood meal titers of 3.5 and 2.5 Log10(pfu)/mL, and the oral

infectious dose 50% (OID50) value calculated for SL07-226V-

210Q was 8.9 times lower (higher infectivity) than that for SL07-

226V (Figure 5A, 5B). The lack of a significant difference in

infection rates after the highest dose (4.54 Log10(pfu)/mL)

probably reflected the oral dose nearing saturation. By way of

comparison, earlier studies, including those using the SL07 strain,

determined that the well-established A. albopictus-adaptive substi-

tution E1-A226V mediates a much greater, ,100-fold decrease in

OID50 values [6,9].

To directly study the effect of E2-L210Q substitution on initial

CHIKV infection of A. albopictus midgut cells, we developed a

replicon/helper system for the SL07 strain. Sub-genomic replicons

of alphaviruses can be packaged into virus-like particles (VLPs) by

co-transfection of replicon and helper RNAs into susceptible cells

[53]. The helper RNA provides the structural genes that package

replicon RNA into VLPs, but the helper RNA itself is not

packaged into the VLPs. Therefore, the VLPs are capable of

primary infection and replicon RNA replication within cells, but

cannot spread to neighboring cells due to the lack of the structural

genes in the replicon. Thus, replicon VLPs allowed us to

investigate the effect of mutations of interest on initial infection

of midgut cells.

Since transfection efficiency of viral RNA is critical in

determining the efficiency of VLP production, we switched to

BHK-21 cells that have superior RNA susceptibility compared to

Vero cells. Earlier, we observed that CHIKV isolates that have not

been passaged in rodent-derived cells lines (including SL07) are

impaired in their ability to replicate in BHK-21 cells (KT, SCW,

unpublished). Therefore, to ensure efficient recovery of CHIKV

VLPs from BHK-21 cells, double BHK-adaptive substitutions

(nsP1-L407P and nsP3-T348A) were introduced into the SL07 i.c.

(see Materials and Methods for details). Although these substitu-

tions increase replication capacity, rather than electroporation

efficiency, of CHIKV in BHK-21 cells, they have no effect on

mosquito infection (data not shown). The modified SL07 i.c

(contains nsP1-L407P and nsP3-T348A substitutions) was subse-

quently used to generate all CHIKV replicons used in the

mosquito infectivity study.

The SL07 replicon expressing green fluorescent protein (GFP)

was packaged into VLPs using w.t. SL07 helper (with E2-210L

and E1-226A residues) or using a modified helper encoding E2-

L210Q and E1-A226V substitutions. The SL07 replicon express-

ing cherry fluorescent protein (CFP) was packaged into VLPs using

a helper encoding E2-210L and E1-226V residues (Figure 6A). In

addition, the ApaI marker was introduced into the GFP-expressing

replicon. The infectious titers of all recovered VLPs, as determined

by titration on Vero cells, were identical (Figure 6A). Infection of

Vero and C6/36 cells with 1:1 mixtures of GFP and CFP

expressing VLPs [based on infectious unit (i.u.) titers] yielded equal

number of cells expressing these fluorescent proteins (data not

shown).

For mosquito experiments, GFP- and CFP-expressing VLPs

were mixed 1:1 (based on i.u. titers) and presented in blood meals

to A. albopictus as shown in (Figure 6A). At 1 and 2 dpi, midguts of

individual mosquitoes were dissected and analyzed by fluorescent

microscopy to determine a number of cells expressing GFP and

CFP in the same fields of vision (Figure 6B). We found that, on

average, midgut cells were 4–5 times more likely to become

infected with VLPs expressing the E2-210Q residue as compared

with VLPs expressing E2-210L (Figure 6D, 6E). Similarly, 4–5 fold

increases in relative amounts of E2-210Q RNA were observed

Figure 2. Effect of the E2-L210Q substitution on positive
selection of a mutant CHIKV strain within a wild-type
population during alternating passaging in A. albopictus
mosquitoes and Vero cells. A. Schematic representation of the
alternating passage experiment. The SL07-226V-210Q virus was mixed
with 100-fold excess of SL07-226V-Apa virus and presented orally to A.
albopictus (Galveston). At 10 dpi CHIKV was extracted from combined
head and leg homogenates derived from 50 individual mosquitoes and
used for Vero cells infection. The cycle was repeated a total of 3 times.
At 10 dpi of third mosquito passage, heads and legs of individual
mosquitoes were processed as described in the Materials and Methods.
B. Graph shows numbers and proportions of mosquitoes containing
virus populations expressing leucine (210L), glutamine (210Q) or both
residues (210L/210Q) in mosquito heads and legs after the third
passage in A. albopictus (representing disseminated infections). The
original mixture used to initiate the infections was not quantified
because the PCR-restriction digest assay cannot detect a minority
population present at only 1% frequency.
doi:10.1371/journal.ppat.1002412.g002
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after an ApaI digestion of RT-PCR amplicons derived from VLP-

infected midguts (Figure S4). Infectious viruses were not recovered

after infecting Vero cells with homogenates of 30 mosquitoes

infected with VLPs mixes (see Materials and Methods for details),

indicating that the hypothetical formation of full-length viruses via

recombination between helper and replicon RNAs, which could

confound the interpretation of this experiment, did not occur.

Altogether, these data demonstrate that the E2-L210Q substitu-

tion acts specifically by increasing initial CHIKV infectivity for

midgut cells of A. albopictus.

In a parallel experiment using VLPs, we also compared the

effect of the previously characterized E1-A226V substitution on

CHIKV infectivity for midguts of A. albopictus (Figure 6A). The

CFP-expressing replicon packaged using a helper encoding E2-

210L and E1-226V residues (CFP/E2-210L/E1-226V) was

competed against GFP-expressing replicon packaged using w.t.

SL07 helper encoding E2-210L and E1-226A residues (GFP/E2-

210L/E1-226A). In contrast to the polymorphism at E2-210, the

valine residue at position E1-226 provided a far greater (41-43

fold) increase in a midgut cell infection compared to the alanine

Figure 3. The effect of the E2-L210Q substitution on CHIKV fitness in A. aegypti mosquitoes and 293 cells. Above each figure is a
schematic representation of the viruses used in the competition assay. Asterisks indicate authentic (w.t.) residues for the SL07 strain at the indicated
positions. A and B. The effect of the E2-L210Q substitution on CHIKV fitness in A. aegypti. Graphs show numbers and proportions of mosquitoes
containing virus populations expressing leucine (210L), glutamine (210Q) or both residues (210L/210Q) in the background of E1-226A (A) and E1-
226V (B) viruses in heads and legs of A. aegypti (Thailand colony) assayed at 10 dpi. BM indicates combined titers of CHIKV (E2-210L and E2-210Q) in
blood meals used for mosquito infection. C and D. The effect of the E2-L210Q substitution on CHIKV fitness in 293 cells. 293 cells were infected at
multiplicity of 0.1 pfu/cell in triplicate with 1:1 mixture of [SL07-226V-Apa and SL07-226V-210Q] (C) and [SL07-226V and SL07-226V-210Q-Apa] (D). At
2 dpi, supernatants were collected for RNA extraction and RT-PCR analysis. The relative fitness (RF) within a given competition was determined as the
average ratio between E2-210L and E2-210Q bands in the sample (r), divided by the starting ratio of E2-210L and E2-210Q bands in the inoculum (i)
used for infection.
doi:10.1371/journal.ppat.1002412.g003
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residue at the same position (Figure 6C, 6D, 6E), which agrees

