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Abstract: The Hartmann–Shack wavefront sensor is widely used to measure aberrations in both
astronomy and ophthalmology. Yet, the dynamic range of the sensor is limited by cross-talk between
adjacent lenslets. In this study, we explore ocular aberration measurements with a recently-proposed
variant of the sensor that makes use of a digital micromirror device for sequential aperture scanning
of the pupil, thereby avoiding the use of a lenslet array. We report on results with the sensor using
two different detectors, a lateral position sensor and a charge-coupled device (CCD) scientific camera,
and explore the pros and cons of both. Wavefront measurements of a highly aberrated artificial eye
and of five real eyes, including a highly myopic subject, are demonstrated, and the role of pupil
sampling density, CCD pixel binning, and scanning speed are explored. We find that the lateral
position sensor is mostly suited for high-power applications, whereas the CCD camera with pixel
binning performs consistently well both with the artificial eye and for real-eye measurements, and
can outperform a commonly-used wavefront sensor with highly aberrated wavefronts.
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1. Introduction

Quantification of aberrations is important in a number of applications and needed to optimize
performance as, for example, with adaptive optics. One area of special relevance is ophthalmology,
where the optical quality of the human eye is important not only for acute vision but also for diagnostic
retinal imaging applications.

The optical performance of the human eye is limited not by diffraction but rather by the amount
of monochromatic and chromatic aberrations. Ocular wavefront aberrations are mainly induced by
the cornea and the crystalline lens and become increasingly important with a larger pupil size. The
wavefront aberrations commonly refer to the conjugate pupil plane of the eye, where deviations from
a planar wavefront refer to aberrations that prevent light from being focused onto a diffraction-limited
spot on the retina. The aberrations for monochromatic light are expressed as a linear combination of
orthonormal circular Zernike polynomials weighted by a series of Zernike coefficients, expressed in
either µm or wavelength units [1].

Many methods have been proposed since the 1960s to measure aberrations of the human eye
both objectively and subjectively including modified aberrometers [2,3], ray tracing techniques [4],
and indirectly via retinal images [5]. However, Hartmann–Shack wavefront sensors (HS-WFSs) have
become the preferred devices to measure the wavefront and intensity distribution of backscattered
light from the retina [6]. The HS-WFS uses a tightly focused beacon of light in the retinal plane, which
serves as secondary point source for the wavefront sensing, with a lenslet array that samples the
local distribution of wavefront tilt in the pupil plane. Complementary metal-oxide-semiconductor
(CMOS)-based HS-WFS can capture aberration changes at 100′s of Hz, although common CCD-based
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HS-WFS are limited to 10′s of Hz. In either case, cross-talk between adjacent lenslets limit the dynamic
range. Modifications to HS-WFS have been proposed to improve the dynamic range by using a
liquid-filled lenslet array [7] and by replacing it with a liquid crystal display [8,9], although only few
have been tested with ocular aberrations.

As the need to determine ocular aberrations has become increasingly important for personalized
refractive corrections using custom LASIK [10], and for the understanding of a number of refractive
problems ranging from keratoconus [11] to increased high myopia [12], establishing a wavefront
sensing technique that provides a high dynamic range, resolution, and high speed suitable for the
human eye is crucial. Digital micromirror devices (DMDs) can operate at speeds in the 10′s of
kHz range, while sequential scanning provides a large dynamic range due to the lack of a lenslet
array; therefore, avoiding the appearance of cross-talk, as recently proposed by the authors in a
DMD-WFS [13]. Additionally, DMDs have recently been used for ophthalmic applications in retinal
imaging [14] and psychophysical measurements [15]. A somewhat related technique uses scanning of
an incident beam of light in the pupil plane to capture multiple retinal images [16]. Here, the narrow
beam of light is incident near the pupil center and scanning is only done for light exiting the eye by
sequential aperture scanning of the pupil, analogous to the parallel sampling by a lenslet array in
the HS-WFS. Centroiding methods of the imaged point-spread-function (PSF) for ocular aberrations
have been compared [17] and can be tuned to provide more accurate wavefront reconstructions in the
presence of noise.