with previous results using infectious viruses [6,36]. These data

also indicate that the results of experiments using VLPs with 2

different fluorescent reporter proteins (GFP and CFP) cloned into

replicons RNAs are not influenced by those reporter proteins

themselves. The significant difference of ,10-fold between the

effects of the polymorphisms at positions E1-226 versus E2-210 on

CHIKV infectivity (p = 0.026 and p = 0.005 for 1 and 2 dpi

respectively) (Figure 6D, 6C) indicates that the E1-A226V

substitution exerts significantly stronger selection compared to

E2-L210Q, and thus would be expected to be selected faster

during CHIKV transmission by A. albopictus.

To corroborate these findings we also analyzed effect of the E2-

L210Q substitution on CHIKV infectivity for midgut cells of A.

albopictus when this substitution is expressed in the background of

w.t. CHIKV with the E1-226A residue. For this experiment, a GFP-

expressing replicon was packaged using a w.t. SL07 helper encoding

E2-210L and E1-226A residues (GFP/E2-210L/E1-226A), and was

competed against a CFP-expressing replicon packaged using a

helper encoding E2-210Q and E1-226A residues (GFP/E2-210Q/

E1-226A). The E2-L210Q substitution caused a 2.3–2.4-fold

increase in CHIKV infectivity for A. albopictus midgut cells

(Figure 7), which was about 17.5 times weaker than the effect of

the E1-A226V substitution in the same genetic background.

Similarly, using direct competition experiments between infectious

viruses SL07 and SL07-210Q-Apa (both have the E1-226A residue)

we observed that the E2-L210Q substitution provided a mean 2.0-

fold increase in dissemination efficiency of CHIKV (p = 0.022)

(Figure S5) in the Thailand strain of A. albopictus. These data indicate

that the E2-L210Q substitution would be selected more efficiently in

CHIKV strains that previously acquired the E1-226V mutation.

Discussion

In this study we showed that an E2-L210Q substitution recently

identified in CHIKV populations of Kerala State, India, when

Figure 4. Effect of the E2-L210Q substitution on CHIKV fitness in A. albopictus bodies, carcasses and midguts after oral or
intrathoracic infection. A, B and C. A. albopictus were fed blood meals containing 1:1 mixes of [SL07-226V-Apa and SL07-226V-210Q] (A and B)
and [SL07-226V and SL07-226V-210Q-Apa] (C) viruses. At 1, 2, 3 (B and C) and 7 dpi (A) whole mosquito bodies (A), carcasses without midguts (A), or
midguts (A, B and C) were collected in pools of ten and processed as described above. BM indicates combined titers of competitors in blood meals
used for mosquito infection. D. SL07-226V-Apa and SL07-226V-210Q were mixed at a 1:1 ratio (total concentration of 56104 pfu/mL), and 0.5 mL was
used to infect A. albopictus intrathoracically. At 1 and 2 dpi whole mosquitoes were collected in pools of 5 and processed as described above. The
relative fitness (RF) for viruses during competition was determined as the average ratio between E2-210Q and E2-210L bands in the sample, divided
by the starting ratio of E2-210Q and E2-210L bands in the BM (A, B and C) or inoculum (D) used for mosquito infections.
doi:10.1371/journal.ppat.1002412.g004

Figure 5. Effect of the E2-L210Q substitution on CHIKV infectivity for A. albopictus. Mosquitoes (Thailand) were orally infected with serial
10-fold dilutions of SL07-226V or SL07-226V-210Q viruses in infectious blood meals (BM). At 10 dpi CHIKV infection in individual mosquito was
detected by observing virus-induced CPE in Vero cells inoculated with mosquito homogenates. The OID50 values were calculated using the PriProbit
program (version 1.63) and expressed as Log10(pfu)/mL (A). The difference in the infection rates between SL07-226V and SL07-226V-210Q viruses was
tested for significance with a two-tailed Fisher̀s exact test (B).
doi:10.1371/journal.ppat.1002412.g005
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Figure 6. Effect of the E2-L210Q and E1-A226V substitutions on infectivity of CHIKV VLPs for midguts of A. albopictus (Thailand). A.
Schematic representation of VLP production and the experimental design used. At 1 and 2 dpi, mosquito midguts were analyzed by fluorescent
microscopy to determine the number of cells expressing GFP and CFP in the same field of vision. B. Representative image showing number of GFP-
and CFP-expressing cells in individual midguts infected with GFP/210Q/226V and CFP/210L/226V VLPs at 1 and 2 dpi. C. Representative image
showing number of GFP- and CFP-expressing cells in individual midguts infected with CFP/210L/226V and GFP/210L/226A VLPs at 1 and 2 dpi. D and
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expressed in the background of the initial adaptive E1-226V

substitution, confers a selective advantage by increasing initial

infection of A. albopictus midgut epithelial cells. Efficient infection of

midguts promotes subsequent CHIKV dissemination into the

hemocoel and transmission by this vector. However, the E2-

L210Q substitution has no apparent effect on CHIKV fitness in

the other primary mosquito vector, A. aegypti, or on fitness in cell

culture models for primate infection (Vero and 293 cells). These

results as well as surveillance data indicating that CHIKV was

transmitted primarily by A. albopictus in Kerala state of India when

the E2-L210Q substitution was first detected [24–27], provide a

comprehensive evolutionary explanation for its appearance in

2009. These results also indicate that adaptation of CHIKV to A.

albopictus mosquitoes mediated by the previously characterized E1-

A226V substitution was probably just a beginning of multi-step

adaptive process that included the selection of a second (E2-

L210Q) and possibly additional, future mutational steps by IOL

strains now circulating in urban areas. These mutations, which

have no deleterious effect on transmission by A. aegypti, will enable

CHIKV to even more efficiently exploit urban transmission in

environments populated by A. albopictus, but also to maintain the

ability to utilize A. aegypti, which tends to occur in major urban

centers [54]. Thus, our findings regarding the continued

adaptation of CHIKV to A. albopictus raise serious public health

concerns that even more efficient transmission may exacerbate the

already devastating CHIK epidemics in India and Southeast Asia.

Furthermore, the introduction of the E2-L210Q strain into new

areas like Italy and France, where autochthonous cases have

already occurred [55–57], could spread epidemics into temperate

climates where A. albopictus thrives. Considering the broad global

distribution of A. albopictus, including nearly throughout the

Americas, the E2-L210Q substitution may significantly increase

the risk of CHIKV becoming endemic in additional locations.