Here, the wavefront sensing technique using a DMD is used to measure ocular aberrations of the
human eye by performing sequential zonal scanning of the wavefront. The experimental setup and
method are explained in Section 2 using two types of detectors. Results are shown in Section 3.1 for an
artificial eye and in Section 3.2 for human eyes. A discussion about the results and technique can be
found in Section 4, followed by the conclusion of the study in Section 5.

2. Materials and Methods

A wavefront sensor based on sequential scanning of a reflective cell with a DMD (V-7001 VIS,
Vialux, Chemnitz, Germany) is used to measure ocular aberrations. The system, which is described
in detail in [13], has been adapted for real-time aberration sensing of the human eye. A schematic
of the setup can be seen in Figure 1. Essentially, a narrow near-infrared (850 nm) beam of 200 µW
entering the eye is focused onto the retina to create a secondary point source suitable for wavefront
sensing. Backscattered light exiting the eye is truncated by a 4 mm iris and the pupil is imaged by a 4f
telescope onto the DMD. The DMD is comprised of 1024 × 768 mirrored square pixels of 13.7 µm that
allow binary positioning at ±12◦ (and optical angles of ±24◦) at up to 22.7 kHz. The DMD divides the
imaged pupil into equal-sized cells, consisting of a square array of micromirrors, which are sequentially
activated, and the reflected light is focused onto a position detector. Due to diffraction effects from the
DMD, an iris is used in a conjugate retinal plane to only allow the pass of the 0th order. In this study,
two different position detectors are used:

(1) A 2D-lateral resistive position detector (PDP90A, ThorlabsTM, Newton, NJ, USA) of up to 0.75 µm
spatial resolution, was used to register the central position of the PSF centroid (x,y) for each
activated DMD cell. Although its angular resolution suffices, the limited sensitivity of this
device prevents it from being used to determine ocular aberrations, but it is included here as a
proof-of-principle in Section 3.1.1. Indeed, it may well find applications where power limitations
are of less concern, such as in the characterization of laser beams.

(2) A CCD camera (Scientific Camera 1501M-USB, ThorlabsTM, Newton, NJ, USA) with 6.45 µm
pixel pitch and 14-bit digital output is used for the rest of the results in Sections 3.1.2 and 3.2,
allowing for high brightness variations and binning of pixels to increase acquisition speed when
acquiring images of the PSF from which the centroid position can be determined.
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Figure 1. Schematic of the system used to measure ocular aberrations using a digital micromirror
devices (DMD). A 4 mm beam of near-infrared (IR) light backscattered from the retina is sequentially
scanned in the pupil plane by the DMD, which directs light onto a position detector via a plane
mirror to capture the maximum light. The detector captures the (x,y) centroid coordinates of the
point-spread-function (PSF) in the case of the lateral position detector, or captures images of the PSF in
case of the charge-coupled device (CCD) camera, for each scanned section of the light. All lenses used
are antireflection-coated achromatic doublets.

The DMD, the position detector, and the CCD are all programmed and synchronized via
LabVIEWTM. Thus, the position detector captures the PSF centroid coordinates at a speed of
1.5 kHz, whereas the CCD captures the PSF images at a speed of 13 frames-per-second (FPS)
without pixel binning and 1 ms exposure, but faster with pixel binning of up to 24 × 24 pixels.
For example, with 10 × 10 pixel-binning the speed limit is 77 FPS. For both sensors, the aberration
is determined with respect to that of a plane reference wave obtained by placing a flat mirror in the
pupil plane. A conventional Hartmann–Shack wavefront sensor (HS-WFS 150-5 C, 73 × 73 lenslets,
ThorlabsTM, Newton, NJ, USA) is placed in a conjugate pupil plane and is used for comparison and
verification purposes.