Interestingly, Niyas et al. (2010) demonstrated that CHIKV

strains with the E2-L210Q substitution can be isolated from adult

A. albopictus mosquitoes that were reared from wild-caught larvae

collected in Kerala State, suggesting that transovarial transmission

(TOT) may also play a role in CHIKV maintenance, especially

during dry seasons [27,58]. Also, evidence suggests that TOT

occurred in a small percentage of wild mosquitoes during recent

CHIK outbreaks on Reunion Island, Madagascar, and in

Thailand [59–61]. Although we did not attempt to study the

effect of the E2-L210Q substitution on TOT, and at least one

laboratory study failed to demonstrate TOT in A. albopictus of

CHIKV strains with the E1-A226V substitution [58], so the

possibility that CHIKV mutations could influence rates of TOT

warrants a thorough investigation.

The molecular mechanism explaining the effects of the E2-

L210Q substitution on CHIKV infectivity for A. albopictus midgut

cells remains unknown. Earlier, we hypothesized that the E2

region around position 211 could be directly involved in

interactions with a specific cell surface receptor [46]. We showed

that the E2-211T residue mediates a significant increase in

infectivity for A. albopictus in concert with the E1-A226V

substitution, and that residue E2-211I, which is common among

CHIKV strains, blocks this effect. Moreover, using virus overlay

protein binding assays (VOPBA) to study CHIKV binding to the

proteins associated with the brush border membrane fraction of A.

albopictus midguts, we demonstrated that the E2-T211I substitution

dramatically alters CHIKV interactions with as yet unidentified

proteins (KT unpublished). The recently determined crystal

structure of the CHIKV E2 glycoprotein [39] provides additional

insights into the possible involvement of residues E2-211 and E2-

210 in interactions with a putative mosquito receptor (Figure 8).

Both positions are located at the C’B sheet of the E2 protein, which

is exposed on the virion surface on the lateral side of domain B,

suggesting that these positions could be involved in interactions

with cellular proteins. Substitutions of the aliphatic moieties with

polar residues in this region may therefore be directly responsible

for changing CHIKV affinities to as yet unidentified receptor(s).

Interestingly, positions E2-207, E2-213 and E2-218, which have

been shown to be involved in VEEV adaptation to equine and

mosquito hosts [5,7,42], are also located in the same lateral surface

of domain B, further supporting the hypothesis that E2-L210Q

enables CHIKV to interact with a particular protein expressed on

the surface of midgut cells. The studies to identify these protein(s)

are underway.

In the study by Niyas et al (2010) that discovered the E2-L210Q

substitution in CHIKV strains from Kerala, only limited portions

of CHIKV genomes including the nsP2, E2 and E1 genes were

sequenced [27]. Since we did not have an access to these isolates

or to complete sequence of these strains, we cannot rule out the

possibility that other genome regions could be influencing CHIKV

evolution in Kerala State. Epistatic mutations in different genome

positions can dramatically affect CHIKV infection of A. albopictus

[9]. For example, the recently determined, lineage-specific

epistatic interactions between positions E1-226 and E1-98

probably limited for at least 60 years the emergence and

establishment of new CHIKV strains in Asian regions inhabited

by A. albopictus [9]. This suggests that Kerala strains of CHIKV

might have acquired adaptive substitutions in addition to E2-

L210Q that promote efficient transmission in the human-A.

albopictus cycle, and indicates the need for a more detailed,

continuous molecular characterization of CHIKV strains from

throughout its distribution.

We also investigated if residue E1-226 has an epistatic effect on

amino acid E2-210. The E2-L210Q substitution was detected only

in CHIKV strains that already acquired the E1-A226V substitu-

tion. We observed that the E2-L210Q substitution mediates a 4–5-

fold increase in A. albopictus midgut infectivity when expressed in

the background of E1-226V, whereas the same substitution caused

only a 2.3–2.4-fold increase when expressed in the background of

E1-226A (Figure 6 and 7). These results indicate that selection of

this mutation would have been even less efficient if it had occurred

in a CHIKV strain that did not yet acquire E1-A226V change.

Interestingly, our data show that, with regard to CHIKV

infectivity of A. albopictus midgut cells, E2-L210Q has an

approximately 17-fold (E1-226A background) or 10-fold (E1-

226V background) weaker effect compared with E1-A226V

(Figure 6 and 7). This could explain why E1-A226V was selected

convergently by unrelated CHIKV strains on at least 4 well

documented occasions, while selection of E2-L210Q has thus far

been observed only once in Kerala State (Figure S1). The stronger

fitness effect of E1-A226V is consistent with its historically faster

selection, which resulted in a selective sweep in parts of the Indian

Ocean, India and Southeast Asia, compared with E2-L210Q,

which has predominance in only one location. After CHIKV

introduction into a region with large A. albopictus populations, the

E. Each dot corresponds to a fold-difference in the number of cells expressing GFP vs. CFP [E2-210 (Q/L)] or CFP vs. GFP [E1-226 (V/A)] in individual
mosquito midguts at 1 dpi (D) and 2 dpi (E). Red horizontal line represents the mean fold-difference for 5–10 individual midguts. The difference
between strains expressing E2-L210Q and E1-A226V residues on VLP infectivity was compared for significance with a two-tailed Student̀s t-test.
doi:10.1371/journal.ppat.1002412.g006
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Figure 7. Effect of the E2-L210Q substitution, expressed in the background of E1-226A, on infectivity of CHIKV VLPs for midguts of
A. albopictus (Thailand). A. Schematic representation of VLP production and the experimental design. At 1 and 2 dpi, mosquito midguts were
analyzed by fluorescent microscopy to determine the number of cells expressing GFP and CFP in the same field of vision. B. Representative image
showing number of GFP- and CFP-expressing cells in individual midguts infected with GFP/210L/226V and CFP/210Q/226A VLPs. C. Each dot
corresponds to the fold-difference in the number of cells expressing CFP vs. GFP [E2-210 (Q/L)] in individual mosquito midguts at 1 dpi and 2 dpi. Red
horizontal line represents the mean fold-difference for 10 individual midguts.
doi:10.1371/journal.ppat.1002412.g007
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E1-A226V substitution has consistently taken about 0.5-1 year to

appear [24,28], whereas the E2-L210Q change was observed after

at least 3 years of circulation in Kerala State [27] (Figure S1).

More studies are needed to determine the precise dynamics of the

selective sweeps associated with both mutations.

Another interesting observation is that both A. albopictus-

adaptive substitutions exert their effect on CHIKV fitness

primarily at the level of midgut infectivity (Figure 4 and 6). The

overall increase in the number of midgut cells infected with

CHIKV VLPs expressing E2-210Q correlates with the increase in

dissemination efficiency observed for infectious viruses. Also, the

relative increase in the amount of E2-210Q RNA in midguts

infected with VLPs is almost indistinguishable from the relative

increase in amount of E2-210Q RNA in midguts exposed to

infectious viruses (Figure 4 and S4). Although we did not examine

replication in a comprehensive set of mosquito tissues, these results

suggest that, after establishing an initial infection from the midgut

lumen, the subsequent spread of viruses among neighboring cells is

not influenced by position E2-210. Moreover, no differences were

observed in CHIKV replication in A. albopictus bodies after

intrathoracic infection, indicating that replication of CHIKV in

secondary mosquito organs also is unaffected by residue E2-210

(Figure 4). Similar observations were provided earlier for position

E1-226 [62]. Experimental studies of epizootic versus enzootic

VEEV VLP interactions with the epidemic vector, A. taeniorhynchus,

also indicated that midgut epithelia is the target organ for VEEV

adaptation to this vector [63]. These findings suggest that

adaptation of alphaviruses to a mosquito vector primarily occurs

at the level of midgut infection.