First, a test was performed with an artificial eye comprised of a thin ophthalmic trial lens adjacent
to a flat mirror placed in the pupil plane. The DMD-WFS scan was implemented with two sampling
densities: (a) 5 × 5 DMD cells of 800 µm (58 × 58 pixels) obtaining the corresponding 25 PSF images,
and (b) 10 × 10 DMD cells of 400 µm (29 × 29 pixels) corresponding to 100 PSF images. For each
sampling density of the DMD, the PSF images were acquired using 1 × 1, 2 × 2, 4 × 4, and 8 ×
8-pixel-binning of the CCD camera, recovering images of 1392 × 1040, 696 × 520, 348 × 260, and
174 × 130 pixels, respectively. A plane reference wave was also attained for each case, and the effects
of binning compared.

Secondly, ocular aberration measurements were performed in the right eye of 4 emmetropic
subjects (equivalent sphere between 0 and−1 diopters, as measured with an EyeNetraTM autorefractor)
and one myopic subject (with an equivalent sphere of −7D) whose pupils were dilated, and
accommodation partially paralyzed, with two drops of 1% tropicamide. To ensure a point source on
the retina of myopic subjects, a corrective trial lens is placed in a prior conjugate plane to the pupil,
making use of a one-to-one 4f system composed of two 150 mm focal length achromatic lenses. A bite
bar was used to ensure good centration of the eye’s pupil and reduce head movement throughout the
measurements. For their own commodity, subjects were asked to take a short break between one scan
measurement and the next, hence slightly readjusting their position for each measurement.
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For both cases, the Zernike wavefront parameters obtained from the HS-WFS were recorded
up to the 4th radial order. Subsequently, the DMD-WFS scan was performed at 13 FPS, adding up
to a total time of 2 s for a complete 5 × 5 sampling and 8 s for a 10 × 10 scan. The PSF images
were post-analyzed in MatlabTM to determine the center-of-gravity centroid translations in cartesian
coordinates between the aberrated wavefront and that of the reference for each DMD cell. These
translations were used to calculate the Zernike coefficients from which the least-square wavefront
reconstruction was performed. The procedure of this method is explained in detail in [13]. For 5 ×
5 DMD sampling, the PSF corresponding to DMD cells illuminated across more than 50% of their
area were analyzed and used for the reconstruction, while for 10 × 10 sampling, only those 100%
illuminated were considered. To further examine the effects of using 50% illuminated area versus
100% illuminated area of DMD cells and that of binning, the reconstruction procedure here followed
for 5 × 5 DMD cell sampling was compared in Figure 2 for a simulated wavefront with astigmatism,
coma, and trefoil, similar to that from [18] for a typical human eye. Reconstructing the wavefront
only using the fully illuminated DMD cells, provides more accurate results for a static wavefront.
However, when sampling a dynamic wavefront, such as that of the real eye, with a low density and
only considering cells illuminated in their entirety, could be insufficient for accurate measurements.
On the other hand, increasing pixel binning in the detection camera allows for faster acquisition and is
seen to maintain accuracy up to 8 × 8 binned pixels (deviation <4%), after which the accuracy of the
wavefront reconstruction tends to fall.
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Figure 2. Comparison of wavefront reconstructions of a simulated wavefront with astigmatism, coma,
and trefoil. First, using DMD cells which are at least 50% illuminated with a 4 mm beam, and second,
those 100% illuminated by the incoming beam. For each case, the effect of square pixel binning of ×2,
×4, ×8, ×16, and ×24 pixels in the detector camera is compared. All root-mean-square (RMS) values
are given in µm.

3. Experimental Results

Wavefront diagrams and root-mean-square (RMS) wavefront values shown in this section are
exempt from tip and tilt, as these are not representative of the ocular aberrations as such, and a minimal
decentration is necessary to avoid corneal reflections in the HS-WFS measurements.