In summary, we demonstrated that adaptation of CHIKV to a

new mosquito vector can be a multistep process that, since 2005,

has involved at least 2 amino acid substitutions in the envelope

glycoproteins. The substitution that provides the strongest selective

advantage, E1-A226V, was followed by second adaptive mutation

(E2-L210Q) that has resulted in a strain circulating in India with

the fittest phenotype detected yet for transmission by A. albopictus.

We hypothesize that this sequential adaptation will facilitate even

more efficient circulation and persistence of the A. albopictus-

adapted strains in endemic areas and will further increase the risk

of expanded and more severe CHIK epidemics in new geographic

ranges. This underscores the need for continued surveillance and

studies of ongoing CHIKV evolution, as well as the molecular

mechanisms that govern CHIKV adaptation to new environ-

ments.

Materials and Methods

Viruses and plasmids
The SL07 (SL-CK1) strain of CHIKV was isolated in 2007

from a human in Sri-Lanka (GenBank Acc. No. HM045801.1).

This strain belongs to Indian subgroup of the IOL [9] and was

obtained from the World Reference Center for Emerging Viruses

and Arboviruses (WRCEVA) at the University of Texas Medical

Branch, Galveston, TX after its generous submission by Aravinda

de Silva of the University of North Carolina. Since its isolation the

strain was passed twice on Vero cells before being used for i.c.

construction. Viral RNA was extracted from lyophilized virus

stock using TRIzol reagent (Invitrogen, Carlsbad, CA), reverse-

transcribed using Superscript III (Invitrogen, Carlsbad, CA) and

cDNA was amplified using Pfu DNA polymerase (Stratagene, La

Jolla, CA) and PCR. To assemble the i.c., overlapping RT-PCR

amplicons were cloned into modified pSinRep5 vector (Invitrogen)

under the control of an SP6 promoter using a strategy described

previously for strain LR2006 OPY1 [64]. Point mutations

10670CRT (E1-A226V), 9170TRA (E2-L210Q) and

6454ARC (synonymous, ApaI marker) were introduced in various

combinations into the i.c. of SL07 using conventional PCR-based

cloning methods [65], and the PCR-generated regions were

completely sequenced. Plasmids encoding sub-genomic replicons

of strain SL07 were generated from the i.c. of the BHK-21 cell-

adapted version of this strain [SL07-BHK that contains

1296TRC and 5087ARG (nsP1-L407P and nsP3-T348A)

substitutions] which was reported previously [9]. These mutations

were identified by electroporation of the SL07 i.c. into BHK-21

cells, followed by sequencing of the recovered, plaque purified

viruses. Replicons were generated by replacing the structural gene

region of SL07-BHK with the sequence of eGFP or CFP genes

utilizing standard techniques [64,66]. In addition, a point

mutation 6454ARC (synonymous, ApaI marker) was introduced

into the pRep-GFP construct that allows comparison of the

relative RNA quantities in an experimental, mixed infection

sample. The helper plasmids were generated by deleting the 373–

7270 nt. cDNA fragment from i.c. of SL07 that has mutations of

interest at E1-226 and E2-210. Plasmids were propagated using

the MC1061 strain of E. coli in 2xYT medium and purified by

centrifugation in cesium chloride gradients. Detailed information

for all plasmids is available from the authors upon request.

Cells and mosquitoes
Vero cells (African green monkey kidney) were propagated at

37uC, with 5% CO2, in Minimal Essential Medium (MEM;

Invitrogen, Carlsbad, CA) supplemented with 5% fetal bovine

serum (FBS). BHK-21(S) [Baby Hamsters Kidney] and 293

(Human Embryonic Kidney) cells were maintained at 37uC with

5% CO2 in MEM-alpha (Invitrogen) supplemented with 10% FBS

and 1x MEM vitamin solution (Invitrogen). The Galveston

colonies of A. albopictus and A. aegypti mosquitoes were established

from the mosquitoes collected in Galveston, TX (USA). Thailand

colonies of A. albopictus and A. aegypti mosquitoes were established

from mosquito eggs collected in Bangkok, Thailand. All

manipulations and handling of mosquitoes were done as described

previously [67].

Recovery of the infectious viruses and VLPs from the i.c.
Infectious viruses were generated by electroporation of the in-

vitro transcribed RNA into Vero cells. RNA was transcribed from

Figure 8. Atomic structure of the CHIKV E2 glycoprotein
demonstrating positions in domain B involved in regulation
of the alphavirus host range. A. Trimeric form of E2 protein, view
from the top. B. Domain B of CHIKV E2 protein with positions involved
in CHIKV adaptation to A. albopictus [green (E2-210) and cyan (E2-211)].
Positions involved in modulation of VEEV host range are in magenta
[5,7,42]. Image is constructed based on atomic structure of CHIKV E2
protein [PDB ID:3N44, [39]]. The 3-D model was analyzed using the
PyMol molecular viewer [70].
doi:10.1371/journal.ppat.1002412.g008
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SP6 promoter of the NotI linearized i.c. DNA using the

mMESSAGE mMACHINE kit (Ambion, Austin TX). Ten mg of

RNA were electroporated into 107 Vero cells using a BTX-

Harvard Apparatus ECM 830 Square Wave Electroporator

(Harvard Apparatus, Holliston, MS) and 2mm cuvette at the

following conditions: 680V, pulse length 99 ms, 5 pulses, with an

interval between the pulses of 200ms. Cells were transferred to a

75 cm2 tissue culture flasks with 14 mL of Leibovitz L-15 (L-15)

medium supplemented with 10% FBS and 5% tryptose phosphate

broth (Sigma-Aldrich, St. Louis, MO). At 3 h post electroporation

the cell supernatant was replaced with 14 mL of L-15 medium and

maintained at 37 uC without CO2. Cell culture supernatants were

collected at 24 and 48 h and stored at 280uC.

To estimate the specific infectivity of electroporated RNAs, an

aliquot containing 1x105 electroporated Vero cells was serially ten-

fold diluted and cells were allowed to attach to sub-confluent

monolayers (1x106 cells/well) of uninfected Vero cells in six-well

plates [64]. After 2 h of incubation at 37uC, cells were overlaid

with 0.5% agarose in MEM supplemented with 3.3% FBS and

incubated for 48 h until plaques developed. The results (specific

infectivity values) were expressed as pfu/mg of electroporated RNA

(Table S1). Titers of the viruses recovered after electroporation

and all experimental samples were determined by titration on

Vero cells by plaque assay as previously described [7].

To generate CHIKV VLPs expressing residues of interest in E2

and E1 glycoproteins, BHK-21(S) cells were used, which have

superior RNA susceptibility compared to Vero cells. To ensure

efficient recovery of CHIKV VLPs from BHK-21 cells, all

CHIKV replicons were designed to include BHK-adaptive

mutations (nsP1-L407P and nsP3-T348A) identified after rescue

of w.t. i.c’s in BHK-21(S) cells. Ten micrograms of in-vitro

transcribed replicon and helper RNA were mixed and electropo-

rated into 107 BHK-21(S) cells as described above for Vero cells.

Cells were maintained in L-15 medium at 37uC, followed by

harvesting supernatants at 30 h post-electroporation. The titer of

VLPs was determined by titration on Vero cells as described

earlier [68]. Briefly, 16106 Vero cells were seeded in six-well

plates and, after a 16 h incubation at 37uC, monolayers were

infected with 10-fold dilutions of the samples for 1 h at 37uC,

followed by adding 2 mL of MEM. After 24 h of incubation at

37uC the numbers of GFP- or CFP-expressing cells were

quantified by fluorescent microscopy and titers were expressed

as infectious units (i.u.)/mL.

Mosquito infectivity experiments
The role of viral mutations at position E2-210 on CHIKV

dissemination in A. albopictus and A. aegypti mosquitoes was

analyzed using direct competition experiment as described earlier

[6,9]. A pair of viruses that differed by mutations of interest in the

E2 protein was mixed at a 1:1 ratio, with one of the viruses

containing the ApaI marker. Viral mixes were used to prepare

infectious blood meals by dilution in an equal volume of the

defibrinated sheep blood (Colorado Serum, Denver, CO), then

orally presented to 4–5 day old female mosquitoes at 37uC as

described previously [6,67]. Ten days post infection, heads and

legs of individual mosquitoes were triturated in 500 mL of MEM

media containing 5 mg/mL of Amphotericin B (Fungizone), and

100 mL of clarified supernatant were added to duplicate wells of a

96-well plate containing 5x104 Vero cells/well. At 3 dpi,

supernatant from virus-induced CPE (cytopathic effect)-positive

wells was used for RNA extraction followed by RT-PCR with

41855ns-F5 (5̀-ATATCTAGACATGGTGGAC) and 41855ns-

R1 (5̀-TATCAAAGGAGGCTATGTC) primers sets using One-

Step RT-PCR kit (Qiagen, Valencia, CA). The PCR products

were digested with ApaI restrictase (NEB, Ipswich, MA) and

separated on 1.5% agarose gels followed by ethidium bromide

staining. One PCR band in the digested sample corresponded to

disseminated infection for one out of two viruses in the pair; two

bands indicated that both viruses disseminated in the same

mosquito. Differences in dissemination efficiencies were tested for

significance with a one-tailed McNemar test.

Viral competition experiments with serial, alternating CHIKV

passaging in A. albopictus and Vero cells were performed as

described above with minor modifications. For the first passage,

virus SL07-226V-210Q was mixed with 100-fold excess SL07-

226V-Apa to generate infectious blood meals containing

5x105 pfu/mL (combined). The blood meal was used for oral

infection of A. albopictus (Galveston colony) followed by virus

extraction from combined head and leg homogenates derived

from 50 individual mosquitoes in 1.5 mL of MEM medium at

10 dpi. Homogenates were filtered and used to infect 75 cm2 flasks

of Vero cells. At 2 dpi, cell culture supernatants were diluted 1:10

in L-15 medium and mixed with equal volumes of defibrinated

sheep blood to prepare a blood meal for the second passage. The

cycle was repeated a total of 3 times. At 10 dpi of third mosquito

passage, heads and legs of individual mosquitoes were processed as

described above.

For CHIKV competition experiments in specific body parts of

A. albopictus, the mosquitoes were exposed to blood meals

containing 1:1 mixes of [SL07-226V-Apa and SL07-226V-

210Q] and [SL07-226V and SL07-226V-210Q-Apa]. Depending

on the experiment, at 1, 2, 3 and 7 dpi whole mosquito bodies,

mosquito carcasses, or mosquito midguts were collected in pools of

ten, and were used for RNA extraction using TRIzol (Invitrogen,

Carlsbad, CA). RNA was RT-PCR amplified, followed by ApaI

restrictase digestion of amplicons as described above. Gel images

were analyzed using TolaLab (version 2.01) and relative fitness for

a given virus during competition was determined as the ratio

between E2-210L and E2-210Q bands in the sample, divided by

the starting ratio of E2-210L and E2-210Q in the blood meal. The

results were expressed as an average value of 2 pools of 10

mosquitoes midguts per pool.

For CHIKV competition experiments in intrathoracically

infected mosquitoes, 5 pfu of SL07-226V-Apa and 5 pfu of

SL07-226V-210Q in 0.5 mL of L-15 media were directly injected

into thoraxes of cold-anesthetized A. albopictus (Galveston colony)

using capillary needles as described previously [69]. RNA from 2

pools, 5 mosquitoes/pool, was extracted at 1 and 2 dpi and

processed as described above.

To investigate the relationship between the blood meal titers

and infection rates in A. albopictus, the SL07-226V and SL07-

226V-210Q viruses individually were serially 10-fold diluted,

mixed with defibrinated sheep blood and presented orally to A.

albopictus (Thailand). At 10 dpi individual mosquitoes were

triturated in one mL of MEM and used to infect 5x104 Vero

cells in duplicate in 96 well plates. CHIKV was detected by

observing virus-induced CPE. The difference in the infection rates

between SL07-226V and SL07-226V-210Q was tested for

significance with a two-tailed Fisher̀s exact test. The oral infectious

dose 50% (OID50) values were calculated using the PriProbit

program (version 1.63).

For VLP experiments, A. albopictus (Thailand) were infected with

1:1 mixes (based on i.u. titers) of GFP- or CFP-expressing

subgenomic replicons packaged into VLPs using CHIKV helpers

that differed by substitutions at positions E1-226 and E2-210

(Figure 6A and 7A). At 1 and 2 dpi, 5–10 mosquito midguts were

dissected in PBS, and cut longitudinally to generate monolayers of

epithelial cells. These sheets were rinsed in PBS to remove residual
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blood and gently spread out on a glass slide. A cover slip was

applied and the midgut sheets were immediately analyzed by

fluorescent microscopy to determine the numbers of cells

expressing GFP and CFP in the same field of vision. One or two

fields of vision were analyzed for each midgut sheet. In parallel

experiment, midguts infected with VLPs packaged using helpers

that differ by substitutions at position E2-210 were dissected at 1, 2

and 3 dpi, collected in pools of ten, which were used for RNA

extraction using TRIzol (Invitrogen). The RNA was processed as

described above.