3.1. Wavefront Aberrations with an Artificial Eye

3.1.1. Lateral Position Detector

The lateral position detector provides the cartesian coordinates of an incident beam with respect
to a predetermined center point and is commonly used for system alignment. Here, it was used to
determine the centroid coordinates of the PSF and displacements were given with respect to that
of a focused plane reference wave. The reconstruction of aberrated wavefronts induced by four
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different trial lenses can be seen in Figure 3 and compared to the wavefront measured by the HS-WFS.
Astigmatism was achieved with two crossed positive and negative power cylindrical lenses. All
measurements shown were performed with 5 × 5 DMD cell sampling. Increasing the sampling density
to 10 × 10 decreased the amount of optical power per cell that reached the position detector, and;
therefore, limited its accuracy with the available power.Micromachines 2018, 9, x FOR PEER REVIEW  5 of 11 
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Figure 3. Wavefront reconstructions of an aberrated wave across a 4 mm pupil with ophthalmic trial
lenses using the 5 × 5 sampling DMD-WFS method and a 2D-lateral position detector placed in the
image plane. All RMS values are given in µm.

3.1.2. CCD Camera Detector

The wavefront reconstructions of the artificial eye using the Zernike coefficients measured by the
HS-WFS and the DMD-WFS were included in Figure 4 for a 4 mm pupil and two sets of ophthalmic
lenses: a) defocus with a +8D spherical lens, b) astigmatism with two crossed −4D and +4D cylindrical
lenses, and c) combination of defocus and astigmatism with a +8D spherical lens and crossed −4D
and +4D cylindrical lenses. Given that the trial lenses were used in conjunction with a flat mirror, the
double pass of the beam caused induced aberration to lay beyond the range of the HS-WFS. Different
binning options ranging from one to eight pixels were included when measured with the DMD-WFS.
The RMS values of the Zernike coefficients were used to quantify and compare the obtained results,
with only up to 2.5% deviation for different pixel-binning options. However, a difference of up to
30% was observed when compared to the HS-WFS, where the aberrations were underestimated. The
obtained data comparing both methods in terms of Zernike coefficients as well as sphere and cylinder
power is detailed in Table 1.

Table 1. Data comparison between the Zernike coefficients c2,0 and c2,2 and the equivalent sphere and
cylinder power for a 4 mm pupil, with an artificial eye obtained by the HS-WFS and the DMD-WFS
without binning.

HS-WFS DMD-WFS

c2,0[µm] c2,2[µm] Sphere[D] Cyl.[D] c2,0[µm] c2,2[µm] Sphere[D] Cyl.[D]

a) 6.638 0.308 11.50 0.75 7.519 −0.024 13.02 0.00

b) 0.627 −4.867 1.08 −11.90 0.561 −6.511 0.97 −15.95

c) 6.270 −2.472 10.85 −6.05 7.084 −3.769 12.27 −9.23
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Figure 4. Comparison of defocus and astigmatic wavefront reconstructions for a 4 mm pupil with an
artificial eye through Zernike coefficients between HS wavefront sensing, and for the DMD wavefront
sensing method with four different binning options in the CCD camera, acquiring the PFS images for
each DMD cell. All RMS values of the Zernike coefficients are given in µm.

3.2. Wavefront Aberrations of the Real Eye

Measurements of ocular aberrations of five healthy subjects, four of which were emmetropes and
one which was myopic (−7D), are shown in Figure 5 for 5 × 5 sampling density and in Figure 6 for
10 × 10 sampling density. In both cases, four types of pixel binning in the CCD camera were included.
Wavefronts were quantified using the RMS value of the Zernike coefficients, given in µm.

Larger variations between the reconstructed wavefronts appeared when measuring the real eye in
comparison to the previous results with the artificial eye. This could be due to the natural movement
of the eye, which includes both voluntary and involuntary movements, even when fixating on a given
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target [19]. Fixation time lasted approximately 200–300 ms [20,21], with large variability between
subjects, which falls well below the required DMD-WFS scan time. Increasing the pixel binning
allowed for a higher acquisition speed to limit variations during ocular aberration measurements.
Variations of 5% to 30% in the RMS values were noted between different binning options performed
at the same speed for 5 × 5 DMD sampling. Denser sampling of 10 × 10 DMD cells involved higher
acquisition time, causing deviations to increase between 7% and 40%.
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Figure 5. Ocular aberrations measured with the DMD-WFS with 5 × 5 sampling density for four
subjects with normal vision and one myopic subject (−7D), marked with an asterisk (*), using DMD
cell with at least 50% of its area illuminated. Quantification of wavefronts are presented as RMS values
given in µm.
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case of 10 × 10 sampling, as the measurement time varied considerably between being performed at 
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Figure 6. Ocular aberrations measured with the DMD-WFS with 10 × 10 sampling density using only
100% illuminated DMD cells for the same five subjects. The asterisk (*) denotes the myopic subject. All
RMS values are given in µm.