To demonstrate that replicon and helper RNAs did not

recombine to generate infectious virus capable of autonomous

replication, 30 mosquitoes were infected with VLPs mixes and at

7 dpi were triturated in 1 mL of MEM, filter sterilized and 300 mL

of homogenate was used to infect each of 3 wells of confluent Vero

cells in six-well plates. After 1 h of infection at 37uC, 2 mL of

MEM was added to each well, followed by incubation at 37uC
with 5% CO2. Cells were observed daily for signs of CPE for 5

days.

CHIKV competition in Vero and 293 cells
To investigate the effect of substitutions at E2-210 on CHIKV

fitness in Vero and 293 cells, these cells were infected at a

multiplicity 0.1 pfu/cell in triplicate with 1:1 mixtures of [SL07-

226V-Apa and SL07-226V-210Q] and [SL07-226V and SL07-

226V-210Q-Apa] viruses. Cells were maintained at 37 uC with 5%

CO2 in MEM and at 2 dpi, supernatants were collected for RNA

extraction and processed as described above.

Supporting Information

Figure S1 Evolutionary history of the E1-A226V and E2-
L210Q substitutions in different CHIKV lineages of the
ECSA clade. Black arrows correspond to the emergence and

movement of the CHIKV lineages with the E1-226A residue. Red

arrows correspond to the acquisition of the E1-A226V substitu-

tion. Blue arrow corresponds to acquisition of the E2-L210

substitution. The graph was constructed based on the data

published in [24,27–30].

(TIF)

Figure S2 The effect of the E2-L210Q substitution on
CHIKV fitness in Vero cells. Above each figure is a schematic

representation of the viruses used in the competition assay. Vero

cells were infected at multiplicity of infection of ,0.1 pfu/cell in

triplicate with a 1:1 mixture of [SL07-226V-Apa and SL07-226V-

210Q] (A) and [SL07-226V and SL07-226V-210Q-Apa] (B). At

2 dpi cell culture supernatants were collected for RNA extraction

and viral RT-PCR analysis. The relative fitness (RF) within a

given competition was determined as the average ratio between

E2-210L and E2-210Q bands in the sample (r), divided by the

starting ratio of E2-210L and E2-210Q bands in the inoculum (i)

used for infection.

(TIF)

Figure S3 The effect of the E2-L210Q substitution on
CHIKV fitness in A. aegypti (Galveston colony). Above is a

schematic representation of the viruses used in the competition

assay. Asterisks indicate authentic (w.t.) residues for the SL07

strain at the indicated positions. Graph shows numbers and

proportions of mosquitoes containing virus populations expressing

leucine (210L), glutamine (210Q) or a mixture of both residues

(210L/210Q) in heads and legs of A. aegypti (Galveston colony)

assayed at 10 dpi. BM indicates combined titers of CHIKV (E2-

210L and E2-210Q) in blood meals used for mosquito infection.

The difference in number of mosquitoes with E2-210L versus E2-

210Q residues was tested for significance with a one-tailed

McNemar test.

(TIF)

Figure S4 Effect of the E2-L210Q substitution on
replication of CHIKV replicon particles in A. albopictus
midguts after oral infection with VLPs. A - schematic

representation of VLP production and the experimental design

used in the mosquito infectivity study. A. albopictus (Thailand

colony) were orally infected with blood meals containing

3x106 i.u./mL of GFP/210Q/226V and 3x106 i.u./mL of

CFP/210L/226V VLPs. At 1, 2 and 3 dpi, mosquito midguts

were dissected and 2 pools of 5 midguts per pool were used for

RNA extraction and RT-PCR analysis (B). Relative fitness (RF)

was determined as the average ratio between bands correspond-

ing to VLPs expressing E2-210Q and E2-210L residues in the

sample, divided by the initial ratio of E2-210Q and E2-210L

bands in the BM used for mosquito infections.

(TIF)

Figure S5 Effect of the E2-L210Q substitution expressed
in the background of the E1-226A residue on dissemi-
nation of CHIKV in A. albopictus mosquitoes (Thai-
land). Above is a schematic representation of the viruses used in

the competition assay. Asterisks indicate authentic (w.t.) residues

for the SL07 CHIKV strain at the indicated positions. A 1:1

mixture of viruses SL07 and SL07-210Q-Apa was presented

orally to A. albopictus and at 10 dpi, the presence of disseminated

E2-210L and E2-210Q CHIKV infection was assayed as

described in the Materials and Methods. Graphs show numbers

and proportions of mosquitoes containing virus populations

expressing leucine (210L), glutamine (210Q) or containing both

residues (210L/210Q) in mosquito heads and legs (representing

disseminated infections). The difference in numbers of mosqui-

toes with E2-210L versus E2-210Q residues was tested for

significance with a one-tailed McNemar test. BM indicates

combined titers of competitors in blood meal used for mosquito

infection.

(TIF)

Table S1 Recovery of the viruses after electroporation
of in vitro transcribed RNA. a – amino acids at positions E1-

226. b – amino acids at positions E2-210. c – specific infectivity of

in vitro transcribed RNA expressed as pfu/1 mgRNA. d –

supernatants of electroporated Vero cells were collected at 48 h.

Virus titers were determined by titration on Vero cells and

expressed as Log10(pfu)/mL. h – hours post electroporation.

(DOC)

Acknowledgments

We thank Naomi Forrester, Charles McGee, Nikos Vasilakis and Evgeniya

Volkova for critically reviewing the manuscript, Robert Tesh for providing

the SL07 strain of CHIKV and Jing Huang, Rubing Chen, and Eryu

Wang for technical assistance.

Author Contributions

Conceived and designed the experiments: KAT SCW. Performed the

experiments: KAT. Analyzed the data: KAT SCW. Wrote the paper: KAT

SCW.

Chikungunya Virus Adapts via Sequential Mutations

PLoS Pathogens | www.plospathogens.org 13 December 2011 | Volume 7 | Issue 12 | e1002412



References

1. Domingo E (2010) Mechanisms of viral emergence. Vet Res 41: 38.

2. Nijhuis M, van Maarseveen NM, Boucher CA (2009) Antiviral resistance and
impact on viral replication capacity: evolution of viruses under antiviral pressure

occurs in three phases. Handb Exp Pharmacol. pp 299–320.

3. Parrish CR, Kawaoka Y (2005) The origins of new pandemic viruses: the

acquisition of new host ranges by canine parvovirus and influenza A viruses.

Annu Rev Microbiol 59: 553–586.

4. Zhang CY, Wei JF, He SH (2006) Adaptive evolution of the spike gene of SARS
coronavirus: changes in positively selected sites in different epidemic groups.

BMC Microbiol 6: 88.

5. Brault AC, Powers AM, Ortiz D, Estrada-Franco JG, Navarro-Lopez R, et al.

(2004) Venezuelan equine encephalitis emergence: enhanced vector infection

from a single amino acid substitution in the envelope glycoprotein. Proc Natl
Acad Sci U S A 101: 11344–11349.

6. Tsetsarkin KA, Vanlandingham DL, McGee CE, Higgs S (2007) A single
mutation in chikungunya virus affects vector specificity and epidemic potential.

PLoS Pathog 3: e201.

7. Anishchenko M, Bowen RA, Paessler S, Austgen L, Greene IP, et al. (2006)

Venezuelan encephalitis emergence mediated by a phylogenetically predicted
viral mutation. Proc Natl Acad Sci U S A 103: 4994–4999.

8. Brault AC, Huang CY, Langevin SA, Kinney RM, Bowen RA, et al. (2007) A
single positively selected West Nile viral mutation confers increased virogenesis

in American crows. Nat Genet 39: 1162–1166.

9. Tsetsarkin KA, Chen R, Leal G, Forrester N, Higgs S, et al. (2011) Chikungunya

virus emergence is constrained in Asia by lineage-specific adaptive landscapes.
Proc Natl Acad Sci U S A 108, 7872-7877.

10. Mavalankar D, Shastri P, Raman P (2007) Chikungunya epidemic in India: a
major public-health disaster. Lancet Infect Dis 7: 306–307.

11. Schwartz O, Albert ML (2010) Biology and pathogenesis of chikungunya virus.
Nat Rev Microbiol 8: 491–500.

12. Nvbdcp. gov (2011) Clinically Supected Chikungunya Fever Cases Since 2007.
Available: http://www.nvbdcp.gov.in/chik-cd.html. Accessed 30 October 2011.

13. Nvbdcp. gov (2006) Chikungunya Fever Situation in the Country during 2006.
Available: http://nvbdcp.gov.in/Chikun-cases.html. Accessed 30 October 2011.

14. Weaver SC, Reisen WK (2010) Present and future arboviral threats. Antiviral

Res 85: 328–345.

15. McCrae AW, Henderson BE, Kirya BG, Sempala SD (1971) Chikungunya virus

in the Entebbe area of Uganda: isolations and epidemiology. Trans R Soc Trop

Med Hyg 65: 152–168.

16. Diallo M, Thonnon J, Traore-Lamizana M, Fontenille D (1999) Vectors of

Chikungunya virus in Senegal: current data and transmission cycles. Am J Trop
Med Hyg 60: 281–286.

17. Weinbren MP, Haddow AJ, Williams MC (1958) The occurrence of
Chikungunya virus in Uganda. I. Isolation from mosquitoes. Trans R Soc Trop

Med Hyg 52: 253–257.

18. Jupp PG, McIntosh BM (1988) Chikungunya virus disease. In: Monath TP, ed.

The Arboviruses: Epidemiology and Ecology. Boca Raton: CRC Press. pp
137–157.

19. Powers AM, Logue CH (2007) Changing patterns of chikungunya virus: re-
emergence of a zoonotic arbovirus. J Gen Virol 88: 2363–2377.

20. Chevillon C, Briant L, Renaud F, Devaux C (2008) The Chikungunya threat: an
ecological and evolutionary perspective. Trends Microbiol 16: 80–88.

21. Inoue S, Morita K, Matias RR, Tuplano JV, Resuello RR, et al. (2003)

Distribution of three arbovirus antibodies among monkeys (Macaca fascicularis)

in the Philippines. J Med Primatol 32: 89–94.

22. Apandi Y, Nazni WA, Noor Azleen ZA, Vythilingam I, Noorazian MY, et al.

(2009) The first isolation of chikungunya virus from nonhuman primates in
Malaysia. J Gen Mol Virol 1: 035–039.

23. Yergolkar PN, Tandale BV, Arankalle VA, Sathe PS, Sudeep AB, et al. (2006)
Chikungunya outbreaks caused by African genotype, India. Emerg Infect Dis 12:

1580–1583.

24. Kumar NP, Joseph R, Kamaraj T, Jambulingam P (2008) A226V mutation in

virus during the 2007 chikungunya outbreak in Kerala, India. J Gen Virol 89:
1945–1948.

25. Eapen A, Ravindran KJ, Dash AP (2010) Breeding potential of Aedes albopictus
(Skuse, 1895) in chikungunya affected areas of Kerala, India. Indian J Med Res

132: 733–735.

26. Rao BB (2010) Larval habitats of Aedes albopictus (Skuse) in rural areas of

Calicut, Kerala, India. J Vector Borne Dis 47: 175–177.

27. Niyas KP, Abraham R, Unnikrishnan RN, Mathew T, Nair S, et al. (2010)

Molecular characterization of Chikungunya virus isolates from clinical samples
and adult Aedes albopictus mosquitoes emerged from larvae from Kerala, South

India. Virol J 7: 189.

28. Schuffenecker I, Iteman I, Michault A, Murri S, Frangeul L, et al. (2006)

Genome microevolution of chikungunya viruses causing the Indian Ocean
outbreak. PLoS Med 3: e263.

29. Hapuarachchi HC, Bandara KB, Sumanadasa SD, Hapugoda MD, Lai YL,
et al. (2009) Re-emergence of Chikungunya Virus in Southeast Asia: Virologic

Evidence from Sri Lanka and Singapore. J Gen Virol 91: 1067–1076.

30. de Lamballerie X, Leroy E, Charrel RN, Ttsetsarkin K, Higgs S, et al. (2008)

Chikungunya virus adapts to tiger mosquito via evolutionary convergence: a sign
of things to come? Virol J 5: 33.

31. Sam IC, Chan YF, Chan SY, Loong SK, Chin HK, et al. (2009) Chikungunya

virus of Asian and Central/East African genotypes in Malaysia. J Clin Virol 46:
180–183.

32. Ng LC, Tan LK, Tan CH, Tan SS, Hapuarachchi HC, et al. (2009)
Entomologic and virologic investigation of Chikungunya, Singapore. Emerg

Infect Dis 15: 1243–1249.

33. Li L, Jose J, Xiang Y, Kuhn RJ, Rossmann MG (2010) Structural changes of
envelope proteins during alphavirus fusion. Nature 468: 705–708.

34. Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way
to make a hairpin. Nat Rev Microbiol 4: 67–76.

35. Kielian M (2006) Class II virus membrane fusion proteins. Virology 344: 38–47.

36. Vazeille M, Moutailler S, Coudrier D, Rousseaux C, Khun H, et al. (2007) Two
Chikungunya isolates from the outbreak of La Reunion (Indian Ocean) exhibit

different patterns of infection in the mosquito, Aedes albopictus. PLoS One 2:
e1168.

37. Santhosh SR, Dash PK, Parida M, Khan M, Rao PV (2009) Appearance of E1:

A226V mutant Chikungunya virus in Coastal Karnataka, India during 2008
outbreak. Virol J 6: 172.

38. Kuhn RJ (2007) Togaviridae: The viruses and their replication. In: Knipe DM,
Howley PM, eds. Fields’ Virology, Fifth Edition. New York: Lippincott, Williams

and Wilkins. pp 1001–1022.

39. Voss JE, Vaney MC, Duquerroy S, Vonrhein C, Girard-Blanc C, et al. (2010)
Glycoprotein organization of Chikungunya virus particles revealed by X-ray

crystallography. Nature 468: 709–712.