In order to analyze the effect of scanning at different speeds, measurements were performed in
the right eyes of the authors at 5, 10, 15, and 20 frames per second with both 5 × 5 and 10 × 10 DMD
cell sampling. Results are included in Figure 7. For each subject, larger differences were seen in the
case of 10 × 10 sampling, as the measurement time varied considerably between being performed at
5 FPS or 20 FPS.
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Figure 7. Comparison of the DMD-WFS scan performed at 5, 10, 15 and 20 FPS for two subjects with
both 5 × 5 and 10 × 10 DMD cell sampling densities. All RMS values are given in µm.

4. Discussion

The use of a DMD to sequentially scan an aberrated wavefront using a single achromatic lens to
focus light onto a position-sensitive detector allows for wavefront measurements with high dynamic
range by avoiding crosstalk, which potentially limits the performance of a conventional HS-WFS. This
sees applicability in ophthalmology due to the fast-increasing rates of high myopia [22]. Corneal
reflections, or undesired corneal areas can also be eliminated by deactivating the corresponding cells
in the DMD, such that these do not induce noise into the wavefront reconstruction. An example where
reflections can cause problems can be seen in the lower part of Figure 4b for the HS-WFS wavefront
with astigmatism.

The use of a position detector device provides direct determination of centroid coordinates with
an accuracy of up to 0.75 µm when output voltage is maximized, avoiding the need to save large
amounts of image data for each measurement, specifically in the case of large sampling densities and
no pixel binning. However, given its high-power requirements for accurate detection, it did not prove
feasible for ophthalmic applications.

The CCD camera with a 14-bit optical output working synchronously with the DMD was shown
to measure static wavefronts with high precision in the artificial eye. Furthermore, the possibility
of binning pixels in x- and y-directions allow for increased speed and lower amounts of stored data
without compromising accuracy. Slight variations in the wavefront RMS values seen in Figure 4 with
different binning options of up to 8 × 8 pixels are in the same order of magnitude as predicted by the
simulated wavefront from Figure 2.

For ophthalmic applications, the high speed of the DMD and CCD camera to perform a complete
scan is crucial. Scans performed at 13 FPS were to suffice when measuring ocular aberrations with
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both 5 × 5 and 10 × 10 DMD cell sampling, and the effect of scanning speed between 5 and 20 FPS
was analyzed. However, variations in the measured wavefronts are still present due the continuous
involuntary movements of the eye during fixation including tremors, drifts, and microsaccades [19–21],
where further increasing the speed would improve accuracy and repeatability. Changes in the tear film,
which is known to be dynamic, may also cause changes in the measurements of ocular aberrations [23].
Binning larger amounts of pixels in the detection camera, can help improve the signal; however,
compromises accuracy above 8 × 8 pixels, as seen in Figure 2. Additionally, using slightly better
centroiding methods [17] could improve accuracy. The use of a high-speed CMOS camera could
potentially allow for higher speed, but ultimately a different methodology, such as single-pixel sensing,
may be required to gain the upmost in terms of kHz speed [24].

5. Conclusions

Sequential scanning of a wavefront using a DMD and a single achromatic lens to measure
aberrations, with near-infrared light removing the conventional lenslet array found in HS-WFS, has
been achieved. This provides high dynamical range with a trade-off between high sampling densities
and speed, where the latter can be increased by pixel binning. This technique grants high adaptability
to different applications and is here tested to measure ocular aberrations in artificial and real eyes. Two
different wavefront sampling densities were compared, and the effect of pixel binning was analyzed
and found to allow for accurate reconstructions for a static artificial eye, but were subject to variations
in the real eye, where increased speed would still be paramount for higher accuracy.
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