40. Myles KM, Pierro DJ, Olson KE (2003) Deletions in the putative cell receptor-

binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut
infectivity in Aedes aegypti. J Virol 77: 8872–8881.

41. Burness AT, Pardoe I, Faragher SG, Vrati S, Dalgarno L (1988) Genetic stability

of Ross River virus during epidemic spread in nonimmune humans. Virology
167: 639–643.

42. Woodward TM, Miller BR, Beaty BJ, Trent DW, Roehrig JT (1991) A single
amino acid change in the E2 glycoprotein of Venezuelan equine encephalitis

virus affects replication and dissemination in Aedes aegypti mosquitoes. J Gen

Virol 72 (Pt 10): 2431–2435.

43. Wang KS, Schmaljohn AL, Kuhn RJ, Strauss JH (1991) Antiidiotypic antibodies

as probes for the Sindbis virus receptor. Virology 181: 694–702.

44. Wang KS, Strauss JH (1991) Use of a lambda gt11 expression library to localize

a neutralizing antibody-binding site in glycoprotein E2 of Sindbis virus. J Virol

65: 7037–7040.

45. Heil ML, Albee A, Strauss JH, Kuhn RJ (2001) An amino acid substitution in

the coding region of the E2 glycoprotein adapts Ross River virus to utilize
heparan sulfate as an attachment moiety. J Virol 75: 6303–6309.

46. Tsetsarkin KA, McGee CE, Volk SM, Vanlandingham DL, Weaver SC, et al.

(2009) Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya
virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One 4: e6835.

47. Kariuki Njenga M, Nderitu L, Ledermann JP, Ndirangu A, Logue CH, et al.
(2008) Tracking epidemic Chikungunya virus into the Indian Ocean from East

Africa. J Gen Virol 89: 2754–2760.

48. Volk SM, Chen R, Tsetsarkin KA, Adams AP, Garcia TI, et al. (2010) Genome-

scale phylogenetic analyses of chikungunya virus reveal independent emergences

of recent epidemics and various evolutionary rates. J Virol 84: 6497–6504.

49. Tesh RB, Gubler DJ, Rosen L (1976) Variation among goegraphic strains of

Aedes albopictus in susceptibility to infection with chikungunya virus. Am J Trop
Med Hyg 25: 326–335.

50. Kaur P, Ponniah M, Murhekar MV, Ramachandran V, Ramachandran R,

et al. (2008) Chikungunya outbreak, South India, 2006. Emerg Infect Dis 14:
1623–1625.

51. Dwibedi B, Sabat J, Mahapatra N, Kar SK, Kerketta AS, et al. (2011) Rapid
spread of chikungunya virus infection in Orissa: India. Indian J Med Res 133:

316–321.

52. Dutta P, Khan SA, Khan AM, Borah J, Chowdhury P, et al. (2011) First
evidence of chikungunya virus infection in Assam, Northeast India. Trans R Soc

Trop Med Hyg 105: 355–357.

53. Bredenbeek PJ, Frolov I, Rice CM, Schlesinger S (1993) Sindbis virus expression

vectors: packaging of RNA replicons by using defective helper RNAs. J Virol 67:

6439–6446.

54. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger:

global risk of invasion by the mosquito Aedes albopictus. Vector Borne Zoonotic
Dis 7: 76–85.

55. Angelini R, Finarelli AC, Angelini P, Po C, Petropulacos K, et al. (2007)

Chikungunya in north-eastern Italy: a summing up of the outbreak. Euro
Surveill 12: E071122 071122.

56. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, et al. (2007) Infection
with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370:

1840–1846.

57. Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y, et al. (2011)

Chikungunya virus, southeastern france. Emerg Infect Dis 17: 910–913.

58. Vazeille M, Mousson L, Failloux AB (2009) Failure to demonstrate experimental
vertical transmission of the epidemic strain of Chikungunya virus in Aedes

albopictus from La Reunion Island, Indian Ocean. Mem Inst Oswaldo Cruz
104: 632–635.

Chikungunya Virus Adapts via Sequential Mutations

PLoS Pathogens | www.plospathogens.org 14 December 2011 | Volume 7 | Issue 12 | e1002412



59. Delatte H, Paupy C, Dehecq JS, Thiria J, Failloux AB, et al. (2008) Aedes

albopictus, vector of chikungunya and dengue in Reunion: biology and control.
Parasite 15: 3–13.

60. Thavara U, Tawatsin A, Pengsakul T, Bhakdeenuan P, Chanama S, et al. (2009)

Outbreak of chikungunya fever in Thailand and virus detection in field
population of vector mosquitoes, Aedes aegypti (L.) and Aedes albopictus Skuse

(Diptera: Culicidae). Southeast Asian J Trop Med Public Health 40: 951–962.
61. Ratsitorahina M, Harisoa J, Ratovonjato J, Biacabe S, Reynes JM, et al. (2008)

Outbreak of dengue and Chikungunya fevers, Toamasina, Madagascar, 2006.

Emerg Infect Dis 14: 1135–1137.
62. Tsetsarkin K (2009) Adaptation of chikungunya virus to aedes albopictus

mosquitoes: the role of mutations in the e1 and e2 glycoproteins. Galveston: The
University of Texas Medical Branch. 276 p.

63. Smith DR, Adams AP, Kenney JL, Wang E, Weaver SC (2008) Venezuelan
equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection

initiated by a small number of susceptible epithelial cells and a population

bottleneck. Virology 372: 176–186.
64. Tsetsarkin K, Higgs S, McGee CE, De Lamballerie X, Charrel RN, et al. (2006)

Infectious clones of Chikungunya virus (La Reunion isolate) for vector
competence studies. Vector Borne Zoonotic Dis 6: 325–337.

65. Sambrook J, Fritsch E, Maniatis T (1989) Molecular Cloning: a Laboratory

Manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.

66. Vanlandingham DL, Tsetsarkin K, Hong C, Klingler K, McElroy KL, et al.

(2005) Development and characterization of a double subgenomic chikungunya

virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes.

Insect Biochem Mol Biol 35: 1162–1170.

67. Gerberg EJ (1970) Manual for Mosquito Rearing and Experimental Techniques,

Bulletin No. 5 Lake Charles, LA.

68. Volkova E, Gorchakov R, Frolov I (2006) The efficient packaging of Venezuelan

equine encephalitis virus-specific RNAs into viral particles is determined by

nsP1-3 synthesis. Virology 344: 315–327.

69. Higgs S, Olson KE, Kamrud KI, Powers AM, Beaty BJ (1997) Viral expression

systems and viral infections in insects. In: Crampton JM, Beard CB, Louis C,

eds. The Molecular Biology of Disease Vectors: A Methods Manual. UK:

Chapman & Hall. pp 457–483.

70. DeLano WL (2006) PyMol molecular viewer. San Francisco, CA: DeLano

Scientific LLC.

Chikungunya Virus Adapts via Sequential Mutations

PLoS Pathogens | www.plospathogens.org 15 December 2011 | Volume 7 | Issue 12 | e1002412


